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 Underwater wireless sensor network (UWSN) is a specialized type of 

wireless sensor network (WSN) designed for underwater communication 

among sensor nodes deployed in oceans for monitoring purposes such as 

observing marine life, detecting pollutants, and keeping track of 

oceanographic conditions. Managing limited energy in harsh underwater 

environments presents unique challenges compared to terrestrial networks. 

This research addresses this challenge by developing a reliable energy 

harvesting model. It analyzes the effects of delay and energy storage 

constraints on the energy harvesting rate (EHR), a measure of the energy 

replenished over time to maintain sensor node operations. It quantifies the 

amount of energy that can be harvested and stored within a given period, 

which is crucial for sustaining the network's functionality. The study 

includes analyzing and simulating the model analytically using discrete 

event simulators to evaluate delay performance bounds. Simulation results 

indicate that larger packet sizes require a higher minimum EHR, while 

stricter delay requirements decrease it for a fixed arrival rate. 
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1. INTRODUCTION 

The immense growth in population all over the world leads to an increase in land depletion. This has 

a significant impact on the production capability of land-based cultivation. As per [1] UN's estimation 2% of 

the ocean can feed the globe. To carry out underwater cultivation monitoring of cultivation regions is vital. 

Employee humans in such monitoring is a tedious task. So, sensor-based monitoring suits these needs. Here 

comes underwater wireless sensor networks (UWSN) that facilitate the communication between sensor nodes 

that are in the face and the water surface. For, effective underwater cultivation monitoring of various water 

parameters such as i) pH, ii) temperature, iii) salinity, iv) dissolved oxygen, and v) quality along with 

acoustic data from sub-sea infrastructure [2]. Additionally, it explores the cultivation of plants underwater 

and the conditions necessary for their growth. Since these monitoring is carried out for a long period, the 

sensor node's energy plays a key role in deciding the network lifetime. However, this research concentrates 

on monitoring five key parameters: pH level, salinity, water circulation/flow, temperature, and nutrient 

levels. These parameters are crucial for maintaining optimal plant growth conditions. Monitoring parameters 

in underwater agriculture is crucial for ensuring optimal growth conditions, managing resources efficiently, 

and maintaining the health and productivity of the cultivated organisms. If these values deviate from the 

required range, sensor nodes relaying data to the buoy will face significant energy depletion. This research 

explores underwater energy harvesting techniques, considering traffic arrival rates and delay constraints, to 
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enhance sensor nodes longevity and efficiency [3]. By harnessing underwater energy, the goal is to maintain 

optimal sensor function and data transmission integrity, even with fluctuating environmental variables. Some 

important parameters to monitor for underwater agriculture are presented in Table 1. 

 

 

Table 1. Underwater parameter optimal ranges and importance  
Parameter Optimal range 

Dissolved oxygen (DO) 5–8 mg/L (stress below 2 mg/L) 

pH levels 6.5–8.5 
Salinity Varies between brackish and freshwater  

Temperature 20–30 °C 

Quality 200–1000 µS/cm 

 

 

In terrestrial wireless sensor networks (WSNs), underwater sensor node batteries cannot be frequently 

replaced, so energy must be harvested from the underwater environment [4]. Two prominent methods are 

photovoltaic-based, using sunlight, and piezoelectric-based, harnessing ocean currents, waves, and tides [5]. 

Since piezoelectric-based harvesting works regardless of light conditions and utilizes multiple energy sources, it 

has been adopted in this research. Piezoelectric materials have the unique ability to generate electrical energy in 

response to mechanical stress, such as the movement of ocean waves. This capability makes them well-suited 

for the dynamic and energy-rich underwater environment. Here is a Table 2 comparing piezoelectric and 

traditional energy harvesting (EH) methods to focus on their advantages for specific applications. 

