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 This study aimed to analyze methods for modeling and controlling the 

output of nonlinear systems using feedback, analytical methods, 

mathematical modeling, and differential equation theory. Key findings 
include the mathematical characterization of equations and the analysis of 

system stability and asymptotic behavior. The study explored various 

methods for addressing problems in nonlinear systems, emphasizing the 

importance of identifying effective solutions. The research highlights the 
significance of developing effective approaches to solving complex 

problems involving nonlinear systems. Feedback is essential for controlling 

and correcting dynamic processes in systems with nonlinearities. The study’s 

key finding is the mathematical characterization of equations describing 
nonlinear systems, providing insight into system structure and behavior 

under different parameters. Analyzing stability and asymptotic behavior 

allows for assessing system reliability and predicting long-term stability. 

This study contributes to the scientific understanding and development of 
methods for modeling and controlling nonlinear systems using feedback. 
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1. INTRODUCTION 

This study emphasizes the importance of quality systems management in a rapidly changing 

environment with dynamic events. The rapid pace of technological development, global variables, and 

frequent changes in conditions necessitate adaptive and flexible systems. Modeling and feedback are crucial 

tools for creating adaptive strategies that can respond effectively to these changes. Effective adaptive 

strategies enable systems to adapt quickly to new environments, minimize risk, and maximize performance. 

However, managing and modeling nonlinear systems in unpredictable and dynamic contexts can be 

challenging. The study aims to analyze methods for modeling and controlling output of nonlinear systems 

using feedback, analytical methods, mathematical modeling, and differential equation theory. Understanding 

the effectiveness and limitations of numerical methods will provide a framework for selecting and combining 

these techniques to develop robust and adaptive management strategies for nonlinear systems. 

Nonlinear systems exhibit a variety of dynamic properties, such as instability, the possibility of 

chaotic modes, and nonlinear feedback [1]. Effective management strategies require considering non-linear 

relationships between system components, uncertainties, external influences, and noise. According to 

Liu et al. [2], nonlinear differential equations appear in many fields and are notoriously difficult to solve. 

https://creativecommons.org/licenses/by-sa/4.0/
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Researchers have developed the first quantum algorithm for dissipative nonlinear differential equations, 

which is efficient if the dissipation is strong and the solution doesn't decay rapidly. 

Awan et al. [3] showed a mathematical model in the form of a partial differential equation (PDE) 

that is constructed under certain assumptions. The study transforms nonlinear PDEs into dimensionless 

ordinary differential equations (ODEs) using the MATLAB bvp4c numerical method. The results show that 

physical parameters impact dimensionless profiles of concentration, temperature, micro polarity, velocity, 

and induced magnetic field. Alimhan et al. [4] considered the problem of global practical tracking results for 

a class of uncertain high-order nonlinear systems with time delay via state feedback. A uniform state 

feedback controller with adjustable scaling factor was constructed using the uniform dominance method, 

focusing on delay-related nonlinearities. 

Leylaz et al. [5] proposed a technique for the identification of nonlinear dynamical systems with 

time delay. The sparse optimization algorithm is extended to nonlinear systems with time delay, combining 

machine learning cross-validation and algebraic operations for signal preprocessing. According to Shu and 

Zhai [6], closed-loop feedback-based structures are adopted in many control systems because feedback 

systems can effectively constrain the change of system parameters. Researchers studied dynamic event-

driven feedback output control for nonlinear systems under homogeneous growth conditions. They developed 

a new outgoing feedback control law to ensure bounded system signals and global inclusion of system states 

in a compact set around the origin.  

Zhang et al. [7] presented a scheme with two adjustable design parameters based on Lyapunov 

functional results for the state-entry stability of time-delayed systems. The proposed trigger event control 

algorithm ensures that finite closed-loop systems are globally asymptotically stable, uniformly bounded, 

and/or globally attractive for different variants of these parameters. Sufficient conditions for the parameters 

are derived to rule out Zeno behavior. Two illustrative examples are considered to present the theoretical 

results. Ma et al. [8] considered the topic of fault-tolerant adaptive neural network control for a class of 

ambiguous switched nonlinear systems with limited feedback and unmodeled dynamics and unmeasurable 

states. According to the study, in such systems, the uncertain nonlinear components are identified by radial 

basis function neural networks. The study does not present a comparison of the proposed method with 

existing control methods for nonlinear systems. 

