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 In this paper, an online adaptive general regression neural network 

(OAGRNN) is presented as a direct online speed controller for a three-phase 

induction motor. To keep the induction motor running at its rated speed in 

real-time and under a variety of load conditions, the speed error and its 

derivative are continuously measured and fed back to the OAGRNN 

controller. The OAGRNN controller provides the inverter with the control 

signal it needs to produce the proper frequency and voltage for the induction 

motor instantly. Notably, the OAGRNN controller demonstrated remarkable 

performance without the need for a learning mode; it was able to track the 

desired motor speed, starting its operation from scratch. A setup utilizing a 

three-phase induction motor has been developed to show the high capacity 

of OAGRNN for tracking the desired speed of the motor while subjected to 

the varied load torque. The performance of OAGRNN is examined in two 

phases: the MATLAB simulation and the experimental setup. Furthermore, 

when the OAGRNN performance is compared with that of the proportional 

integral (PI) controller, it demonstrates its outstanding ability and superiority 

for online adjustments related to the three-phase induction motor's speed 

control. 
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1. INTRODUCTION 

The variable frequency drive (VFD), which allows for the adjustment of motor speed through 

changing stator frequency, is one technique for varying the speed of three-phase induction motors. To 

improve speed control, the authors in [1] used closed-loop fuzzy logic control. Examining and comparing the 

dynamic speed with the open loop, according to the simulation results, using fuzzy logic control increased 

transient reaction performance by 13%. Due to its adaptability and affordability, a programmable logic 

controller (PLC) was used in the induction motor speed control [2]. The solid-state PLC replaces mechanical 

relays in industrial applications because it performs discrete or sequential logic in an industrial environment. 

In [3], it was suggested that an induction motor drive based on an artificial neural network (ANN) be used. 

Comparing the performance of the ANN to the traditional proportional integral (PI) controller, the ANN 

showed more improvements. Hussein [4] using space vector pulse width modulation (SVPWM), a supply 

voltage with variable amplitude and frequency is used to adjust the three-phase induction motor's speed. The 

feedback closed-loop control uses the integral controller, and an acceptable motor responds to the varied 

torque with a speed that is achieved. Farhi et al. [5] proposed two algorithms to obtain high-performance 

control of induction motor drives. The first approach is the super twisting algorithm (STA) to reduce the 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 1499-1510 

1500 

chattering effect and improve control accuracy. In contrast, the second one is the barrier super twisting 

algorithm (BSTA) to eliminate the chattering phenomenon by providing continuous output control signals.  

Numerous engineering applications have made use of neural networks, including the engineering 

control perspective in real-time operations [6]–[8]. By developing computer programs or systems that 

perceive, acquire knowledge, and behave like people, artificial intelligence (AI) aims to replicate human 

intelligence in technology to obtain quick and efficient responses [9]–[11]. For instance, in [12], multiple 

neural networks (NNs) are trained online to approximate the dynamic model of the induction motor, and then 

a nonlinear control is designed using these approximations. The NNs are used as dynamic estimating and do 

not directly control the motor speed. This situation would require more computational complexity to control 

the problem. Also, in [13], NNs have been used for online estimation of the stator and rotor resistances of the 

induction motor for speed sensor-less indirect vector-controlled drives. While it is a new approach to control, 

it is model-based, and the NN is not used as a controller but instead as an estimator that will be used for the 

controller design based on the state-space of the system. In study [14], in the first stage, model-predictive 

control (MPC) is used to collect the training data for the NN and then once these data are used to train the 

NN, the NN is used as a controller to track the voltage of the induction motor.  

Although the proposed approach has shown good results in the dynamic and steady-state responses, 

it is still dependent on the MPC for the data collection. Also, no online adaptation of the NN weights is 

accommodated. In many other applications, NN is used as an estimator for speed [15]. The proportional 

integral derivative (PID) controller is extensively utilized in the industrial sector to regulate linear systems. 

However, when faced with nonlinear behavior, its effectiveness can be limited. To enhance the capability of 

PID controllers, particularly in the case of doubly fed induction motors, researchers have integrated artificial 

intelligence through optimization algorithms. Mahfoud et al. [16] proposed the utilization of an ant colony 

optimization (ACO) algorithm to fine-tune the gains of the PID controller and effectively manage torque and 

speed in the doubly fed induction motor (DFIM). The implementation of the intelligent ACO-direct torque 

control (DTC) control using MATLAB-Simulink demonstrated satisfactory performance in terms of speed, 

stability, precision, and torque ripples, surpassing the capabilities of conventional DTCs. Mahfoud et al. [17] 

implemented a genetic algorithm (GA) to fine-tune and optimize the parameters of the PID controller.  