 

 

Table 2. Comparison between traditional vs piezoelectric wave EH methods 
Aspect Traditional Piezoelectric 

Source Solar, wind Wave motion 

Applications General UWSN 
Conversion Electromagnetic Mechanical stress 

Efficiency and setup cost High Moderate 

Scalability and maintenance High Low 

Impact Variable Low 

Conditions Specific Versatile 

Lifespan Long Long 

 

 

The communication and energy harvesting process (EHP) in underwater environments is complex 

and non-linear. To analyze it effectively [6], analytical modeling is necessary. Given the random nature of 

arrival and service processes underwater, mathematical theory capable of characterizing these processes is 

required [7]. This research adopts stochastic network calculus (SNC) to model the system, with a focus on 

deriving probabilistic bounds for the energy efficiency (EE) factor to ensure the underwater network system's 

efficiency. This research is addressing the SNC models to analyze energy harvesting in UWSNs. Existing 

models derived from deterministic network calculus models for underwater energy harvesting, which often 

do not account for the SNC nature of underwater environments. This research employs SNC to model and 

analyze the random process involved in underwater EH, aiming to enhance the longevity and performance of 

sensor node's in UWSN. 

The rest of this research article is organized as: section 2 discusses related works. Section 3 

introduces the fundamental methods of energy harvesting SNC model. Section 4 shows the analytical model 

of energy harvesting in UWSN. Section 5 details the result and discussion for energy harvesting in UWSNs 

describes the simulation setup, parameters, and results validation. Section 6 concludes with a summary of the 

key findings and future research directions.  

 

 

2. RELATED WORKS 

The various techniques and objectives related to energy harvesting and network stability in diverse 

contexts [8]. focused on network stability and finite battery effects by using packet transmission based on 

energy levels and queue status for accessing networks with energy harvesting. The studies [9], [10] 

developed bionic stretchable nano-generators inspired by electric eels for wearable electronics. Faria et al. 

[11] examined wave energy harvesting devices to power underwater sensors. Guan et al. [12] studied bubble 

buoyancy-driven turbine generators for energy generation from bubbles in water, aimed at powering 

underwater equipment. Li et al. [13] created an acoustic fish tracking transmitter powered by fish movement. 

The studies [14], [15] investigated underwater sensor localization using received signal strength for sensor 
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network management. Cha et al. [16] researched novel materials for energy conversion from underwater 

movement to power underwater devices. Saeed et al. [17] proposed a hybrid network combining acoustic-

optical communication with localization for underwater sensor networks. The study [18] aimed to optimize 

underwater network operations by utilizing tidal energy. Erdem et al. [19] extended the lifetime of underwater 

acoustic sensor networks through compressive sensing, energy harvesting, and transmission power (TP) 

control, and explored using piezoelectric bimorphs for low-energy device power on the sea floor. Previous 

studies have delved into various energy harvesting techniques, such as mechanical, thermal, and solar energy 

harvesting, with piezoelectric harvesting being particularly noted for its efficiency in converting wave-

induced mechanical vibrations into electrical energy. SNC, a mathematical framework for optimizing 

networks with stochastic properties, has been applied in telecommunications and power systems, and this 

paper extends its application to underwater energy harvesting [20]. Here is a Table 3 comparing Stochastic 

and deterministic models for analyzing energy harvesting rates. Effective underwater agricultural monitoring 

systems rely on sustainable power sources to ensure the continuous operation of sensors and communication 

devices, with EH improving their reliability and reducing the need for battery replacements and maintenance 

costs. 

 

 

Table 3. Comparison of deterministic and SNC models 
Feature Deterministic Stochastic 

Randomness No Yes 
Suitability Less accurate for variable conditions Better for unpredictable environments 

Energy rate Simplified, potential inaccuracy Realistic, suitable for underwater 

Data requirement Fixed data sets Requires extensive data 
Model flexibility Rigid Adaptive 

Prediction horizon Short-term Long-term 

 

 

3. METHOD OF STOCHASTIC MODEL FOR ENERGY HARVESTING 

We assume that the energy demand (ED) and energy harvesting process (EHP) are independent. 

Since interference occurs in the EHP, it is considered to be SNC [21], [22]. To maintain the transmission and 

to store the harvested energy, a battery with a delimited capacity is used. Upon full charge, the battery 

discards the surplus energy [23]. Apart from this, it is assumed that the system has a piece of perfect 

information about the state of the channel. The power controller in the proposed system always assigns the 

appropriate power required for transmission of incoming traffic based on the delay requirements, on 

condition that the energy that is being harvested meets the need. Figure 1 illustrates the overall system 

architecture, highlighting the interactions between the components. 