The purpose of the current study was to analyze methods of modeling problems in nonlinear systems 

using numerical methods. The completion of this task will allow for the investigation the efficiency and 

stability of numerical methods. The study emphasizes the importance of parameter tuning and the use of 

MATLAB for solving complex nonlinear differential equations. For the purpose of describing and regulating 

nonlinear systems with feedback, this research integrates the finite element method, the finite difference 

method, and the optimal control approach. In contrast to earlier research, which frequently concentrated on a 

single technique or a particular facet of nonlinear systems, this study offers a comparative evaluation of all 

three approaches, stressing their unique advantages and disadvantages. In order to improve system 

management in dynamic and unpredictable contexts, the paper presents a framework for choosing and 

combining these techniques depending on job needs. This comprehensive way of assessing and utilizing 

various numerical techniques advances the field of control of nonlinear systems. 

 

 

2. LITERATURE REVIEW 

According to Saeedi et al. [9], in recent years, the growing interest in networked control systems 

(NCS) and cyber-physical systems (CPS) has been caused by the rapid development of digital 

communications. These new domains are an integration of physical systems, digital controllers, and tools that 

interact with each other through a common cyber layer to achieve their goals. The emergence of such systems 

has stimulated the active development of research in the analysis and management of critical infrastructures 

such as transport systems and energy networks. Modeling nonlinear systems using feedback is an essential 

aspect in the field of systems analysis and control. Nonlinear systems, unlike linear systems, exhibit complex 

behavior, which makes them more difficult to analyze and control. 

According to studies [10], [11], modern analysis and control methods include the application of 

various mathematical models, optimization methods, control theory, and artificial intelligence. These 

approaches allow for complex interactions between system components as well as dynamic changes in the 

environment to be considered. Moatimid and Amer [12] and Cheng et al. [13] consider different approaches 

to modeling and controlling nonlinear systems, such as differential equation-based methods, stochastic 

models, neural networks, and hybrid methods. Methods based on differential equations include the use of 

well-known models such as Lorentz or Van der Pol models, as well as various methods for analyzing the 

stability and controllability of systems [14], [15]. Stochastic models allow accounting for random effects and 

uncertainties, which is especially important when modeling real systems with various sources of noise and 

disturbances. Huijgevoort et al. [16] presented a tool for the synthesis of controllers for stochastic continuous 
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state systems, considering the requirements of temporal logic. The tool provides the necessary functions for 

synthesizing robust controllers and defining formal reliability guarantees. Its specific feature lies in the 

support of nonlinear dynamics, complex temporal logic specifications, and down-ordering of the model. 

Rober et al. [17] argued that neural networks are becoming increasingly popular in modeling 

nonlinear systems because they can approximate complex nonlinear dependencies and learn from the 

available data. Hybrid methods combine different approaches to obtain more efficient and accurate models 

and control algorithms. All these approaches play a significant role in the development of network 

management and cyber-physical systems, ensuring their reliable operation and resilience to various external 

influences. According to Choi and Yoo [18], nowadays there is a significant spread in the use of 

interconnected nonlinear systems in engineering and information practice, which requires the development of 

control methods based on decentralization. It forms an integral part of the current trend in various fields, 

including robotics, process automation, power grid management, and even financial markets. However, the 

management of such systems is challenging due to their non-linearity and the interrelationships between the 

different components. Conventional centralized management methods may be ineffective or even 

inapplicable in such cases as they involve centralized management of all aspects of the system, which may 

not be possible or effective due to the high degree of interdependence and dynamic nature of non-linear 

systems. 

 

 

3. MATERIALS AND METHODS 

The study employed the analytical method, which allowed for in-depth analyses. It involved the 

application of various mathematical techniques and formulas to analyze the equations of the system under 

study. Using an analytical approach, a detailed mathematical characterization of the solutions to the equations 

was carried out, allowing a theoretical study to be carried out. This method has helped to better understand 

the basic properties of solutions, their asymptotic behavior, structure, and impact on systems and processes in 

a practical research framework. Various definitions and assumptions have been used in this study, and high-

order nonlinear systems with delay [19] (1): 

 

