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 Research on image validation models is an interesting topic. The application 

of deep learning (DL) for object detection has been demonstrated to 

effectively and efficiently address the challenges in this field. Deep neural 

networks (DNN) are deep learning algorithms capable of handling large 

datasets and effectively solving complex problems due to their robust 

learning capacity. Despite their ability to address complex problems, DNN 

encounter challenges related to the necessity for intricate architectures and a 

large number of hidden layers. The objective of this research is to identify 

the most effective model for achieving optimal performance in image 

validation. This study investigates target image validation using DNN 

algorithms, examining architectures with 3, 4, 5, and 6 hidden layers. This 

study also evaluates the performance of image validation across various 

activation functions, batch sizes, and numbers of neurons. The results of the 

study show that the best performance for image validation is achieved using 

the Leaky-ReLU and Sigmoid activation functions, with a batch size of 64, 

and an architecture consisting of 3 hidden layers with neuron sizes of 256, 

128, and 64. This model is capable of providing real-time target image 

validation with an accuracy of up to 94.31%. 
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1. INTRODUCTION 

Validation is still a fascinating area of study. Researchers are actively looking for the best ways to 

provide robust validation in order to minimize corrective errors, thanks to developments in machine learning 

and internet of things (IoT) sensors. Non-linear and non-stationary data are analyzed using a variety of data-

driven techniques, including machine learning and signal processing. However, inadequate information for 

real-time applications frequently results in a reduction in performance. Numerous studies in the validation 

sector have used a variety of techniques, such as architectural framework alterations [1], genetic algorithm 

(GA) [2], super learner algorithm [3], and differential evolution (DE) [4]. Real-time model applicability is 

still quite limited despite a large number of studies. 

Deep learning methods for object detection are acknowledged for their efficiency, owing to their 

capacity to utilize diverse learning strategies and train on extensive datasets [5], [6]. This efficiency is 

https://creativecommons.org/licenses/by-sa/4.0/


Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Target image validation modeling using deep neural network algorithm (Naemah Mubarakah) 

2043 

evidenced by significant advancements in segmentation [7], detection [8], and classification [9]. Historically, 

image object exploration techniques relied on color descriptors [10] and image descriptors [11], processed 

through unsupervised algorithms such as K-means clustering [12], spectral clustering [13], pooling clusters 

[14], and spanning trees [15], as well as less robust supervised algorithms like deep metric learning [16] and 

subspace learning [17]. Deep neural networks (DNNs), which fall under the deep learning category, are 

characterized by their multi-layered structures-typically comprising three or more interconnected layers. 

DNNs excel in addressing complex problems and have been instrumental in driving significant innovations 

across various societal [18] and industrial domains [19]–[22]. However, despite their efficacy in solving 

complex challenges, DNNs necessitate sophisticated architectures with numerous hidden layers, which 

results in prolonged training durations [23]. 

The primary challenge in deep neural networks (DNN) algorithms is determining the optimal model 

to achieve the best performance in target image validation. This study focuses on target image validation 

using DNN algorithms in real-time sensors. DNNs, which feature numerous hidden layers, are evaluated by 

comparing configurations with 3 to 6 hidden layers. The choice of activation function is critical to DNN 

performance, making the selection of the appropriate activation function essential. Additionally, this 

research assesses the impact of batch size and the number of neurons on model performance. The goal is to 

identify the optimal model architecture for target image validation. The model will be tested in real-time 

contexts to evaluate its effectiveness. The findings of this study can make a significant contribution to the 

advancement of data mining techniques. 

 

 

2. MATERIAL AND METHOD 

2.1.   Deep neural network 

A network made up of layers of neurons is called a DNN, and each neuron is connected to the others 

by random number biases [22]. Through channels with values called weights, neurons in one layer 

communicate with neurons in the next layer. The information that is shared between neurons is determined 

by these weights and biases. The network generates an output that reflects the prediction of the processed 

input in the last layer, referred to as the output layer [24]. An artificial neuron is seen in Figure 1. 

 

 

 
 

Figure 1. An artificial neuron 

 

 

The input 𝑋𝑖 is connected to the neuron through weighted connections, and the sum of all inputs, 

each multiplied by its corresponding weight Wi, is computed. This summation is then added to a bias (b), and 

the result is subsequently processed using an activation function (𝜃). Mathematically, the output of a 

perceptron unit can be formulated as (1) [23]. 