 

 

 
 

Figure 1. System model 

 

 

The total traffic arrivals in the time interval [𝑢, 𝑣] is denoted by 𝐴𝑝(𝑢, 𝑣). We also assume that 

𝐴𝑝(0, 𝑣) = 𝐴𝑝(𝑣) for simplification. Similarly, departure in the system is denoted by 𝐴𝑝
∗ (𝑣). Furthermore, 

we also assume that, 
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𝐴𝑝(0) = 𝐴𝑝
∗ (0) = 0 (1) 

 

Similarly, delay of the last packet arriving at the is denoted by 𝑊𝑝(𝑣) and it can be represented as (2), 

 

Wp(v) = inf{v0: Ap(v) ≤ Ap
∗ (v + v0)}, (2) 

 

The delay constraint, denoted by (𝜖𝑑 , 𝑣0), is defined as (3). 

 

𝑃𝑟𝑜𝑏{𝑊𝑃(𝑣) > 𝑣0} ≤ 𝜖𝑑 (3) 

 

To ensure that traffic delays do not excessively exceed a specific threshold, 𝑣0, we have established 

a probabilistic violation bound, 𝜖𝑑. This bounds functions as a regulatory constraint, limiting the probability 

of delays surpassing 𝑣0 to a maximum of 𝜖𝑑. The SNC consists of two basic concepts: stochastic arrival 

curve (SAC) and stochastic service curve (SSC), which describe input traffic arrivals and service processes, 

respectively. A network flow 𝐴𝑝(𝑣) has a SAC 𝛼(𝑣) for all 𝑣 ≥ 𝑢 ≥ 0 and 𝑎 ≥ 0 with the bounding function 

𝑓(𝑣) is represented by the notation 𝐴𝑝 ∼< 𝑓, 𝛼 > then there holds [24]. 

 

𝑆𝑐 { 𝑠𝑢𝑝
0≤𝑢≤𝑣

 {𝐶(𝑢, 𝑣) − 𝛼(𝑢, 𝑣)} > 𝑥} ≤ 𝑓(𝑥) (4) 

 

A network transmission channels has an SSC 𝛽(𝑣) for all 𝑣 ≥ 0 and 𝑎 ≥ 0 with the bounding function 𝑔(𝑎) 
is represented by the notation 𝑆𝑝 ∼< 𝑔, 𝛽0 > then there holds: 

 

𝑃𝑟𝑜𝑏{𝐴𝑝 ⊗𝛽(𝑡) − 𝐴𝑝
∗ (𝑣) > 𝑥} ≤ 𝑔(𝑥) (5) 

 

The following relationship holds true when considering the minimum-plus convolution operation (*). 

 

𝐴𝑝 ⊗𝛽(𝑣) ≜ 𝑖𝑛𝑓
0≤𝑢≤𝑣

 {𝐴𝑝(𝑢) + 𝛽(𝑢, 𝑣)} (6) 

 

The (𝜎(𝜃), 𝜚(𝜃)) traffic model is utilised in this paper to analyse traffic behaviour. This model 

characterises the stochastic arrival process A with a curve 𝐴𝑝(𝑣) ∼< 𝑒 − 𝜃𝑋, 𝜚(𝜃)𝑣 + 𝜎(𝜃) >, where 

(𝜎(𝜃), 𝜚(𝜃)) represents a chosen parameter. It has been demonstrated that various types of traffic patterns, 

such as exponential ON-OFF, Markov modulated, and Poisson processes, can be effectively represented 

using this model. 

 
1

𝜃
𝑙𝑛 𝐸𝑎[𝑒

𝜃𝐴𝑝(0,𝑣)] ≤ 𝜎(𝜃) + 𝜚(𝜃)

𝐶ℎ = 𝐶𝑏𝑙𝑜𝑔2 (1 +
𝑃

𝑁0𝐶𝑏
)

 (7) 

 

This (7) describes the channel capacity 𝐶ℎ in a communication system. Here, 𝐶𝑏 represents the 

bandwidth of the channel, 𝑃 is the power of the transmitted signal, and 𝑁0 denotes the noise power spectral 

density. The logarithmic term captures the impact of the signal-to-noise ratio (SNR) on the channel capacity, 

indicating that as the power of the transmitted signal increases relative to the noise, the channel capacity 

increases logarithmically. This relationship highlights the balance between bandwidth, power, and noise in 

determining the effective capacity of a communication channel. In this research, we show that traffic 

characteristics and the delay limitation (𝑑, 𝑣0) influence the transmission energy 𝐸. Furthermore, we employ 

the generally accepted necessary condition for stability of the system in the scope of SNC [25], [26]. 