�̇�𝑖(𝑡) =  𝑥𝑖 + 1(𝑡)𝓅𝑖  +  𝜙𝑖(𝑡, 𝑥(𝑡), 𝑥(𝑡 −  𝑑), 𝑢(𝑡)), 𝑖 =  1, . . . , 𝑛 −  1,  �̇�𝑛(𝑡) =  𝑢 +

 𝜙𝑛(𝑡, 𝑥(𝑡), 𝑥(𝑡 −  𝑑), 𝑢(𝑡)), 𝑦(𝑡)  =  𝑥1(𝑡)  −  𝑦𝑟(𝑡), (1) 

 

where: 𝑥(𝑡) = (𝑥1(𝑡), . . . , 𝑥𝑛(𝑡))𝑇 ∈ 𝑅𝑛, 𝑢(𝑡) ∈ 𝑅 and 𝑦(𝑡) ∈ 𝑅 are states, input and output of the system; 

𝑥1, 𝑥2, 𝑥3 are state variables of the specific nonlinear system example; 𝑑 are delay term in the system; 𝑦𝑟(𝑡) 

are reference signal for the output. 

This type of system is often encountered in modeling dynamic processes where nonlinearities and 

delays can have a substantial impact on the dynamics of the system. 

Assumption 1. There exist constants and 𝐶1, 𝐶2 and 𝜏 ≥ 0 such that (2): 

 

|𝜑𝑖(𝑡, 𝑥(𝑡), �̅�(𝑡 − 𝑑𝑖), 𝑢(𝑡))| ≤ 𝐶1 (|𝑥1(𝑡)|
𝑟𝑖+𝜏

𝑟1 + ⋯ + |𝑥𝑖(𝑡)|
𝑟𝑖+𝜏

𝑟1 + |𝑥1(𝑡 − 𝑑1)|
𝑟𝑖+𝜏

𝑟1 + ⋯ +

|𝑥𝑖(𝑡 − 𝑑𝑖)|
𝑟𝑖+𝜏

𝑟1 ) + 𝐶2, (2) 

 

where: �̅�(𝑡 − 𝑑𝑖) = 𝑥(𝑡 − 𝑑1), 𝑥(𝑡 − 𝑑2), … , 𝑥(𝑡 − 𝑑𝑛), 𝑟1 = 1, 𝑟𝑖+1𝑝𝑖 = 𝑟𝑖 + 𝜏 > 0, 𝑖 = 1, … , 𝑛,  𝑝𝑛 = 1; 𝐶1, 

𝐶2 – constants used to bound the nonlinear functions; 𝜏 – delay term coefficient. 

Assumption 2. The reference signal 𝑦𝑟(𝑡) is continuously differentiable. Moreover, there exists a known 

constant 𝐷 > 0, such that (3): 

 

|𝑦𝑟(𝑡)| + |𝑦�̇�(𝑡)| ≤ 𝐷, ∀𝑡 ∈ [0, ∞). (3) 

 

where: 𝑦�̇�(𝑡) – derivative of the reference signal. 

Theorem 1. Under assumptions (1, 2), the global practical output tracking problem of system (1) can be 

solved using a controller with feedback 𝑢 = 𝐿𝑘𝑛+1𝑣 on a continuous state of the form (2). The proof of the 

theorem can be seen in Alimahan et al. [4]. 

The theory of differential equations allowed for the analysis the stability of the system. This is 

important for determining how the system responds to perturbations and changes in input signals. It also 

helped to investigate the asymptotic behavior of the system. Numerical methods such as finite element and 

difference methods have been used to solve problems with nonlinear systems. MATLAB programming 
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environment was used to design and implement the numerical methods, perform numerical experiments, and 

analyze the results. MATLAB provides a wide range of tools and functions for working with numerical 

methods and data processing, which has greatly simplified the research process. 

The finite element method has been used to analyze the structure and dynamics of the system and to 

optimize its performance considering feedback. The finite element method made it possible to create detailed 

mathematical models of nonlinear systems, considering complex physical interactions. The finite element 

method was used to determine the best parameters of the system, considering feedback. The finite difference 

method was applied to approximate the differential equations and investigate the dynamics of the system in 

discrete time. The finite difference method was used to discretize the differential equations of the system, 

which helped to obtain the difference equations. Evaluation of the sensitivity of the system to parameter 

changes using numerical differentiation. The finite difference method accounted for nonlinearities in the 

system, such as the nonlinear elastic properties of materials. 