 

𝑌 = 𝜃(∑ 𝑊𝑖
𝑛
𝑖=𝑙 𝑋𝑖 + 𝑏)  (1) 

 

The following is another way to model it with matrix notation: 

 

𝑌 = 𝜃(𝑊.𝑋 + 𝑏) (2) 

 

Where 𝑊 = [𝑊1 𝑊2  …  𝑊𝑛] dan 𝑥 = [

𝑋1

𝑋2

⋮
𝑋𝑛

] 
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To put it simply, a neural network is a group of layers made up of many neurons. Each layer has an 

output vector, a bias vector, and a weight matrix, generating columns of neurons that work in parallel. When 

processing an input vector 𝑁 in a layer of neurons 𝑀,𝑊𝑖𝑗 is the weight of the connection between the 𝑗-th 

input and the 𝑖-th neuron in that layer, and 𝑌𝑖 and 𝑏𝑖 are the 𝑗-th neuron's output and bias, respectively [25]. As 

a result, the following matrix notation can be used to represent a neuron layer: 

 

𝑊 = [
𝑊11

⋮
𝑊𝑛1

. . .
⋮
. . .

𝑊𝑙𝑚

⋮
𝑊𝑛𝑚

] (3) 

 

In matrix notation, the column index indicates the connection's input source. While the row index 

indicates the destination neuron for the corresponding connection. As a result, the layer's output 𝑌 can be 

written like this: 

 

𝑌

[
 
 
 
 
𝑌𝑙

⋮
𝑌𝑖

⋮
𝑌𝑁]

 
 
 
 

=

[
 
 
 
 
 
𝜃(∑ 𝑊1𝑗

𝑀
𝑗=𝑙 𝑋𝑗 + 𝑏𝑙)

⋮
𝜃(∑ 𝑊𝑔

𝑀
𝑗=𝑙 𝑋𝑗 + 𝑏𝑖)

⋮
𝜃(∑ 𝑊𝑛𝑗

𝑀
𝑗=𝑙 𝑋𝑗 + 𝑏𝑁)]

 
 
 
 
 

= 𝜃(𝑊. 𝑋 + 𝑏)              (4) 

 

Where b=[
𝑏𝑙

⋮
𝑏𝑛

]. 

In neuron layers, superscript indices are also used. For example, 𝑊𝑖𝑗
𝑘 indicates the weight between 

the 𝑖-th neuron in layer 𝑘 and the 𝑗-th neuron in layer (𝑘 − 1), while 𝑌𝑖
𝑘 indicates the output of the 𝑖-th neuron in 

layer 𝑘. Furthermore, 𝑁𝑘 is intended to symbolize the quantity of buried neurons in layer k. Therefore, the 

function that can be derived from this network is as (5): 

 

𝑌3 =

[
 
 
 
 
𝑌𝑙

3

⋮
𝑌𝑖

3

⋮
𝑌𝑁3

3 ]
 
 
 
 

= 𝜃(𝑊3𝑌2 + 𝑏3) = 𝜃(𝑊3𝜃(𝑊2𝑌1 + 𝑏2) + 𝑏3) 

= 𝜃(𝑊3𝜃(𝑊2(𝜃(𝑊1𝑋 + 𝑏𝑙)) + 𝑏2)𝑏3) (5) 

 

One kind of artificial neural network with several layers is called a DNN. An input layer, N>2 

hidden layers, and an output layer are the three layers that are typically present in a DNN. 'Deep' describes 

the comparatively high number of layers. Deep learning is the term for the learning process that takes place 

inside a DNN. A deep neural network is the name given to the neural network in a DNN [24]. Formula (6) is 

used to calculate the final output of a DNN with four layers, where σ is the activation function and β, γ, and λ 

stand for noise or bias. 

 

𝑓𝑖 = 𝜎(∑ 𝑢𝑗,𝑖𝜎(∑ 𝑣𝑘.𝑗𝜎(∑ 𝑥𝑚𝑤𝑚,𝑘 + 𝛽𝑘
𝑀
𝑚=1 ) + 𝛾𝑗

𝐻1
𝑘=1 + 𝜆𝑖)

𝐻2
𝑗=1 ) (6) 

 

Deep neural networks can be trained using the back-propagation process. It can be difficult to 

estimate parameters in deep neural networks because of their complexity, which includes several layers and a 

large number of synaptic weights. Neural network scalability is strongly related to the back-propagation 

technique, which is frequently used for training neural networks. The method makes iterative modifications 

to get optimal weight configurations. Three-layer DNN is seen in Figure 2. 