In the context of underwater applications, we can adapt the energy harvesting model to account for 

the unique challenges of underwater environments. We consider a two-state Markov chain interference 

process denoted as 𝐼(𝑣), characterised by ON and OFF states [27], which affect energy harvesting. Energy is 

depleted in the ON state, while it is conserved in the OFF state. Transition times between ON and OFF states 

follow exponential distributions with means of 1/𝜇 and 1/𝜆 respectively, resulting in an average state 

transition cycle (STC) denoted by 𝑆𝑇 = (𝜇 + 𝜆)/1. The mathematical representation of our assumption that 

the interference process exhibits stationary and independent increments, meaning that 𝐼𝑝(𝑣, 𝑢) remains 

unaffected by 𝐼𝑝(𝑢 + 𝑥, 𝑣 + 𝑥) for non-negative variables u, v, x, and y is represented as (8). 
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𝑆𝑐{𝐼𝑝(𝑣, 𝑢) > 𝑦} ≡ 𝑆𝑐{𝐼𝑝(𝑢 + 𝑥, 𝑣 + 𝑥) > 𝑦} (8) 

 

Similarly, the EHP processes 𝐸ℎ(𝑣) is represented as (9). 

 

𝐸ℎ(𝑣) = 𝑃0𝑣 − 𝐼𝑝(𝑣) (9) 

 

The energy demand process is modelled by 𝐸𝑑(𝑣). To ensure system stability, we make the assumption that 

for any 𝜃 > 0 and 𝑣 > 0, the following conditions are met: 

 

𝐸𝑎[𝑒
𝜃𝐸ℎ(0,𝑣)] ≥ 𝐸ℎ[𝑒

𝜃𝐷(0,𝑣)] (10) 

 

Given that both 𝐸ℎ(𝑣) and 𝐸𝑑(𝑣) are random variables, it is possible that 𝐸𝑑(𝑣) could be greater than or 

equal to 𝐸ℎ(𝑣) at certain times. Consequently, we introduce the notation 𝐶𝐸(𝑣) to represent the cumulative 

lower level of energy up to time 𝑣, and 

 

𝐶𝐸(𝑣) = 𝑚𝑎𝑥{0, 𝐶𝐸(1 − 𝑣) + 𝐸𝑑(1 − 𝑣) ⋅ (𝑡) − 𝐸ℎ(𝑣) ⋅ (1 − 𝑣)} 
= 𝑠𝑢𝑝

0≤𝑢≤𝑣
 {𝐸𝑑(𝑢, 𝑣) − 𝐸ℎ(𝑢, 𝑣)} (11) 

 

Assume that at time 0 battery has full capacity. When a lower level of energy in a communication 

network exceeds the available capacity of the battery, there will be energy insufficiency. Assume that we 

have a battery with capacity 𝑏𝑐 then the probabilistic bound for energy inefficiency can be modelled as (12). 

 

𝑆𝑐{𝐴𝑝(𝑣) > 𝑏𝑐} ≤ 𝜀𝑏𝑐 , (12) 

 

In (12), that characterize the energy storage constraint in the proposed model 𝜀𝑏 represents the 

violation bound. Furthermore, the efficiency of the gathered energy in the underwater sensor nodes is 

measured using the definitions. The EE of an UWSN, expressed as 
𝐸b

𝑁0
 (in decibels), is calculated by dividing 

the energy per bit by the spectral density of the noise (𝑁0), i.e. 