Mathematical modeling techniques have been used to describe problems more accurately and 

completely with a nonlinear system. Specifically, the optimal control method was applied, which provided a 

mathematical framework to optimize the control of the system. The optimal control method was applied to 

optimize control signals to achieve certain criteria, such as minimizing costs, maximizing performance, or 

achieving certain system states. The optimal control method accommodated the nonlinear components in the 

system, allowing for more accurate modeling and control of systems with nonlinear behavior. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Theoretical framework and analytical approach 

The study focuses on understanding nonlinear systems problems using feedback by learning the 

theory of numerical algorithms. It includes stability and controllability analyses, mathematical methods for 

solving these problems, and the development of efficient control algorithms. Understanding numerical 

algorithms is crucial for modeling these problems, as it allows for the development of efficient algorithms 

considering the specific problem's characteristics and requirements. This includes selecting and optimizing 

numerical methods, choosing the right mesh and discretization interval, and analyzing the accuracy and 

stability of numerical solutions. This knowledge enables the application of numerical methods with high 

confidence and efficiency in solving nonlinear systems with feedback. Analytical analysis is used to identify 

the main properties of solutions, investigate their asymptotic behavior, structure, and effects on systems and 

processes. This analytical approach provides a powerful tool for analyzing system behavior and key 

characteristics. 

Differential equation theory plays a key role in solving nonlinear systems using feedback. 

Differential equations provide a mathematical toolkit to describe the dynamic behavior of a system. In the 

context of nonlinear systems, they helped to account for nonlinear dependencies between system state 

variables and time. The theory of differential equations has made it possible to model the complex 

interactions between the various components of a system. This is important when analyzing non-linear 

systems where the influence of variables is complex and volatile. Differential equations are widely used in 

optimal control theory. This allowed finding optimal strategies to manage the system to achieve certain 

criteria, such as minimizing costs or maximizing performance. Differential equations are easily integrated 

with feedback theory. Feedback control allowed real-time adjustment of system parameters based on 

measurements of the current system state. 

Mathematical and computer modeling techniques play an essential role in solving nonlinear systems 

using feedback. Mathematical modeling helped to accurately describe the system, considering all interactions 

between its components. For nonlinear systems, this is important because they exhibit complex and nonlinear 

dependencies. Under ideal conditions where an analytical solution is possible, mathematical modeling 

provides accurate and analytical expressions for system states and control actions. Computer simulation 

helped to approximate the real behavior of the system, considering its complexity and dynamic changes. It 

provided the flexibility to introduce changes to the model, allowing it to be adapted to different environments 

and scenarios. Computer models were used to perform sensitivity analyses, accounting for uncertainties in 

the system parameters and assessing their impact on the results. 

 

4.2.  State feedback tracking control scheme 

Global practical tracking problem using state feedback: system (1) was considered, and it was 

assumed that the reference signal 𝑦𝑟(𝑡) was a time-varying 𝐶1-bounded function on [0, ∞ ). For any given 

𝜀 > 0, a state feedback controller is designed with the following structure (4): 

 

𝑢(𝑡) = 𝑔(𝑥(𝑡), 𝑦𝑟(𝑡)). (4) 
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The practical problem of output tracking using delay-independent state feedback for high-order nonlinear 

systems with delay (1) under assumptions (1, 2) was considered. For this, the following coordinate 

transformation is first introduced (5): 
 

𝑧1 = 𝑥1 − 𝑦𝑟 ,  𝑧𝑖 =
𝑥𝑖

𝐿𝑘𝑖
, 𝑖 = 2, … , 𝑛, 𝜈 =

𝑢

𝐿𝑘𝑛+1. (5) 

 

where: 𝑧𝑖 is transformed state variables; 𝐿𝑘𝑖 , 𝐿𝑘𝑛+1 are scaling factors; 𝑣 is transformed control input. 