This approach aimed to address multiple objectives, including mitigating speed overshoot, 

decreasing response time, reducing the rate of total harmonic distortion (THD) in the stator and rotor 

currents, and minimizing both the rejection time of speed and the amplitude of torque and flux ripples in the 

DFIM. Brushless direct current (BLDC) motors are extensively employed in mechanical applications due to 

their efficiency, suitable torque, and compact size [18]. However, achieving optimal performance and tuning 

parameters for maximum force output is challenging with a basic custom PID controller. Mahmud et al. [19] 

implemented an adaptive PID controller that utilizes an additional feedback signal to address non-linearity, 

parameter variations, and load fluctuations in the BLDC motor drive system. The results demonstrate that 

adaptive PID controllers are suitable for dynamic movements and effectively minimize parameter changes. 

Premkumar et al. [20] suggested a fuzzy-anti windup-PID (FAW-PID) controller for speed control, which 

reduces the saturation effect on the speed response of the motor. The induction motor's control system 

parameters, including the PI controller, the FAW-PID controller, and the suggested controller, are measured 

and compared. The FAW-PID controller beats the other controllers in terms of performance. Boukhalfa et al. 

[21] compared three hybrid techniques for DTC of the dual star induction motor (DSIM) drive. Proportional 

integral derivative-particle swarm optimization (PID-PSO), fuzzy-PSO, and GA-PSO are used to improve the 

speed-regulated loop behavior of the DSIM. As a result, fuzzy-PSO is the best solution. The primary function 

of fuzzy-PSO is to reduce high torque ripples, improve rising time, and avoid disturbances that impact drive 

performance. 

Load torque changes of the induction motors cause noticeable deviations in the desired speed if 

there is no effective controller. In situations where load varies, an adaptive controller could be a good option 

for maintaining the speed of induction motors. Based on that and relying on analyzing the previous literature, 

an online adaptive general regression neural network (OAGRNN) [22] has not been utilized in direct online 

speed control of a three-phase induction motor, and thus, it is proposed in this work to control the speed of 

three phase induction motor directly and in the online learning mode where no previous training data or 

model of the induction motor is required for the controller design. Instead, it learns from scratch in real-time 

to provide the inverter with the control signal it needs to produce the proper frequency and voltage for the 

induction motor instantly. Different load torque variations are applied on the induction motor to test the 

OARNN controller's ability in online adaptations.  

The OARNN controller's performance is examined in both MATLAB simulation and experimental 

setup. The rest of the paper is organized as follows: a literature review is given in section 2. In section 3, the 

OAGRNN is proposed to track the desired speed of the induction motor while subjected to the varied load 

torque. Additionally, the PID controller is explained. Simulation and experimental results, as well as a 
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comparison between the proposed OAGRNN controller and PI controller, are given in section 4. Finally, the 

contribution and conclusion of this work are given in section 5.  

 

 

2. THREE-PHASE INDUCTION MOTOR  

When a three-phase supply voltage is applied to the stator of an induction motor, a three-phase set of 

stator currents is flowing. These currents produce a magnetic field rotating at a synchronous speed, which 

depends on the system frequency applied to the stator in hertz and the number of poles in the machine [23], 

[24]. A part of this flux is mutual with the rotor, and therefore, the energy is induced and transferred across 

the air gap to the rotor. Electro-motive-force (e.m.f.) is produced in the rotor as long as there is a slip between 

the rotor and the stator. The equivalent circuit of the rotor circuit is shown in Figure 1(a), and the rotor 

current is given by (1):  

 

𝐼2 =
𝐸2

√(
𝑟2
𝑠

)
2

 + X2
2

 (1) 

 

Where 𝐼2 is rotor current, 𝐸2 is rotor e.m.f, 𝑠 is rotor slip, 𝑟2 and 𝑋2 are the resistance and leakage reactance 

of the rotor. After separating the rotor resistance term (r2/s) into two series combinations, the equivalent 

circuit of the rotor circuit is shown in Figure 1(b), and (1) becomes: 