 
𝐸𝑏

𝑁0
⋅= 10 𝑙𝑜𝑔10 (

𝑃0

𝑟𝑁0
), (13) 

 

where '𝑟' represents the mean arrival process. As a result of the assumptions and descriptions given above, we 

can formulate the energy optimisation enhancement as: where the minimum or maximum rate of energy 

harvesting and rate of throughput can be derived reciprocally under the energy storage constraint denoted as 

(𝜖𝑏, 𝑏) and delay constraint denoted as (𝜖𝑑, 𝑣0). An energy optimization enhancement can be expressed in 

the manner: 

 

Min𝑃0(𝑟, 𝐼0, 𝐼1) or max𝑟(𝑃0, 𝐼0, 𝐼1) 

𝐶ℎ ≥ 𝜌(𝜃), 𝑆𝑐{𝑊𝑝(𝑡) > 𝑣0} ≤ 𝜖𝑑 , E𝑎[𝑒
𝜃𝐸(0,𝑣)] ≥ E𝑎[𝑒

𝜃𝐷(0,𝑣)], 𝑆𝑐𝐵𝑛𝑑(𝑣) > 𝑏 ≤ 𝜖𝑏 (14) 

 

where 𝐼0 = 𝜖𝑑, 𝑣0, 𝐼1 = 𝜖𝑏 , 𝑏. In this research, our primary objective is to establish a correlation between the 

rate of data packet arrival and the rate of energy harvesting. This research has direct relevance to underwater 

environments, where understanding how traffic patterns relate to energy generation is crucial. This study can 

offer insights into optimising energy resources for underwater agriculture monitoring. 

 

 

4. ANALYTICAL MODEL FOR ENERGY HARVESTING IN UWSN 

In order to conduct the performance analysis of the proposed model we have considered the 

stochastic arrival traffic that is Poisson in nature with the packets of constant size. The analysis of two folds: 

The first fold deals with the relationship between transmission rate (TR) and traffic arrival rate (TAR) and its 

impact on two different constraints: energy storage and delay. Similarly, the second fold deals with the 

relationship between energy harvesting rate (EHR) and TP with respect to energy storage constraints. The 

analytical representation of the SAC with the bounding function. 

 

𝛼(𝑣) =
1

𝜃
𝑙𝑛 𝐸[𝑒𝜃𝐴(0,𝑣)] =

𝑟𝑣

𝐿𝜃
(𝑒𝜃𝐿 − 1)

𝑓(𝑥) = 𝑒−𝜃𝑥
 (15) 
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In the (15), average arrival rate and packet size are represented with the notations 𝑟 and 𝐿 

respectively. The optimization parameter 𝜃 that is non-negative in nature is also considered. In addition to the 

assumptions made in section 2. The fixed transmission rate with the delay constraints and traffic 

characteristics that are provided. The following conditions that represent the channel's service curve hold, 

 

𝛽(𝑣) = 𝐶𝑣, 𝑔(𝑥) = 0 (16) 

 

To ensure the stability of the system we have (17). 

 

𝐶ℎ ≥
𝑟

𝐿𝜃
⋅ (𝑒𝜃𝐿 − 1) (17) 

 

The probabilistic bound for the delay parameter can be modeled as follows with the assumption that there is a 

sufficient energy and delay requirement 𝑣0: 

 

Prob{𝑊𝑝(𝑣) > 𝑣0} ≤ Prob { 𝑠𝑢𝑝
0≤𝑢≤𝑣

 [𝑇𝑖 + 𝐶ℎ ⊗𝛽(𝑢 + 𝑣0) − 𝐶ℎ
∗(𝑣 + 𝑣0)] > 0} ≤ 𝑓 ⊗ 𝑔(𝐶ℎ𝑣0)

= 𝑒−𝜃𝐶ℎ𝑣0 

where 𝑇𝑖 = 𝐶ℎ(𝑢, 𝑣) − 𝛼(𝑢, 𝑣) (18) 

 

Furthermore, to study energy inefficiency in the proposed model correlation between probabilistic 

bounds of energy inefficiency and delay parameters is represented by the (19). 