Then the system (1) was described in new coordinates (6): 
 

𝑧�̇� = 𝐿𝑧𝑖+1

𝑝𝑖 + 𝜓𝑖(𝑡, 𝑧(𝑡), 𝑧(𝑡 − 𝑑), 𝜈), 𝑖 = 1, … , 𝑛 − 1, 

𝑧�̇� = 𝐿𝜈 + 𝜓𝑛(𝑡, 𝑧(𝑡), 𝑧(𝑡 − 𝑑), 𝜈), 𝑦 = 𝑧1. (6) 
 

Using assumption (1), the fact that 𝐿 ≥ 1 and the boundedness of 𝑦𝑟  and 𝑦�̇�, guaranteed by assumption (2), 

ensures the existence of constants 𝐶�̅�, 𝑖 = 1,2 only depending on constants 𝐶1, 𝐶2, 𝜏, 𝑘𝑖, and 𝐿, at which (2) 

becomes (7): 
 

|𝜓1(𝑡, 𝑧(𝑡), 𝑧(𝑡 − 𝑑), 𝜈)| ≤ 𝐶1
̅̅ ̅ (|𝑧1(𝑡)|

𝑟1−𝜏

𝑟1 + |𝑧1(𝑡 − 𝑑)|
𝑟1−𝜏

𝑟1 ) + 𝐶2
̅̅ ̅|𝜓1(𝑡, 𝑧(𝑡), 𝑧(𝑡 − 𝑑), 𝜈)| ≤

𝐶1
̅̅ ̅𝐿1−𝜈𝑖 ∑ (|𝑧𝑗(𝑡)|

𝑟1−𝜏

𝑟𝑗 + |𝑧𝑗(𝑡 − 𝑑)|
𝑟1−𝜏

𝑟𝑗 ) +
𝐶2̅̅̅̅

𝐿𝑘𝑖
, 𝑖 = 2, … , 𝑛𝑖

𝑗=1 . (7) 

 

For the stability analysis as well as the tracking system design for a nonlinear system with delay, see 

Alimhan et al. [20]. To investigate the modeling of nonlinear systems problems in greater depth, various 

methods were implemented to understand each method in more detail, namely the finite element method, the 

finite difference method, and the optimal control method. The global practical problem of tracking the 

performance of nonlinear systems is one of the key and most challenging issues in the field of nonlinear 

control. Alimhan et al. [21], Tognetti and de Oliveira [22] proposed an approach to the design of a controller 

with output feedback for a class of high-order nonlinear systems with delay. It was shown that the proposed 

output controller, which is independent of time delay, can make the tracking error small and reflect the whole 

trajectory of the closed-loop system as bounded. Wang et al. [23], Cui et al. [24], and Jiang et al. [25] 

proposed an adaptive control approach, backstepping technique, and finite-time stability theory, and 

developed an adaptive finite-time tracking controller. The proposed control scheme ensured the performance 

of elapsed time tracking and the boundedness property of all signals in a closed-loop system. 

 

4.3.  Implementation of methods for modelling nonlinear systems 

To model the problem with nonlinear systems, we initially set the parameters, initial conditions, and 

time interval. The authors used MATLAB’s built-in finite element method to approximate the differential 

equations and analyze the system's dynamics. Each finite element represented a part of the system, with 

discretization enabling the system to be viewed as interconnected elements. The code constrains the 

derivative values based on assumption (2) and is designed for easy parameter and function customization. For 

the second method, the finite difference method, the authors modeled the same problem with identical 

parameters, initial conditions, and time intervals. This method approximates the differential equations in 

discrete time using local difference approximations of derivatives. The code also constrains derivative values 

according to assumption (2) and allows for straightforward customization of parameters and functions. 

In the implementation of the third method, namely the optimal control method, the same problem in 

general form was considered. The same initial conditions, time interval, and parameters were set, and the 

same programming environment was used. The function defined the system equations, describing the 

dynamics of the system. In this example, the equations are nonlinear, but they can be replaced by the 

appropriate equations for the particular system. This code provides a general framework for solving the 

optimal control problem and can be adapted to the specific requirements of a given problem. The following 

nonlinear system (8) was also considered: 

 

𝑥1̇(𝑡) = 𝑥2

5

3(𝑡) + 𝑥1

1

3 (𝑡 −
sin(𝑡)

5
) sin(𝑥1(𝑡))

̇
, 𝑥2̇ (𝑡) = 𝑥3

7

3(𝑡) + 2𝑥2(𝑡), 𝑥3̇ (𝑡) = 𝑢(𝑡) +

 2𝑥3

7

3(𝑡), 𝑦(𝑡) = 𝑥1(𝑡). (8) 

 

When the scaling factor L=100, the obtained tracking error is about 0.41 as presented on Figure 1. When the 

scaling factor L=400, the obtained tracking error is about 0.17 as presented on Figure 2. 
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Figure 1. Tracking error at L=100 