 

𝐼2 =
𝐸2

√(𝑟2 + 
𝑟2(1-s)

𝑠
)

2
 + X2

2

 (2) 

 

The rotor losses are obtained by multiplying the first part of the term (𝑟2 + 
𝑟2(1-s)

𝑠
 ) by 𝐼2, and the mechanical 

power is obtained by multiplying the second part by 𝐼2. The losses in the rotor circuit can also be given by (3): 

 

𝐼2
2𝑟2 = sE2𝐼2 𝑐𝑜𝑠 𝜙  =sP2 (3) 

 

and the second component, which is mechanical power, is represented by (4): 

 

𝑃𝑚  = (1-s)𝑃2 (4) 

 

where 𝑃2 is rotor input power, 𝑃𝑚 is mechanical power, and  is rotor phase angle. 
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Figure 1. Equivalent circuit of the rotor (a) before and (b) after splitting the resistance 

 

 

The rotor torque or induced torque (𝑇𝑖𝑛𝑑) is given by (5): 

 

𝑇ind= 
𝑃𝑚

𝜔𝑟
 (5) 

 

or; 
 

𝑇ind= 
(1-s)𝑃2

(1-s)𝜔𝑠
 = 

𝑃2

𝜔𝑠
 (6) 

 

where 𝑠 is stator synchronous speed (r/s) and 𝑟 is rotor speed (r/s). Equation (6) concludes that the rotor 

torque depends on rotor input power and the stator synchronous speed. One of the most common techniques 
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for controlling the speed of three-phase induction motors is the use of a voltage source inverter. It is used 

with the motor to control voltage and frequency. The pulse-width-modulation (PWM) method is used inside 

the inverter to provide the required supply frequency and voltage. The supply voltage to frequency ratio must 

remain consistent across the speed range to maintain a steady electromagnetic torque. The adjusted frequency 

and voltage are fed to the motor for speed control. 

 

 

3. ONLINE ADAPTIVE GENERAL REGRESSION NEURAL NETWORK  

The objective of the proposed controller is to fix the speed of the rotor at a desired value 𝑟𝑑(r/s) 

even when load variations exist. In this work, online adaptive OAGRNN [22] is proposed to perform the 

speed control task of the three-phase induction motor. The induction motor rotor speed tracking error is 

defined as (7): 

 

𝑒(𝑡) = ωrd- ω𝑟 (7) 

 

where 𝑟𝑑 is the desired speed and 𝑟 is the actual speed of the motor. The structure of the suggested 

OAGRNN is depicted in Figure 2, consisting of three layers: the input, hidden, and output layers. The output 

of OAGRNN can, with n-hidden layer size and m-inputs, be expressed as (8): 

 

𝑢(𝑡) = 𝑊𝑇ℎ(𝑧(𝑡)) (8) 

 

where 𝑢(𝑡) is the control signal, 𝑊 ∈ 𝑅𝑛×1 is a vector of the output weights of OAGRNN and ℎ(𝑧) ∈ 𝑅𝑛×1 

is a vector of the outputs of the hidden layer of OAGRNN. ℎ(𝑧) is defined as (9): 

 

ℎ(𝑧) = 𝑒𝑥𝑝(
−||𝑊𝑖−𝑧(𝑡)||2

2𝜎2 ) (9) 

 

where 𝑊𝑖 ∈ 𝑅𝑚×𝑛 is a matrix of the input weights of OAGRNN and 𝑧(𝑡) = [𝑒(𝑡), 𝑒′(𝑡)] and 𝜎 ∈ (0, ∞) is a 

hyperparameter of OAGRNN called the spread parameter, where 𝑒(𝑡) and 𝑒′(𝑡) are the motor error and its 

derivative. 

 

 

e(t)

e´(t)

h

Wi
W

u(t)

Input layer Hidden layer Output layer

 
 

Figure 2. OAGRNN structure 

 

 

3.1.  Online adaptive speed control for the thee-phase induction motor 

In this work, the OAGRNN controller approximates the control law 𝑢(𝑡) to match the desired speed 

even with varying load torques. Thus, the OAGRNN adapts its weights online to keep the speed fixed. 

