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 Accurate weather forecasting is important when dealing with various 

sectors, such as retail, agriculture, and aviation, especially during extreme 

weather events like heat waves, droughts, and storms to prevent disaster 

impact. Traditional methods rely on complex, physics-based models to 

predict the Earth's stochastic systems. However, some technological 

advancements and the availability of extensive satellite data from beyond 

Earth have enhanced meteorological predictions and sent them to Earth's 

antennae. Deep learning models using this historical data show promise in 

improving forecast accuracy to enhance how models learn the data pattern. 

This study introduces a novel architecture, convolutional sequence to 

sequence (ConvSeq2Seq) network, which employs 3D convolutional neural 

networks (CNN) to address the challenges of spatiotemporal forecasting. 

Unlike recurrent neural network (RNN)--based models, which are time-

consuming due to sequential processing, 3D CNNs capture spatial context 

more efficiently. ConvSeq2Seq overcomes the limitations of traditional 

CNN models by ensuring causal constraints and generating flexible length 

output sequences. Our experimental results demonstrate that ConvSeq2Seq 

outperforms traditional and modern RNN-based architectures in both 

prediction accuracy and time efficiency, leveraging historical meteorological 

data to provide a robust solution for weather forecasting applications. The 

proposed architecture outperforms the previous method, giving new insight 

when dealing with spatiotemporal with high density. 
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1. INTRODUCTION 

In situations of severe natural occurrences like heat waves (high temperatures), droughts, and 

storms, resource planning depends critically on weather forecasting. It also affects decision-making in retail 

markets, agriculture, aviation, and other industries since bad weather lowers corporate revenues [1]. 

Meteorological variable forecasts are becoming increasingly accurate due to technical advancements over 

time. Nevertheless, conventional forecasting needs sophisticated, physics-based models to forecast the 

weather because of the stochastic demeanor of the Earth systems, which are controlled by physical laws [2]. 

Historical data is available. Hence, researchers can create deep-learning models that can forecast the weather 

more accurately [3]. Shi et al. [4] suggested that the convolutional long short-term memory (ConvLSTM) 

architecture uses a radar echo dataset for precipitation forecasting in order to overcome the sequence 

https://creativecommons.org/licenses/by-sa/4.0/
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prediction issue. To concurrently learn incoming data's temporal and spatial context and project the future 

sequence, they merged the convolution operator—used by the convolutional neural network (CNN)—with a 

recurrent neural network (RNN). Even while ConvLSTM architecture has been seen as a possible method to 

develop prediction models for geoscience data [5], fresh prospects have surfaced thanks to current 

developments in deep learning. The long short-term memory (LSTM) unit was enhanced in several studies to 

memorize spatial-temporal information. 

RNN-based architectures are well-suited for multi-step forecasting tasks involving spatiotemporal 

data due to their ability to predict long sequences while maintaining temporal order (causal constraint) [6]. 

However, these models rely on information from previous time steps to generate outputs, leading to lengthy 

training times. To address this limitation, we propose a novel architecture that exclusively utilizes 3D CNN 

for spatiotemporal forecasting. CNNs are highly effective in capturing spatial context and have demonstrated 

state-of-the-art performance in image classification with 2D kernels [7]. Recent advancements have extended 

the application of CNNs, such as using 1D kernels for tasks like machine translation [8], which enables the 

extraction of temporal patterns in sequences. Applications like video analysis, action recognition [9], and 

climate event detection [10] highlight the potential of 3D CNN models. However, CNN-based approaches 

face two key challenges for multi-step forecasting: they are unable to produce output sequences longer than 

the input and disrupt temporal order by incorporating future information during temporal reasoning [11]. We 

introduce convolutional sequence-to-sequence (ConvSeq2Seq) network, a spatiotemporal prediction model 

explicitly designed for multi-step forecasting tasks to address these limitations. As far as we know, 

ConvSeq2Seq is the first 3D CNN-based architecture developed as an end-to-end trainable model that 

adheres to the causal constraint while allowing the prediction of output sequences of flexible lengths—

unrestricted by the length of the input sequence. 