 

 

 
 

Figure 2. Tracking error at L=400 

 

 

A mathematical model was used in the study to create a nonlinear system, and a reference signal and 

state variable were selected for tracking. To guarantee that the output of the system closely follows the 

reference signal, a state feedback controller was created. Using various scaling factors, simulations were 

performed throughout a time range of 0 to 5. The system’s requirements were taken into account when 

setting the initial circumstances and settings. The differential equations were solved numerically using 

techniques like the finite element and finite difference methods. For effective computations, the built-in 

functions of MATLAB were utilized. Plotting the 𝑥1(𝑡) and 𝑦𝑟(𝑡) trajectories allowed observers to see how 

the influence affected tracking performance. The tracking error was calculated and shown to give an 

indication of how accurate the state feedback controller was. It is defined as the difference between 𝑥1(𝑡) and 

𝑦𝑟(𝑡)3. As a result, Figures 1 and 2 were compiled to evaluate tracking performance with various scaling 

factors.  

 

4.4.  Analysis of mathematical modelling and control methods in nonlinear systems 

The finite element method is a versatile approach for solving nonlinear systems, suitable for large-

scale and complex systems, particularly in time-based dynamic processes. However, it can be 

computationally expensive and requires careful boundary conditions definition. The finite difference method 

is efficient for uniform grid solutions but decreases efficiency in unstructured meshes, discretization step 

choices, complex geometries, and interactions with unstructured meshes. The optimal control method is used 

for optimizing nonlinear systems and control problems, considering control signals' optimality based on 

specific criteria like cost reduction or system state attainment. Figure 3 provides a structured overview of 

methods and techniques used in the analysis and control of nonlinear systems.  

Figure 3 provides a comprehensive overview of techniques and strategies used in feedback-based 

analysis and control of nonlinear systems. It emphasizes the importance of a diverse approach to handle the 

complexity of these systems, enabling the development of effective control plans and algorithms, ultimately 

improving nonlinear system management and optimization. This study analyzed various methods for 

modeling complex systems, focusing on their key features and benefits in Table 1. The effectiveness of 

different modeling methods, focusing on finite element, finite difference, and optimal control methods were 

identified. 
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Figure 3. Methods for solving nonlinear systems using feedback 

 

 

Table 1. Comparative analysis of methods 
Criteria Finite element method Finite difference method Optimal control method 

Flexibility High Moderate High 

Ease of implementation Moderate High Low 

Handling of complex geometries High Moderate High 

Computational efficiency Moderate to low High on uniform grid Low to moderate 

Adaptability to changes High Moderate High 

Optimality in control Moderate Low High 

Handling of nonlinear interactions High Moderate High 

Sensitivity to initial conditions Moderate High sensitivity High sensitivity 

Scalability High Moderate Low to moderate 

Handling of boundary conditions Requires careful definition Moderate difficulty Requires prior knowledge 

Accuracy in modelling High Moderate High 

Stability of Solutions Moderate to high Moderate High 

 

 

The detailed evaluation of the finite element approach, the finite difference method, and the optimal 

control method allowed the study to fulfill its goal of identifying and analyzing efficient methods for 

modeling nonlinear systems. The capacity of each technique to manage the innate complexity of nonlinear 

systems, such as instability, chaotic modes, and nonlinear feedback, was carefully examined. The results 

corroborated the notion that some approaches would be more appropriate for complex systems by showing 

how flexible and adaptable the finite element method is to complex geometries and interactions. The study 

highlights the importance of using feedback in modeling and controlling inputs in nonlinear systems 

problems. It highlights the use of advanced methods like finite element, finite difference, and optimal control 

methods for efficient analysis of various systems, including those with nonlinearities and time delays. 

 

4.5.  Computational techniques and their efficacy in nonlinear systems 

This study utilized the MATLAB programming environment to develop and implement numerical 

methods, simplifying the process of analysis and experiments. MATLAB's data processing and visualization 

capabilities helped efficiently analyze results [26]. The finite element method was used to analyze system 

structure and dynamics, considering feedback. This method allowed for detailed mathematical models of 

nonlinear systems, allowing for complex physical interactions. The application of this method to optimize 

system parameters improved system efficiency, considering feedback [27]. The study explores the 

advantages and disadvantages of different methods for modeling and controlling nonlinear systems in 

dynamic and uncertain situations. The finite element approach is flexible but computationally intensive, 

while the finite difference method is effective but has issues with unstructured meshes [28], [29]. 