 

2.2.  DNN algorithm performance measurement 

Performance measurement is critical in the field of machine learning. The area under the curve 

(AUC) of the receiver operating characteristic (ROC) curve is a commonly used performance statistic. An 

important metric for evaluating the effectiveness of classification models is the AUC [26]. In particular, the 

area under the ROC curve is quantified by the AUC. Plotting the true positive rate (TPR) versus the false 

positive rate (FPR) across various classification thresholds allows the ROC curve, a graphical tool, to assess a 

classification model's performance. The following are the main elements of the ROC curve: 
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a. The ratio of accurately anticipated positive cases to all actual positives is known as the TPR, and it is 

defined as (7): 

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (7) 

 

b. The ratio of falsely projected positive cases to all actual negatives is known as the FPR, and it is defined 

as (8): 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
    (8) 

 

where 𝑇𝑃 is true positive, 𝑇𝑁 is true negatives, 𝐹𝑃 is false positive and 𝐹𝑁 is false negatives. The 𝑇𝑃𝑅 is 

represented by the Y-axis in the ROC curve, whereas the 𝐹𝑃𝑅 is represented by the X-axis. The AUC values 

can be interpreted as follows: 

a. AUC = 1: The model exhibits flawless categorization capabilities. 

b. 0.5 < AUC < 1: The model outperforms random guessing; the closer the AUC value is to 1, the better the 

model performs. 

c. AUC = 0.5: The model's performance is on par with guesswork. 

d. AUC < 0.5: The model performs worse than random guessing, which may imply that the model is 

inverted 

 

 

 
 

Figure 2. Three-layer DNN 

 

 

2.3.  Architecture research 

Various schemes were applied with different configurations of hidden layers, activation functions, 

batch sizes, and numbers of neurons. After determining the optimal model for object validation using the 

DNN algorithm, this model was directly applied to objects captured by a camera for real-time analysis. 

Figure 3 shows the DNN-based machine learning modeling procedure. The study flowchart is displayed in 

Figure 3(a). Several machine learning models are viewed in the crate, train, and assessment phase in order to 

select the best model, as illustrated in Figure 3(b). Table 1 lists the many parameters used in the search for 

the optimal model. 

To identify the best model, reference parameters will be chosen based on the outcomes of parameter 

modifications. The ROC curve's AUC serves as the foundation for this evaluation. The best model will be 

chosen for target picture validation after it has been determined and evaluated in real-time to assess its 

validation performance. 
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(a) (b) 

 

Figure 3. Research flowchart: (a) main process and (b) model development process in  

machine learning with DNN 

 

 

Table 1. The research's parameters 
No. Parameters used in the research  

1. Number of hidden layers: 3, 4, 5, 6 

2. Activation function: Rectified linear unit (ReLU), Sigmoid, Leaky ReLU, Tanh, Linier, Scaled exponential linear unit (SELU)  

and SoftMax. 
3. Number of batch sizes: 16, 32, 64, 128, 256 

4. Number of neurons: 64, 128, 256, 512 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Activation functions variation 

Deep learning methods rely on activation functions to generate efficient system performance. 

Knowing which activation function is appropriate to use with the DNN method is therefore essential. Several 

activation function modifications, such as rectified linear unit (ReLU), Lucky ReLU, SELU, Sigmoid, Tanh, 

Linear, and Softmax, are used in this work. Changes in the number of hidden layers are used to test the 

ReLU, Sigmoid activation function. In this instance, three, four, five, and six hidden levels are implemented. 

Figure 4 displays the confusion matrix results of the ReLU and Sigmoid activation function on 3, 4, 5, and 6 

hidden layers, while Figure 5 displays the training and validation loss graphs. Figures 4 and 5 demonstrate 

how the DNN method performs poorly when ReLU and Sigmoid are used as activation functions. The AUC 

findings from the ROC for the application of the ReLU are derived from the results of Figures 4 and 5, as 

shown in Figure 6. The ROC of the other activation function's AUC is displayed in Figure 7. 

The performance of the suggested DNN model with various activation functions is displayed in 

Figure 7. The ROC of the DNN model with three to six hidden layers that uses Sigmoid in the output layer 

and Leaky-ReLU activation layers in the hidden layers is displayed in Figure 7(a). The DNN model's 

performance with Tanh and Sigmoid activation layers is shown in Figure 7(b). The DNN model's 

performance utilizing the linear and sigmoid activation functions is displayed in Figure 7(c). The AUC for 

the DNN model with sigmoid in the output layer and SELU in the hidden layer is then shown in Figure 7(d). 

Additionally, Figure 7(e) illustrates how Sigmoid is used in all layers, including the output and hidden layers. 