Through experimental evaluations, we assessed the predictive accuracy and time efficiency of 

ConvSeq2Seq in comparison to RNN-based architectures. Using meteorological datasets such as climate 

hazard group infrared precipitation satellite (CHIRPS) that combine satellite data and in situ station [12] 

measurements, the proposed architecture matches or outperforms existing techniques. This study contributes 

in two significant ways. First, it introduces variations of the ConvSeq2Seq architecture that satisfy the causal 

constraint. One approach involves adapting causal convolution within 3D convolutional layers, while another 

applies a novel technique that reverses sequences deliberately. Second, to enable longer output sequences, we 

developed a temporal generator block featuring an innovative use of transposed convolutional layers. 

 

 

2. RELATED WORKS 

Historical data regarding temperature, precipitation, and other meteorological variables have been 

used to forecast the weather using several statistical and machine-learning approaches [13]. Times series 

analysis is traditionally handled statistically using auto-regressive integrated moving averages (ARIMA) 

[14]. Other research has also used artificial neural networks (ANN) for time series prediction in 

meteorological data, including temperature readings [15]. Using LSTM networks in particular, many writers 

have been developing novel deep learning-based methods recently to enhance time series forecasting 

performance [16]. Applying LSTM designs effectively includes traffic flow analysis [17], landslide 

displacement prediction [18], petroleum production [19], and sea surface temperature forecasting [20]. 

However, spatial relationships in the data are not captured by these methods (which are directed at time 

series). 

Spatiotemporal deep learning algorithms effectively address both geographic and temporal 

dimensions. Shi et al. [4] treat weather forecasting as a sequence-to-sequence problem, utilizing sequences of 

2D radar maps as both input and output. They introduce the ConvLSTM architecture to create an end-to-end 

model for precipitation nowcasting, integrating convolutional operations into the LSTM network to capture 

spatial patterns. Similarly, Kim et al. [21] employ ConvLSTM for predicting severe climatic events, framing 

their task as a sequence-based problem using storm density map sequences as input. Souto et al. [22] propose 

a spatiotemporal-aware ensemble approach leveraging ConvLSTM, while Setiawan et al. [23] work by 

incorporating a novel LSTM unit that uniformly handles temporal and spatial variations in its memory pool. 

Wang et al. [24] also enhance memory functionality by introducing non-stationarity modeling within the 

LSTM unit. Although these approaches combine LSTM and CNN for climate and weather-related tasks, our 

model adopts a purely CNN-based methodology, avoiding the hybrid strategy of merging LSTM with CNN. 

A few studies have been done on applying spatiotemporal convolutions for action recognition and 

video analysis. Tran et al. [25] demonstrate that factorizing the 3D convolutional kernel into distinct and 

consecutive spatial and temporal convolutions increases accuracy by comparing multiple spatiotemporal 

designs employing just 3D CNN. Limitation of factorized 3D CNN as well as 3D CNN Tran et al. [25] 

violates the temporal order by lacking a causal requirement. The 3D convolution, as Tran et al. [25], is 

factorized by Singh and Cuzzolin [26] and Cheng et al. [27]. The causal constraint in temporal learning for 
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action recognition tasks is addressed by Singh and Cuzzolin [26] using a recurrent convolution unit 

technique; the causal constraint is satisfied by Cheng et al. [27] by using causal convolution in discrete and 

parallel spatial and temporal convolutions. However, with a different implementation, we likewise used a 

factorized 3D CNN. We use a full CNN technique; similarly, we provide a novel way not to break the 

temporal order and do not employ parallel convolutions when adopting a causal convolution. After Xu et al. 

[28] successfully captured spatial correlation in pictures, they proposed a technique to estimate vehicle 

pollution emissions by independently collecting temporal and spatial correlation using 2D CNN. Mudigonda 

et al. [29] identify severe climatic events by using a 3D CNN in an encoder-decoder architecture. 

 

 

3. METHOD 

3.1.  Data 

Gridded rainfall time series with daily frequency and a 0.05° geographic resolution are produced by 

combining satellite images and in situ station data in the CHIRPS dataset. In this work, we performed 

interpolation to shrink the grid size to 50×50 using a records sample from January 1981 to December 2020. 