 

Prob{𝑊𝑝(𝑣) > 𝑣0} = Prob{𝑊𝑝(𝑣) > 𝑣0 ∣ 𝐵𝑛𝑑(𝑣) ≤ 𝑏} + Prob{𝐵𝑛𝑑(𝑣) > 𝑏} (19) 

 

As a result, there holds 

 

𝜖𝑑 = 𝑒−𝜃𝐶𝑣0(1 − 𝜖𝑏) + 𝜖𝑏, 

𝑒−𝜃𝐶ℎ𝑣0 =
𝜖𝑑 − 𝜖𝑏
1 − 𝜖𝑏

 

 

Similarly, transmission rate holds as with 𝜖 =
𝜀𝑑−𝜀𝑏

1−𝜀𝑏
 

 

𝐶ℎ =
ln(1/𝜖)

𝜃𝑣0
 (20) 

 

Substituting (17) and (20), the correlation derived between transmission rate and traffic arrival rate is attained 

as (21), 
 

𝐶ℎ ≥
𝐿ln(1/𝜖)

𝑣0ln(
ln(1/𝜖)

𝑟𝑣0/𝐿
⋅+1)

 (21) 

 

where the equality holds if and only if  

 

𝜃 =
ln(

ln(1/𝑒)

𝑟𝑣0/𝐿
+1)

𝐿
 (22) 

 

Here, equation (21) represents minimum transmission rate that is required in order to meet the 

energy storage and delay demands of underwater agriculture for traffic that arrives into the network. 

Contrarily, the maximum sustainable throughput can be estimated based on (21) for the given transmission 

rate. In underwater communication rate of harvesting energy E𝐻 have a correlation with TP denotes P. 

Provided the characteristics of traffic, energy demand in the network can be represented as D𝑒(𝑣). Now, 

based on this energy deficit in the system is probabilistically bounded and the same is derived as: 

 

Prob{𝐵(𝑣) > 𝑥} ≤ Prob{𝑒𝜉(𝑃−𝐸𝐻(1)) > 𝑒𝜉𝑥} ≤ 𝑒−𝜉𝑥𝐸𝐻[𝑒
𝜉(𝑃−𝐸𝐻(1))] ≤ 𝑒−𝜉𝑥 (23) 

 

In (23), 𝜉 is a free parameter that is non-negative in nature. Assuming that the sensor node's battery 

has a capacity of 𝑦, then energy inefficiency probability is characterised by (23) and the same is bounded by 

e−𝜉𝑦 . Assume the network system has a storage constrain denoted by (𝜖𝑏 , 𝑏), 
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𝜉 =
ln(1/𝜖𝑏)

𝑏
 (24) 

 

The correlation between EHR and TP is stated in (10): 

 

𝑃 =≤
1

𝜉𝑣
ln𝐸𝐻[𝑒

𝜉𝐸𝐻(𝑣)] =
1

𝜉𝑣
ln𝐸𝐻[𝑒

𝜉(𝑃0𝑣−𝐼(𝑣))] ≤
1

2𝜉
(𝑃0𝜉 − 𝜆 − 𝜇 + √(𝑃0𝜉 + 𝜆 − 𝜇)2 + 4𝜆𝜇) 

≜ 𝛾(𝑃0, 𝜉) (25) 

 

In (25), 𝜉 is attained from (24). To characterize the relationship between TR and EHR for a given energy 

storage capacity (7), (24) and (25) respectively. 

 

𝐶ℎ ≤ 𝐶𝑏log2 (1 +
𝛾(𝑃0,ln(1/𝜖𝑏)/𝑏)

𝑁0𝐶𝑏
) (26) 

 

In (26), 𝛾(𝑃0, ln(1/𝜖𝑏)/𝑏) is determined based on the (25). For the given energy storage constraint and 

delay, to sustain the incoming network traffic with average arrival rate r, the minimum harvesting rate 𝑃0min 

is attained from the solution of inequality derived in (26). 

 

𝑃0 min =

(2

𝐶ℎmin
𝐶b −1)𝑁0𝐶𝑏((2

𝐶ℎmin
𝐶𝑏 −1)𝑁0𝐶𝑏𝜉+𝜆+𝜇)

(2

𝐶ℎmin
𝐶ℎ −1)𝑁0𝐶𝑏𝜉+𝜆

 (27) 

 

Subsequently, if we know the delay constrain, energy harvesting rate and energy storage constraint, 𝑟𝑚𝑎𝑥 

representing the maximum throughput that is sustained can be conversely deduced and there holds, 

 

𝑟max =
𝐾

𝑒𝐾/𝐶hmax−1
, (28) 

 

In the (28), 𝐾 =
𝐿ln(1/𝑒)

𝑣0
 and 𝜖 =

𝜀𝑑−𝜀𝑏

1−𝜀𝑏
. Similarly, Cmax is dependent on 𝑃0. 