Lastly, the model's performance employing the SELU and SoftMax as the activation function is displayed in 

Figure 7(f). According to the outcome, the model's AUC rises from 0.5 to 0.82 when Sigmoid is used in the 

output layer. This is because the Sigmoid activation function is appropriate for binary classification problems 

because it produces values between 0 and 1. Furthermore, the SELU, Sigmoid with four hidden layers, yields 

the best AUC of any studied activation function, at 0.82. However, Table 2 and Figure 8 demonstrate that the 
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Sigmoid model performs best when evaluating the stability of the model's performance across varying 

numbers of hidden layers, with an average AUC of 0.805 for the Leaky-ReLU. 

Figure 8 shows the average AUC scores for various activation functions. Based on the graph, the 

average AUC varies depending on the activation function combinations used. The combination of Leaky-

ReLU with Sigmoid and Linier with Sigmoid demonstrates the best performance, with an average AUC 

0.805 and 0.79, indicating better model classification capabilities. Overall, activation functions such as 

Leaky-ReLU, Linier and Sigmoid tend to produce good performance when paired with the appropriate 

activation function. Therefore, the combination of Leaky-ReLU with Sigmoid is recommended to achieve the 

best performance. 

 

 

 
 

Figure 4. Confusion matrix of ReLU, Sigmoid activation functions at 3, 4, 5, and 6 hidden layers 

 

 

 
 

Figure 5. Training and validation loss graph with ReLU and Sigmoid activation functions 
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Figure 6. ROC graph of the ReLU-Sigmoid activation function 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

 

Figure 7. ROC graph of: (a) Leaky ReLU, Sigmoid, (b) Tanh, Sigmoid, (c) Linier, Sigmoid, (d) SELU, 

Sigmoid, (e) Sigmoid, Sigmoid, and (f) SELU, SoftMax activation functions 
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Table 2. Area under the curve from various activation functions 
No. Activation functions AUC from different number of hidden layers Average AUC score 

3 4 5 6 

1 ReLU, Sigmoid 0.61 0.59 0.56 0.71 0.6175 

2 Leaky ReLU, Sigmoid 0.80 0.81 0.81 0.80 0.805 

3 Tanh, Sigmoid 0.62 0.47 0.52 0.51 0.53 
4 Linier, Sigmoid 0.79 0.79 0.79 0.79 0.79 

5 SELU, Sigmoid 0,77 0.82 0.48 0.54 0.6525 

6 Sigmoid, Sigmoid 0.79 0.66 0.72 0.55 0.68 
7 SELU, SoftMax 0.5 0.5 0.5 0.5 0.5 

 

 

 
 

Figure 8. Graph of the average AUC value from various activation functions 

 

 

3.2.  Batch sizes variation 

From section 3.1 it is obtained that the usage of Leaky-ReLU, sigmoid activation function returns 

the best performance. Therefore, in the batch size variation tests, the Leaky-ReLU, sigmoid activation 

function is chosen. In this test, varying batch size 16, 32, 64, 128, and 256 are used for the DNN model with 

various number of hidden layers. Figure 9 displays the model's training and validation losses for batch sizes 

of 16. Additionally, Figure 10 displays the model's AUC score with a batch size of 16, with an average AUC 

score of 0.82. Using five hidden layers yields the greatest results, with an AUC score of 0.82. The model's 

AUC score is also displayed in Figure 11 for batch sizes of 32, 64, 128 and 256. Figure 11(a) displays the 

AUC of the ROC when using a batch size of 32, Figure 11(b) displays the AUC when using a batch size of 

64, Figure 11(c) displays the AUC of the model using a batch size of 128 and Figure 11(d) displays the AUC 

when using a batch size of 256. 

 

 

 
 

Figure 9. Training and validation loss using Leaky-ReLU and Sigmoid activation function for  

batch sizes of 16 
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Figure 10. ROC graph with Leaky-ReLU, Sigmoid activation function for batch sizes of 16 

 

 

  
(a) (b) 

 

  
(c) (d) 

 

Figure 11. Graph of ROC curve with batch sizes of: (a) 32, (b) 64, (c) 128, and (d) 256 

 

 

Based on the batch size variation test, all the batch sizes produce the AUC score no lower than 0.8 

with the highest AUC score of 0.82. However, using different batch sizes for training the proposed DNN 

model does not significantly improve the model’s performance. The overall performance of the batch size 

variation test is shown in Table 3. From Table 3, it can be seen that the highest average AUC score of 0.815 

is achieved when using batch size is 64. Therefore, it is recommended to use batch size of 64 when training 

the DNN model. 
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Table 3. AUC score from ROC with various batch size 
No. Batch size AUC from different number of hidden layers Average AUC score 

3 4 5 6 

1 16 0.80 0.81 0.82 0.80 0.8075 

2 32 0.80 0.81 0.81 0.80 0.805 

3 64 0.81 0.82 0.80 0.83 0.815 
4 128 0.82 0.80 0.82 0.80 0.81 

5 256 0.81 0.80 0.80 0.82 0.8075 

 