Therefore, a weights adaptation rule is required. The adaptation rule in this work is designed as (10): 

 

𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝛾ℎ(𝑧(𝑡))(𝑒(𝑡) + 𝑒 ′(𝑡)) (10) 

 

where 𝛾 is an online positive adaptation gain for OAGRNNs weights. The closed-loop block diagram is 

depicted in Figure 3. OAGRNN algorithm is depicted in Algorithm 1. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Developing an algorithm for the adaptive neural network for direct online speed … (Ahmad J. Al-Mahasneh) 

1503 

Adaptation 
Rule

OAGRNN

d/dt

rd

e' 

e u r
Induction Motor+

-

 
 

Figure 3. Block diagram of the closed-loop system 

 

 

Algorithm 1. OAGRNN controller algorithm 
1. INITIALIZE 𝜔𝑟𝑑(t), γ, 𝑊𝑖= [-1:0.1:1; -1:0.1:1], =[ZEROS(SIZE(Wi,1))] 

2. FOR t=0 to 𝑡𝑓𝑖𝑛𝑎𝑙, OBSERVE 𝜔𝑟(𝑡) and CALCULAT 𝑧(𝑡) = [𝑒(𝑡), 𝑒′(𝑡)]  

2.a CALCULATE ℎ(𝑧) USING: ℎ(𝑧) = 𝑒𝑥𝑝(
−||𝑊𝑖−𝑧(𝑡)||2

2𝜎2
) 

2.b UPDATE 𝑊 USING: 𝑊(𝑡 + 1) = 𝑊(𝑡) − 𝛾ℎ(𝑧(𝑡))(𝑒(𝑡) + 𝑒′(𝑡)) 
3. ALCULATE 𝑢(𝑡) USING: 𝑢(𝑡) = 𝑊𝑇ℎ(𝑧(𝑡)) 

 

3.2.  Stability analysis of OAGRNN 

To analyze the stability of the OAGRNN controller, the Lyapunov direct method is utilized as 

follows: Firstly, let us define a Lyapunov function 𝑉(𝑡) as (11) [25]: 

 

𝑉(𝑡) =
1

2
𝑒2(𝑡) +

1

2
�̃�(𝑡)𝑇�̃�(𝑡) (11) 

 

Where 𝑒(𝑡) is the tracking error, and �̃�(𝑡) is the OAGRNN weighting error, and it is defined as (12): 

 
 

�̃�(𝑡) = �̑� − 𝑊(𝑡) (12) 

 

Where �̑� is an ideal constant weight vector that makes OAGRNN approximate the control law arbitrary 

small error ϵ according to the universal approximation theorem of single hidden layer neural networks, and 

𝑊(𝑡) is the current weight vector of OARGRNN. 

Taking the first-time derivative of 𝑉(𝑡) as (13): 

 

𝑉 ′(𝑡) = 𝑒(𝑡)𝑒 ′(𝑡) +
1

2
�̃� ′𝑇(𝑡)�̃�(𝑡) (13) 

 

Utilizing Cauchy-Schwarz inequality, (13) can be rewritten as (14): 

 

𝑉 ′(𝑡) < 2𝑒2(𝑡) + 2𝑒 ′2(𝑡) + |�̃�|′2(𝑡) + |�̃�|2(𝑡) (14) 

 

Substituting (10) into (14) yields: 

 

𝑉 ′(𝑡) < 2𝑒2(𝑡) + 2𝑒 ′2(𝑡) + 𝛾2(ℎ(𝑧(𝑡))(𝑒(𝑡) + 𝑒 ′(𝑡)))𝑇ℎ(𝑧(𝑡))(𝑒(𝑡) + 𝑒 ′(𝑡)) + |𝑊|2(𝑡) (15) 

 

Because h(z(𝑡)) ≤ 𝑛 since the Gaussian activation function is utilized in the hidden layer of OAGRNN, 𝑛 is 

the number of hidden neurons in OAGRNN, (15) can be simplified as (16): 

 

𝑉 ′(𝑡) < 2𝑒2(𝑡) + 2𝑒 ′2(𝑡) + 𝛾2𝑛2(𝑒2(𝑡) + 𝑒 ′2(𝑡) + 2𝑒(𝑡)𝑒 ′(𝑡) + |�̃�|2(𝑡)) (16) 

 

To ensure Lyapunov stability, V’ (t) < 0 and thus, (16) becomes: 