Figure 1 displays the coverage area, which is 127,346.92 km2 on land and 25,656 km2 on water, employed in 

our studies, from 2°33′ North Latitude -2°25' South Latitude, 113°44'–119°00' East Longitude. In keeping 

with Shi et al.'s methodology [4], we set the input sequence length to five, i.e., the next set of grids is 

predicted using the previous five grids. For the CHIRPS dataset (https://www.chc.ucsb.edu/data/chirps), thus, 

the input data shapes for the deep learning architectures are 5×50×50×1. Here, 1 denotes the single channel 

(like a grayscale picture), 5 is the forecasting sequence length, and 32 and 50 is the number of latitudes and 

longitudes utilized to build the spatial grid for every dataset. 

From the rainfall dataset, we produced 13,960 grid sequences. After that, non-overlapping training, 

validation, and test sets were created from both datasets in proportions of 60%, 20%, and 20%, respectively. 

We have used rainfall datasets in our experimental assessment because of their importance as main 

meteorological variables. Studying their spatiotemporal representation improves our knowledge of long-term 

climate variability and is essential for short-term forecasting. However, the proposed architecture is adaptable 

and may be used for other meteorological variables or domains, provided that the training data can be 

organized as described in the subsequent section. 

 

 

 
 

Figure 1. The geographical extent encompassed by the datasets used in all studies. The grid below represents 

the chosen sequence for December 2020, showing the recorded rainfall levels 

 

 

3.2.  Proposed models 

The 3D convolutional layer through Seq2Seq model is a comprehensive deep neural network 

designed to learn and predict patterns that occur in both space and time. This network is especially beneficial 

in industries like weather forecasting, where these patterns are frequently observed. Our methodology allows 

for the prediction of multi-step sequences without incorporating the anticipated outcome back into the input 

sequence. Our proposed deep learning framework is comprehensively illustrated in Figure 2. 
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The majority of weather forecasting techniques employ a combination of 2D CNN and LSTM to 

learn spatial and temporal representations. However, our approach exclusively employs 3D convolutional 

layers to acquire both spatial and temporal contexts. ConvSeq2Seq, in contrast to the conventional 

convolution employed in certain 3D CNN architectures, guarantees that it does not depend on future 

knowledge during temporal learning, a critical requirement for task prediction. Our network architecture's 

ability to accommodate variable output sequence lengths is critical. This suggests that it is capable of 

predicting a significant number of future time steps, regardless of the input sequence's fixed duration. In the 

following section, we offer additional details regarding the components that constitute our architecture. 

We employ a factorized 3D kernel that is inspired by the 𝑅(2 + 1) 𝐷 network introduced by  

Tran et al. [25] instead of a traditional kernel for 3D convolutional layers, where the kernel size is defined by 

d in the spatial dimensions (H and W) and t in the temporal dimension (T). The authors introduce a factorized 

kernel, denoted as 1-d-d and t-1-1, in their work. This kernel partitions the convolution procedure of a single 

layer into two distinct operations: a spatial convolution and a temporal convolution. We employ an 

alternative methodology in our innovative design, which involves the non-sequential execution of operations 

within each convolutional layer. The factorized kernels are partitioned into two groups, which leads to 

discrete learning abilities for each. The temporal block employs the t-1-1 kernel in its layers to understand 

temporal relationships in a specific manner. Conversely, the spatial block encapsulates spatial dependencies 

by employing a 1-d-d kernel. 

The kernel decomposition employed in ConvSeq2Seq has the advantage of increasing the number of 

nonlinearities in the network, in contrast to the complete 3D kernel used in conventional convolutions. This is 

accomplished by incorporating supplementary activation functions between factorized convolutions, which 

leads to greater complexity in the patterns that can be represented. Our recommended solution is flexible over 

the (2+1) D block. This is due to the fact that the temporal and spatial units may have varying numbers of 

layers, which facilitates their optimization. 

 

 

 
 

Figure 2. ConvSeq2Seq architecture 

 

 

3.3.  Evaluation matrix 

Postprocessing is sought to obtain better rainfall forecasts than "raw" (unprocessed) hydrological 

models. For this purpose, it is important to assess the performance of the models and contrast them to choose 

the best one. A number of measures are used to assess forecasts for various wait durations. The equation's 

root-mean-square error (RMSE) is the main accuracy metric for a deterministic forecast because precise and 

trustworthy forecasts are so important during rainfall events. 