 

3.3.  Number of neurons variation 

After obtaining the best activation function and batch size, further investigation is made to find the 

best number of neurons for the DNN model. The number of neurons in the DNN layers has a big impact on 

how well the DNN model performs. The model's accuracy and likelihood of generalizing successfully would 

both be enhanced by adding additional neurons, which would let it to learn more about the intricate 

underlying patterns in the data. Underfitting, in which the model is too basic to capture the link between the 

input and output data, results from using too few neurons, which prevents the model from comprehending the 

patterns in the data. Therefore, determining the best number of neurons in each layer of the DNN model is 

essential for improving the model’s accuracy in data validation. 

Figure 12 shows the graph for the training and validation loss when applying 64 neurons for each 

layer of the DNN model. It is observed that the validation loss for each layer is below 0.6 where the training 

loss is around 0.5. Based on the graph, hidden layer 4 demonstrates better performance compared to the other 

layers. This is evident from training loss and validation loss, which consistently decrease at the beginning and 

stabilized without significant fluctuations, indicating that the model neither overfits nor underfits. 

 

 

 
 

Figure 12. Training and validation loss for Leaky-ReLU, Sigmoid activation layer with  

64 neurons per layer 

 

 

The model's AUC score is displayed in Figure 13 for different numbers of neurons in each hidden 

layer. Figure 13(a) depicts the AUC score when the model employed 64 neurons in each layer for 3, 4, 5, and 

6 hidden layer architecture. Next, Figure 13(b) shows the model performance when 128 neurons are used, 

Figure 13(c) shows the performance when 256 neurons are used and finally Figure 13(d) shows the 

performance of the model when 512 neurons are used in each hidden layer. The highest average AUC score 

is obtained when 512 neurons are employed in each layer as shown in Figure 13(d) and Table 4.  

Table 4 depicts the average AUC score for various number of neurons where the highest average is 

achieved when using 512 neurons in each hidden layer. However, the AUC score obtained when using 

3-hidden layer architecture with 256 neurons in each layer was also notably high, reaching a value of 0.82. 

This makes it a good contender to be employed in the DNN model as lower number of neurons may 

potentially reduce the computational cost and the training time of the model.  
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(a) (b) 

 

  
(c) (d) 

 

Figure 13. ROC curve for Leaky-ReLU, Sigmoid activation function with the number of neurons per layer: 

(a) 64, (b) 128, (c) 256, and (d) 512 

 

 

Table 4. AUC score of the DNN model for various number of neurons 
No. Number of neurons in each layer AUC from different number of hidden layers Average AUC score 

3 4 5 6 

1 64 0.80 0.81 0.80 0.82 0.8075 
2 128 0.80 0.80 0.81 0.80 0.8025 

3 256 0.82 0.80 0.80 0.81 0.8075 

4 512 0.82 0.82 0.81 0.82 0.8175 

 

 

3.4.  Image validation with DNN algorithms 

After testing various scenario for the DNN model with varying number of hidden layers, activation 

functions, batch sizes and number of neurons, the best performance is obtained when employing a 3-hidden 

layer architecture with Leaky-ReLU, sigmoid activation function, 64 batch size and 256, 128, and 64 neurons 

in each respective hidden layer. This model is then applied to an image sensor in real-time for validating cat 

images where the model was able to achieve a validation accuracy of 94.31%. This result can be seen in 

Figure 14. 

 

 

 
 

Figure 14. Validation result from applying the best DNN model 
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The DNN model developed in this research provides satisfactory results when compared with other 

research on real-time object validation, such as the work of Tan et al. [26], which achieved validation 

accuracy of up to 90%. There is an increase in validation accuracy using the proposed model of 4.31% 

compared to the performance obtained by Tan et al. [26]. Therefore, this research can be a valuable input for 

the progress of data mining, especially in the development of image recognition technology and image 

sensor-based devices. 

 

 

4. CONCLUSION  

The choice of activation functions, batch size, and the number of neurons significantly affects the 

performance of the DNN algorithm. A well-designed model is required for DNN algorithms, which excel at 

solving complex problems. This research developed a model within the DNN algorithm that achieves high 

validation accuracy. The use of a 3-hidden layer architecture with Leaky-ReLU and Sigmoid activation 

functions, a batch size of 64, and neurons set to 256, 128, and 64, was able to achieve a validation accuracy 

of 94.31% in real-time. These results can provide valuable insights for data mining, particularly in the 

application of DNN algorithms. 
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