 

2𝑒2(𝑡) + 2𝑒 ′2(𝑡) + 𝛾2𝑛2(𝑒2(𝑡) + 𝑒 ′2(𝑡) + 2𝑒(𝑡)𝑒 ′(𝑡) + |�̃�|2(𝑡)) < 0 (17) 

 

To achieve uniform ultimate boundness, the learning rate γ should be selected as (18): 
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𝛾 > −√
2𝑒2(𝑡)+2𝑒 ′2(𝑡)

𝑒2(𝑡)+𝑒 ′2(𝑡)+2𝑒(𝑡)𝑒 ′(𝑡)+|�̃�|2(𝑡)
 (18) 

 

According to the universal approximation theorem, |�̃�|2(𝑡) ≤ 𝜀2, where is a small arbitrary positive error 

threshold and thus, (18) becomes (19). 

 

𝛾 > −√
2𝑒2(𝑡)+2𝑒 ′2(𝑡)

𝑒2(𝑡)+𝑒 ′2(𝑡)+2𝑒(𝑡)𝑒 ′(𝑡)+𝜀2
 (19) 

 

3.3.  Proportional integral derivative controller 

In this work, in both the simulation and experimental settings, a PI controller is also used to adjust 

the induction motor speed in order to compare the performance of the OAGRNN controller. In the industry, 

the PID controller is utilized to control a wide range of process variables. One way to describe it would be as 

an accurate controller. In the ideal type [26], the proportional gain constant (𝐾𝑐) is uniformly applied to all 

components: proportional (P), integral (I), and derivative (D) terms, and the corresponding control function 

can be expressed as (20): 

 

𝑢(𝑡) = 𝐾𝑐 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝑡)𝑑𝑡 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
) (20) 

 

Where 𝐾𝑐 is proportional gain, 𝑇𝑖  is integral time, 𝑇𝑑 is derivative time. In the parallel PID type, every action 

parameter (𝐾𝑐, 𝑇𝑖 , and 𝑇𝑑) in the PID is independent of the others. It looks promising, suggesting that 

alterations to the controller would only have an impact on a specific aspect of its functionality. But 

sometimes, it is better if the gain parameter affects the three control actions in the same way. In this type, the 

control function can be represented as (21). 

 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝑡)𝑑𝑡 + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (21) 

 

 

4. RESULTS AND DISCUSSION  

Two tests were carried out to evaluate the effectiveness of the suggested OAGRNN controller. 

While the second test was conducted in the laboratory using the practical model, the first test was conducted 

using the simulation model created in MATLAB. The simulation and experimental results are presented in 

the two subsections below. 

 

4.1.  Simulation results 

To demonstrate the superior performance of the OAGRNN controller and compare it with the PI 

controller, a three-phase induction motor Simulink model was employed, as illustrated in Figure 4. The 

model was simulated with an Intel Core i7 processor running at a clock speed of 2.7 GHz and 16 GB RAM. 

Ode3 fixed step solver is used in this simulation and the simulation time is 4 seconds. The adaptation gain of 

the OAGRNN controller is 0.1. The gain of PI, i.e., 𝐾𝑝 and 𝐾𝑖 are tuned to be 0.15 and 0.1 respectively. The 

control frequency is limited between 48.5 and 51.5 Hz. The motor speed is controlled at 1400 rpm. 

 

 

 
 

Figure 4. Simulink model of the three-phase induction motor controlled by the OAGRNN controller 
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Three load scenarios are considered in the experiment. In the first scenario, the torque was increased 

from 0.2 to 1.67 N.m; the response of both PI and OAGRNN controllers is demonstrated in Figure 5(a). 

OAGRNN initially takes around 0.5 seconds for learning to reach the required speed. In the second scenario, 

the load was increased from 0.2 to 1.67 N.m and then decreased back to 0.2 N.m, the results as shown in 

Figure 5(b) demonstrate that OAGRNN was capable of forcing the response to the desired speed when the 

torque was increased and decreased while the PI controller could not. In the third scenario, the torque was 

increased from 0.2 to 0.7 N.m and then to 1.67 N.m, the results as shown in Figure 6 demonstrate that the 

OAGRNN was able to recover the desired for all the torque increments while PI was not. 

