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Multimodal biometrics technology has garnered attention recently for its abil-
ity to address inherent limitations found in single biometric modalities and to
enhance overall recognition rates. A typical biometric recognition system com-
prises sensing, feature extraction, and matching modules. The system’s robust-
ness heavily relies on its capability to effectively extract pertinent information
from individual biometric traits. This study introduces a novel feature extraction
technique tailored for a multimodal biometric system utilizing electrocardio-
gram (ECG) and iris traits. The ECG helps to incorporate the liveliness related
information and Iris helps to produce the unique pattern for each individual.
Therefore, this work presents a multimodal authentication system where data
pre-processing is performed on image and ECG data where noise removal and
quality enhancement tasks are performed. Later, feature extraction is carried
out for ECG signals by estimating the Heart rate variability feature analysis in
time and frequency domain. Finally, the ensemble of convolution neural net-

work (CNN) and DeepResNet models are used to perform the classification. the
overall accuracy is reported as 0.8900, 0.8400, 0.7900, 0.8932, 0.87, and 0.97
by using convolutional neural network-long short-term memory (CNN-LSTM),
support vector machine (SVM), random forest (RF), CNN, decision tree (DT),
and proposed MBANet approach respectively.
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1. INTRODUCTION

Recently, the biometric recognition systems have gained prominence as a primary means of user au-
thentication across various sectors and applications, including smartphones, banking services, websites, and
airports. Depending on the required level of security, they provide a clear substitute for conventional authen-
tication techniques like keys and personal identification numbers (PINs) [1], [2]. For the purpose of feature
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recognition, it is necessary to first enroll biometric qualities that are often used, such as voice, face features,
fingerprints, palmprints, iris patterns, and facial features, into a database [3], [4]. Biometrics is a more straight-
forward and secure substitute for traditional authentication techniques. It includes both physiological and
behavioral characteristics that are used to statistically differentiate persons [5]. Physiological traits encom-
pass both external features such as fingerprints, iris patterns, facial characteristics, and vein patterns, as well
as internal attributes like electrocardiogram (ECG), electromyography (EMG), and brainwave (EEG) patterns.
Behavioral traits, on the other hand, involve habit-based characteristics such as voice patterns, gait, and sig-
natures [6], [7]. Furthermore, researchers have explored the combination of multiple biometric modalities to
enhance the robustness of identification systems [8]. Despite the widespread adoption of biometrics in various
devices and services, they remain vulnerable to spoofing attempts. However, the current technological advance-
ments have raise the security concerns for these systems and make them more vulnerable to various security
threats.

A typical face-or fingerprint-spoofing attack was investigated and covered in [9]-[11]. A consideration
should be given to liveness detection or continuous biometric authentication techniques in order to defend
against presentation attacks and unauthorized user accessibility to the systems [12]-[14]. Using a non-invasive,
quantifiable sensor that can gather users’ biometric information, perpetual biometric authentication continually
verifies the identification of the user. Consequently, because of the distinctive features of the ECG signals,
continuous biometric authentication has drawn a lot of interest as a potentially extremely viable next-generation
approach. The ECG is a skin-attached electrode-derived electrical signal that consists of three unique elements:
the T-wave, QRS complex, and P-wave [15]. Variations in ECG patterns among individuals can be attributed
to three primary reasons. First of all, individual differences exist in physiological parameters including cardiac
mass, size, conductivity, and activity. Second, ECG pattern variability is influenced by geometrical parameters
arising from differences in the location and vector of the heart. Finally, the specific structure and makeup of
the heart are influenced by individual deoxyribonucleic acid (DNA traits). Nevertheless, because the ECG is
an electrical transmission, variations in heart rate and ambient factors might affect its reading. Moreover, the
reliability of unimodal authentication systems decreases for increased sample size [16].

Multimodal biometric systems incorporate a minimum of two biometric features in comparison to
unimodal biometric systems in order to improve recognition precision and strengthen defenses from spoofing
attacks [17], [18]. Since both fingerprints and high-quality heart signals may be concurrently taken from the
fingertips, fingerprints and heart signals provide a perfect combination for multimodal fusion. Heart signal
possesses a liveness property that enhances their security as a biometric modality, and their fusion with finger-
prints holds promise for establishing a robust and secure authentication and identification system [19], [20].
Numerous multimodal biometric systems integrating fingerprints and heart signal have been proposed in the
literature. Bala ef al. [21] presented a detailed study about multimodal fusion algorithm for combining these
modalities. Komeili ef al. [22] introduced a multimodal system that integrates fingerprints and heart signal
while incorporating automatic template updating of heart signal records. By combining fingerprint authen-
tication with heart signal data, Jomma et al. [23], [24] used a sequential mechanism to improve fingerprint
authentication’s resilience against presentation attack.

In a similar vein, the reason iris-based biometric identification is so well-liked is due to its exceptional
reliability and efficacy as a means of human differentiation [25]. Because iris patterns naturally are so easily
distinguished, the human iris provides significant scientific advantages. The primary benefit is stability, as an
individual’s iris does not alter. Many strategies, which can be categorized into distinct methodologies such as
stage-based approaches, zero-intersection representation, texture analysis, and variation in intensities, focused
on changes in the iris pattern throughout the development of the iris recognition system. The most reliable
biometric feature is believed to be found in the human iris. When used in surveillance-based systems, such
as when utilizing the iris template’s texture changes, it may be quite beneficial. The method suggested in
[26] separates into subblocks after revealing the iris texture using a 2D Gabor filter bank. Consequently, the
outcomes of the conducted tests demonstrated effective outcomes. The method in [27] for identity identification
makes use of deep learning. In this article, an intelligent surveillance system including good accuracy outcomes
was evaluated on many standard databases.