 

 

5. RESULTS AND DISCUSSION 

To create a simulation procedure for energy harvesting using SNC in Riverbed Modeler, you will 

model an UWSN consisting of 100 nodes distributed within a 1000m network area. Each node will have an 

initial energy of 50 J, and the network will operate with varying storage capacities of 100, 200, and 300 J. 

The energy harvesting rate will be set at X, Y, and Z, with an event interval of 1000 s. The simulation will 

incorporate background noise and channel bandwidth. State transitions will occur every 1s, allowing for 

dynamic changes in energy availability and consumption. The goal is to analyze the performance of energy 

harvesting strategies, focusing on the balance between energy intake and expenditure under stochastic 

conditions. The procedure will involve configuring the network parameters in Riverbed, implementing SNC 

to model energy flows, and running simulations to observe the effects of varying energy storage capacities 

and harvesting rates on overall network stability and efficiency. Channel conditions were simulated using 

different capacities and Markov chain techniques. Table 4 details the simulation parameters. This analysis 

validates the theoretical predictions by comparing them with simulated outcomes, ensuring the model's 

robustness and accuracy across various scenarios. 

 

 

Table 4. Simulation parameters 
Parameters Values 

Number of nodes 100 
Network area 1000 m 

Event interval 1000 s 
Initial energy 50 J 

Storage capacity 100, 200, 300 J 

EHR 0.1, 0.2, 0.3 J/s 

Background noise 𝑁0 10−7 W/Hz 
Channel bandwidth 𝑊 11 W/Hz 
State transition cycle 𝑇 1 s 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2031-2041 

2038 

5.1.  Effect of packet size on EHR and EE 

In the study investigating the impact of packet size variations and arrival rates on the minimum 

energy collection rate required for efficient EHR transmission, several key findings were observed. Altering 

the packet sizes and arrival rates revealed significant implications for energy consumption. Figures visually 

encapsulates these findings, showcasing how changes in packet size directly influence the energy collection 

rates needed to maintain efficient EHR transmission. This graphical representation not only highlights the 

relationship between packet characteristics and energy requirements but also underscores the critical need for 

optimized packet design and transmission strategies to enhance EE in healthcare applications. To analyze the 

impact of packet size on minimum energy collection rate, two different packet sizes of 100 (kbits) and  

500 (kbits) are considered and the simulation has been conducted. 

In Figure 2, it is evident that a positive relationship exists between the average arrival rate and the 

minimum rate of energy harvesting. Moreover, with larger packet sizes, the system consumes more energy to 

transmit traffic. This is due to the fact that a larger packet size results in more stochastic arrival rates, which 

in turn requires a higher transmission rate and subsequently a higher data harvesting rate to maintain the 

energy storage constraint and the delay constraints. 

However, if we consider 𝑃0 as the independent variable and 𝑟 as the dependent variable, we can also 

observe the maximum sustained throughput rate. Subsequently, the efficiency of the harvested energy 

denoted by 
𝐸b

𝑁0
 has been studied. As per the definition in (13) the efficiency of energy is higher if 

𝐸b

N0
 lesser. As 

a result, packet size has a negative correlation with EE. Moreover, EE has a convex functional relationship 

with arrival rate r. This implies that a higher arrival rate is needed to maximise EE as illustrated in Figure 3. 

 

 

  
 

Figure 2. Arrival rate vs EHR for different packet 

sizes 

 

Figure 3. Average arrival rate vs EH for different 

packet sizes 

 

 

5.2.  Effect of delay constraint on EHR and EE 

In this subsection, the study focuses on evaluating the influence of delay constraints on EHR and EE 

using a fixed packet size of 500 kbits. The simulation is carried out with two distinct arrival rates: 5 and  

10 Kbps. This setup allows for a comparative analysis of energy rates of data arrival affect the performance 

metrics under consideration. By varying the arrival rates while maintaining a consistent packet size, the study 

aims to assess how delays impact both the transmission of EHR data and the EE of the system, providing 

insights into optimal operational parameters for such other underwater applications. 