The finite difference method is a discrete-time system dynamics study that generates difference 

equations for numerical simulations. It considers nonlinearities in the system, including materials' nonlinear 

elastic properties [30], [31]. The optimal control method offers a mathematical framework for optimizing 

control of nonlinear components, aiming for cost reduction or system performance maximization, thus 

improving modeling accuracy and control efficiency [32]–[34]. The current research emphasizes the need for a 

combined approach that leverages the strengths of each method to enhance the robustness and efficiency of 

systems management in rapidly changing conditions. The computational demands of the finite element method 

and optimal control techniques, the finite difference method sensitivity to discretization choices, and the general 

difficulty of properly modeling extremely complex nonlinear systems are some of the study’s limitations.  
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Study by Perrusquía and Yu [35] on identification and optimal control of nonlinear systems used 

recurrent neural networks and reinforcement learning for both discrete and continuous time. Researchers 

discovered that neural networks can approximate dynamical systems using identified elements and different 

structures. They also explored methods using Lyapunov and Riccati equations to derive neuron update rules. 

Both studies, which incorporated control theory and numerical methods like recurrent neural networks and 

optimization techniques, significantly contribute to the field of control and identification of nonlinear 

systems. Wang et al. [36] proposed an adaptive neural network for tracking nonlinear systems with multiple 

driving constraints. The researchers developed a method to eliminate actuator nonlinearity interference and 

address difficulty explosion issues. Both studies address nonlinearity in systems using innovative approaches, 

focusing on adaptation and output management. They also use neural network approximations to improve 

control efficiency. 

Alsalti et al. [37] presented an extension of Willems’ fundamental lemma to the class of linearized 

nonlinear discrete feedback systems with multiple inputs and multiple outputs, thereby providing a data-

driven representation of their input-output trajectories. Two sources of uncertainty are considered. Both 

studies focus on feedback in the context of controlling system dynamics. The researchers focus on linearized 

nonlinear systems with discrete feedback, which is an essential aspect under conditions of limited data 

availability. Both studies also address the problem of uncertainty. The researchers consider two sources of 

uncertainty, which emphasizes the significance of considering and managing uncertainty when developing 

control strategies. 

The study of nonlinear systems problems using feedback is a crucial tool in modern engineering and 

science. Advanced techniques like the finite element method, finite difference method, and optimal control 

method offer efficient modeling and analysis of various systems, including those with nonlinearities and time 

delays. The study validates the original theory by showing that each approach has distinct benefits and 

drawbacks. The study suggests that improved nonlinear system management in dynamic and unpredictable 

situations can be achieved by combining different strategies according to task-specific needs. 

 

 

5. CONCLUSION 

This study highlights the significance of flexible and adaptive quality systems management in an 

environment that is changing quickly due to global unpredictability, frequent changes, and technology 

advancements. It emphasizes how crucial modeling and feedback are to developing adaptive techniques that 

may successfully adjust to these changing circumstances. The paper offers a thorough overview of modeling 

techniques for nonlinear systems, with a focus on numerical techniques due to their stability and efficiency. It 

also emphasizes the value of using MATLAB and parameter adjustment while attempting to solve complicated 

nonlinear differential equations. The use of the finite difference and finite element methods provides 

information on the benefits and drawbacks of each technique. The finite element method turns out to be a 

flexible and powerful tool for modeling systems with complex geometry and interactions. The finite difference 

method is simple to implement and is well-suited for approximating differential equations in discrete time. The 

optimal control method provides the ability to optimize the control of a system to achieve given objectives. A 

comparative study of various approaches showed that the particular needs of the job have a major role in the 

technique selection. The study came to the conclusion that a combined strategy that made use of each method's 

advantages may offer a more adaptable and effective solution for complicated nonlinear systems. 

The findings highlight the necessity for adaptive solutions in system management, particularly in 

situations marked by fast change and uncertainty. They have important implications for the area of study as 

well as for the wider community. In order to provide more precise and adaptable answers to new problems, 

future research could investigate more sophisticated numerical techniques, create new algorithms to 

overcome limitations, and include real-time data and machine learning approaches. 
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