 

𝑅𝑀𝑆𝐸 = √
∑(𝑦𝑖 − 𝑞𝑖)

2

𝑛
 

 

where 𝑞𝑖 is the observed daily rainfall, 𝑦𝑖  is the 𝑖𝑡ℎ time-k forecast of daily rainfall, and 𝑛 is the total number 

of time-k monthly rainfall predictions. RMSE penalizes more substantial mistakes for high rainfall 

projections than mean absolute error (MAE) measures. Where the total effect of mistakes is proportional to 

the increase in error, MAE, a linear statistical measure, is more useful than RMSE, which assigns a 

comparatively large weight to big errors.  
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𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑞𝑖|

𝑛

𝑗=1

 

 

The mean squared error (MSE) quantifies the average of the squared discrepancies between the 

observed and estimated values. The metric measures the proximity of the predictions to the actual results, 

where smaller values imply superior performance of the model. Where: 𝑛 is the number of observations, and 

𝑞𝑖 represents the actual value. The variable 𝑦𝑖  represents the value that is being forecasted. 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑞𝑖)

2

𝑛

𝑗=1

 

 

R-squared is a statistical metric that quantifies the percentage of the variation in the dependent 

variable that the independent variables can account for in a regression model. The range of values is from 0 

to 1, where greater numbers indicate a stronger match. Where: 𝑞𝑖 represents the current value The variable 𝑦𝑖  

represents the expected value. The term 𝑞�̅� represents the average of the actual numbers. 𝑛 represents the total 

count of observations. The numerator in this formula indicates the aggregate of squared errors in the forecast, 

while the denominator is the overall variance in the data. A value of 1 for R² signifies a complete match, 

while a value of 0 shows that the model fails to account for any of the variations in the response data around 

its average. 

 

𝑅2 =  1 −
∑ |𝑦𝑖 − 𝑞𝑖|

𝑛
𝑗=1

∑ |𝑦𝑖 − 𝑞�̅�|
𝑛
𝑗=1

 

 

 

4. RESULTS AND DISCUSSION 

It is conceivable for a Seq2Seq model to have a high R2 value but relatively low MAE, MSE, and 

RMSE values for a number of different reasons. There is a possibility that Seq2Seq is a useful method for 

identifying severe variances or outliers in the data that have a substantial impact on the R2 score. A high R2 

number suggests that the model is effective in explaining big fluctuations in the data as a whole, but if these 

outliers are not deleted or controlled efficiently, they have the potential to interfere with the MAE, MSE, and 

RMSE values, which are more sensitive to absolute error than R2. Sequence-to-Sequence (Seq2Seq) models 

often effectively capture temporal connections and the complexity of time series data. Additionally, this may 

enable the model to make correct forecasts at the per-data point prediction level, resulting in increased 

prediction errors (worsening MAE, MSE, and RMSE). This might be a consequence of the model's ability to 

produce predictions that follow the data trend well overall (higher R2). Both the magnitude of the data and 

the absolute error significantly impact the MAE, MSE, and RMSE. Small inaccuracies in forecasts may result 

in big increases in these values, even if the model normally adjusts to the pattern of the data. This is the case 

when the data is huge in size or has a high degree of variance. 

A complete image of rainfall is provided by CHIRPS data, which combines observations from 

satellites and ground stations. This picture may be beneficial for models that are used to anticipate or evaluate 

weather-related problems such as drought. On the basis of the abundant and intricate characteristics of the 

CHIRPS data, the following are a few probable causes for the disparate performance of the models shown in 

the table. Seq2Seq models can more readily explain temporal (time) and spatial (space) fluctuations in 

CHIRPS data than CNN or CNN-LSTM models. This is because the Seq2Seq model takes into account both 

factors simultaneously. This may be the reason why R2 is high (the model explains a significant amount of 

the variance in the data), but the absolute errors (MAE, MSE, and RMSE) are also high because of the 

difficulty of the model in capturing specific features of the local environment, as can be seen in Table 1. It is 

possible for rainfall statistics to have a significant amount of variation, depending on the location and the 

time period. Models that can capture overall trends may only sometimes be successful when forecasting 

precise values at particular times and places, which might result in larger value errors. Because the Seq2Seq 

model is able to adjust to the overall trend, it is influenced by extreme values in the MAE, MSE, and RMSE 

calculation errors. For instance, if there are outliers in the rainfall data, such as very uncommon heavy 

rainfall, the model is able to adapt to the general trend. The different models' architectural complexity and 

particular operations account for the disparities in memory use and training time observed, as seen in Table 2. 