 

 

  
  

  
(a) (b) 

 

Figure 5. Response of OAGRNN compared to PI response when the load torque (a) increased from 0.2 to 

1.67 N.m and (b) when the load torque increased from 0.2 to 1.67 N.m and then decreased to 0.2 N.m 

 

 

  
 

Figure 6. OAGRNN vs PI response for load torque increased from 0.2 to 0.7 N.m and then 1.67 N.m 
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4.2.  Experimental results 

To test and validate the proposed algorithm OAGRNN, a three-phase induction motor, together with 

the power electronics laboratory, is set up. For this purpose, an Arduino Mega 2560 control board is 

employed, and MATLAB Simulink is used to build the control software. Figure 7 displays the experimental 

setup. The 3-phase, 4-pole, delta-connection induction motor used in this work has an output power of 300 W 

and is supplied by 220 V at a rated frequency of 50 Hz. At various load torques, the motor speed is controlled 

at 2000 rpm. 

Figure 8(a) shows the open-loop response of the induction motor speed for a torque change from  

0.2 to 1.67 N.m. at 55 sec, demonstrating that the open-loop controller is unable to fix the desired speed when 

a breaking torque is applied. Figure 8(b) response for the OAGRNN controller for the same load torque 

shows how the controller can turn the motor back to its desired speed after applying the new torque. In  

Figure 9, another breaking torque of 2.7 N.m is applied at 55 seconds. The results depicted that the 

OAGRNN controller could return the motor to its desired speed after the breaking torque was applied, as 

shown in Figure 9(a). While the open-loop control could not, as shown in Figure 9 (b). In Figure 10, the 

torque is reduced from 1.67 to 0.2 N.m. Again, the results showed that after applying a light torque, the 

OAGRNN controller could get the motor speed back to the desired speed, as shown in Figure 10 (a). 

Whereas the open-loop controller could not, as shown in Figure 10 (b). 

 

 

 
 

Figure 7. Experimental setup for speed control of induction motor using OAGRNN 

 

 

  
(a) (b) 

 

Figure 8. Response for speed with a torque change from 0.2 to 1.67 N.m (a) Open-loop response and  

(b) OAGRNN controller response 
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(a) (b) 

 

Figure 9. Response for speed with a torque change from 0.2 to 2.7 N.m (a) OAGRNN controller and  

(b) Open-loop response for speed 

 

 

In Figure 11, the three-phase induction motor is subjected to a variable torque application. The 

results revealed that the OAGRNN controller can maintain the desired speed while applying a variable 

torque. Also, the PI controller is developed and used in the experimental setup given in Figure 7 for 

comparison reasons. Figure 12 displays the PI response after applying a braking torque to the induction 

motor (ranging from 0.2 to 1.7 N.m). The PI controller takes a very long time to reach the speed needed  

with ripples in comparison to the OAGRNN's response in Figure 9(b). For the experiment time range of  

0 to 120 seconds, a variable load torque is provided to the three-phase induction motor, and the PI response is 

shown in Figure 13 for more comparison. Experimental results in Figure 11 and Figure 13 revealed that 

under these varied load situations, OAGRNN can follow the intended speed perfectly compared to the PI 

controller. 

 

 

  

  
(a) (b) 

 

Figure 10. Response for speed with a torque change from 1.67 to 0.2 N.m (a) OAGRNN controller response 

and (b) open-loop response 
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Figure 11. OAGRNN tracking for the desired speed 

under variable torque 

Figure 12. Speed response for PI controller with a 

torque change from 0.2 to 2.7 N.m 

 

 

 
 

Figure 13. PI tracking for the desired speed under variable torque 

 

 

5. CONCLUSION  

In this work, a three-phase induction motor is utilized in the simulation and experimental models to 

test the proposed OAGRNN algorithm for optimal speed control. The speed of a three-phase induction motor 

is directly online controlled using a code that was created using OAGRNN. The OAGRNN controller 

provides the inverter with the control signal it needs to produce the proper frequency and voltage for the 

induction motor instantly. A PI controller has been developed as well for comparison with the OAGRNN 

controller. The proposed OAGRNN controller is tested using simulated and actual case studies of load 

torques delivered to the induction motor. Based on the simulation and experimental results, the OAGRNN 

controller allowed for the smooth and reliable control of induction motor speed, and it performed much better 

than the PI controller at tracking the intended motor speed. 
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