To ensure differentiated delay constraints demanded by the underwater monitoring application that 

is in place, the energy harvesting model that has been proposed needs to offer a certain minimum 

transmission rate and minimum energy harvesting rate. The relationship between these two parameters with 

the required delay constraint has been analyzed in Figure 2 and Figure 3. From the illustration presented in 

Figure 4 it is evident that EHR and transmission rate have a negative relationship with the delay constraint. 

As a result of looser delay constraints, transmission rates will be lower, and energy harvesting rates will be 

lower as well. The curves resulting from analytical and simulation studies in both the figures demonstrate a 

smooth decreasing trend as the delay requirement increases. Furthermore, under an infinite delay 

requirement, the TR would be close to the arrival rate as per the definition presented in rectangular hollow 

section (RHS) of (21). 
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Figure 4. Minimum energy collection rate (W) and transmission rate (Kbps) vs delay requirement (s) 

 

 

5.3.  Effect of state transition table on energy insufficiency probability 

In this section, the relationship between probabilistic bounds on energy insufficiency and energy 

storage capacity is examined through simulations using three distinct parameter values: 1, 10, and 100 s for 

the STC. The simulation process focuses on analyzing how these different STC values impact the 

interference process. By varying these parameters, the study aims to understand how energy storage capacity 

influences the probabilistic bounds on energy insufficiency. This approach allows for a nuanced exploration 

of how varying levels of STC affect the reliability and performance of energy storage systems under different 

operational conditions and demands. Figure 5 shows that as battery capacity increases, the probability of 

energy insufficiency decreases. Larger batteries can store more energy, supporting transmission even when 

harvested energy is low. However, as battery capacity increases to meet storage and delay constraints, the 

longer state transition cycle (STCs) due to interference. This occurs because the average time the harvested 

energy is depleted by interference during a cycle time 𝑇 is 1/𝜇. With longer cycles, lower energy levels are 

more likely, necessitating larger batteries for storing and transmitting the remaining energy. Figure 5 

provides a guideline for determining the necessary battery capacity to keep the system functional under 

varying interference and energy insufficiency levels. 

 

 

 
 

Figure 5. Battery capacity (Wh) vs energy insufficiency probability 

 

 

The key performance metrics evaluated include EH efficiency, operational stability, and overall 

energy output. Our system's performance was compared with existing energy harvesting methods under the 

same simulation conditions. The results show a significant improvement in EH efficiency, with a notable 

percentage increase in energy output over traditional methods, as shown in Figure 6 for the comparison. As 

shown in Table 5, the existing methods achieved an EH efficiency highlighting the effectiveness of 

incorporating SNC and piezoelectric materials in underwater EH systems. 
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Figure 6. Existing and proposed energy harvesting method 

 

 

Table 5. Simulation results comparison 
Parameter Existing value Proposed value Improvement 

EHR (%) 20% 24% 20.0% 

TP 15 18 20.0% 

EE 30 36 20.0% 

TAR (%) 25% 30% 20.0% 

Delay 5 4 -20.0 

 

 

6. CONCLUSION 

The limited capacity of sensor batteries determines the lifetime of UWSNs, which are often required 

for continuous monitoring of underwater agriculture. This study presents a potential-limited energy 

harvesting model using stochastic network computation and analyzes it from different scenarios. It studies 

the relationship between energy harvesting rate and packet arrival rate, including packet size and 

interference, and provides a minimum harvesting rate that controls the access to latency and storage capacity. 

The EE of sensor nodes and whether energy outages occur are analyzed. The results show that the integration 

of analysis and simulation has the potential to improve the usability and reliability of UWSN underwater 

agricultural monitoring, extend sensor node lifetime, and ensure data continuity. Additionally, future research 

will improve energy conservation, integrated energy management, look for new materials that enhance 

underwater energy, and expand the model to accommodate larger deployments. It will also develop 

algorithms that will adjust energy saving strategies according to environmental changes in order to further 

reduce energy consumption. Simulation results show a significant improvement of 20%. These advances 

could improve underwater monitoring, providing long-term solutions for applications ranging from 

environmental monitoring to precision agriculture. This research provides valuable information that could 

potentially transform underwater connectivity in many marine and freshwater environments. 
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