Convolutional neural networks (CNNs), often need a large amount of memory because of its many 

convolutional layers, which record spatial hierarchies in input, such as pictures. Still, given their simple layer 
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structure that permits parallel data processing, their training time per epoch is quite efficient. Longer training 

periods and higher memory consumption are features of CNN-LSTM models, which mix convolutional and 

LSTM layers. The model becomes more complicated and resource-intensive as LSTM layers capture 

temporal relationships and CNN levels extract spatial data. Comparing ConvLSTM models to distinct CNN 

and LSTM layers, ConvLSTM models handle spatiotemporal input directly by combining convolution 

processes with LSTM units. 

 

 

Table 1. Performance data for rainfall forecasting predicting the next five observations (5 → 5) using the 

previous five observations (grids) 
Model MAE MSE RMSE R2 

CNN 0.038 0.004 0.068 0.024 

CNN-LSTM 0.036 0.004 0.066 0.047 
ConvLSTM 0.037 0.004 0.065 0.058 

ConvSeq2Seq 0.073 0.034 0.186 0.965 

 

 

Table 2. Efficiency analysis of model memory usage and training time 
Model Memory usage  

(MB) 
Training time  

(s) 
Training time/epoch  

(s) 

CNN 2005.07 16.56 0.82 

CNN-LSTM 2232.02 25.72 0.80 
ConvLSTM 1457.76 10.94 0.54 

ConvSeq2Seq 565.07 1037.70 20.75 

 

 

To demonstrate how closely the model's predictions match the actual values, the 3D visualization in 

Figure 3 contrasts the actual and projected data. Plots of the data show values, latitude, and longitude. The 

real data plot on the left displays a complicated surface with clear value fluctuations over several geographic 

areas. This surface is tried to be duplicated in the projected data plot (right). Though the actual and 

anticipated data are comparable, there are differences in certain places that point to places where the model's 

predictions differ from the real values. Figures 4 and 5 show how well two distinct models—ConvSeq2Seq 

and ConvLSTM—predict rainfall throughout a five-month test set of the CHIRPS data. The ConvSeq2Seq 

model's projected and actual rainfall maps are compared in Figure 3 for each of the five months. Whereas the 

anticipated maps indicate the model's forecasts, the ground truth maps reflect the actual rainfall that has been 

measured. 

 

 

  
 

Figure 3. 3D Visualization of actual vs predicted data 
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Figure 4. An example of predicting rainfall on a test set of the CHIRPS dataset using ConvSeq2Seq 

 

 

 
 

Figure 5. An example of predicting rainfall on a test set of the CHIRPS dataset using ConvLSTM 

 

 

5. CONCLUSION 

The study has shown that the effective utilization of hardware significantly impacts machine 

learning models' training duration and resource consumption. By using parallel processing and high-

performance graphics processing units (GPUs) to optimize hardware use, training time and operating 

expenses may be cut. More extended training periods and greater memory use are typical of more 

complicated architectures, as the table comparing several models (CNN, CNN-LSTM, ConvLSTM, and 

ConvSeq2Seq) demonstrates. The spatiotemporal data processing efficiency of models such as ConvLSTM 

leads to improved memory use and training time performance. The 3D visualizations comparing actual and 

predicted data show the difficulties of precisely modeling real-world data. These differences result from 

overfitting or underfitting, hyperparameter tuning, feature selection, training data constraints, and model 

complexity. It is clear from comparing the ConvSeq2Seq and ConvLSTM models for rainfall prediction on 

the CHIRPS dataset that, while both models capture broad patterns of rainfall, the ConvLSTM model does a 

better job of precisely capturing geographic distribution and intensity. 
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