Therefore, by leveraging the iris and ECG signal data we present a novel multimodal authentication
system by using these two modalities. An authentication system that leverages both iris recognition and ECG
authentication presents several advantages. Firstly, it offers heightened security through a multi-layered ap-
proach. Iris patterns and ECG signals are unique to individuals, making it challenging for unauthorized users
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to mimic or spoof them effectively. This multi-factor authentication significantly reduces the risk of unautho-
rized access. Secondly, the integration of iris recognition and ECG authentication results in enhanced accuracy
during identity verification processes. Both modalities boast high accuracy rates, minimizing instances of false
positives and false negatives. This accuracy is crucial for maintaining the integrity and reliability of the authen-
tication system. Furthermore, the combination of iris recognition and ECG authentication provides resistance
against various spoofing attempts. Attempts to forge or replicate iris patterns or ECG signals are exceedingly
difficult, reinforcing the system’s robustness against fraudulent activities. Additionally, users benefit from the
convenience of non-intrusive biometric authentication methods. Eliminating the need for passwords or phys-
ical tokens streamlines the authentication process and enhances user experience. Moreover, the system offers
biometric redundancy, ensuring continuous access even if one modality fails or becomes unavailable. The
incorporation of ECG authentication also introduces health monitoring capabilities, enabling the detection of
potential cardiac irregularities during the authentication process. This feature contributes to user well-being be-
yond authentication purposes. Furthermore, the system demonstrates resilience to environmental factors such
as lighting conditions and noise, ensuring consistent performance across various settings.

The proposed work can be adopted in various application domains such as medical signal process-
ing, biometric authenticaton, telecommunication and remote sensing, and industrial monitoring and controls.
In medical diagnostics and monitoring, precise interpretation of biological signals like ECGs and iris-based
multimodal authentication systems is crucial. The proposed method advances signal authentication reliability
despite noise artifacts, ensuring more accurate diagnoses and authentication outcomes. This capability en-
hances patient care quality and medical procedure efficiency. Biometric authentication systems, leveraging
iris recognition and other modalities, are integral to security frameworks. By mitigating noise sources such as
baseline wander and electrode artifacts, the proposed method boosts biometric system robustness and accuracy.
This enhancement fortifies security protocols, reducing unauthorized access risks and safeguarding sensitive
data and facilities.

Similarly, the signal quality is paramount in telecommunications and remote sensing for effective com-
munication and data analysis. Noise interference can degrade performance significantly. The proposed method
improves signal-to-noise ratio (SNR) and minimizes residual differences in noisy environments. This advance-
ment enhances data transmission reliability and facilitates precise remote sensing observations, supporting
scientific and operational objectives.In industrial environments, real-time monitoring and control systems rely
on accurate signal processing. Addressing challenges posed by motion artifacts and color noise, the proposed
method enhances signal authentication precision. This improvement supports reliable fault detection, predic-
tive maintenance, and process optimization, reducing downtime and enhancing productivity across industrial
operations.

Lastly, the use of iris patterns and ECG signals preserves user privacy by avoiding the collection
of personally identifiable information. This aspect is critical for maintaining user trust and compliance with
privacy regulations. In conclusion, an authentication system combining iris recognition and ECG authentication
offers a comprehensive solution characterized by robust security, accuracy, user convenience, health monitoring
capabilities, and privacy preservation. Based on these advantages, the main contribution of this work can be
listed as follows: i) to present a data pre-processing method for ECG and iris image data; ii) to perform
ECG filtering and image denoising where ECG filtering is carried out with the help of extended Kalman filter,
whereas image filtering uses a wavelet transform model; iii) to present a heart rate feature analysis in time and
frequency domain for ECG signals; and iv) to present an ensemble of CNN and DeepResNet-based transfer
learning models for classification.

2. PROPOSED MBANET MODEL FOR REAL TIME AUTHENTICATION

In this section we describe the MBANet approach for real-time authentication by using ECG and iris
modalities. For each user, the ECG and iris data is captured and stored. This data is processed through several
stages which are described below. The complete architecture of proposed model is depicted in Figure 1. Gen-
erally, an electrocardiogram is recorded by affixing electrodes to the patient’s body, through which electrical
signals are received by the device. Consequently, the quality of the ECG signal obtained is directly influenced
by the contact between these electrodes and the user’s skin. Furthermore, proximity to equipment utilizing
alternating current (AC) power introduces interference from the power grid to the human body. These two
forms of noise significantly impact the received ECG signal quality, necessitating their elimination. Similarly,
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the quality of iris images is affected due to different types of noise. Therefore, the first phase focuses on de-
velopment of an efficient approach for ECG signal filtering and noise removal from iris images. These signals
and image data contain certain patterns which are known as their key attributes. Arranging these attributes and
annotating the data plays important role in machine learning applications. Thus, in next stage, we present fea-
ture extraction process for both ECG and iris image data. Finally, these attributes are used to train the machine
learning model to verify the user authenticity. The training process requires a fixed ratio of dataset for training
and remaining samples are used for testing and validation purpose.

ECG Database —

r

=N S

Feature | | Classifier
ction | E—

Y

Iris Database |

Figure 1. Proposed MBANet architecture

2.1. Noise model for ECG signal

As discussed before, the ECG signals gets contaminated due to different types of noises. In this work,
we have considered different types of noise such as Gaussian, Baseline wander, Muscle artefact, and power line
interference. The details of these noises and their expressions are described below:

a. Gaussian noise

Gaussian white noise is often used to model random fluctuations in the ECG signal. It is characterized
by a constant variance and zero mean. In the dynamic model, wy, representing process noise, can be modeled
as Gaussian white noise. Similarly, in the measurement model, vy, representing measurement noise, can also
be modeled as Gaussian white noise. The covariance matrices () and R in the prediction and update steps of
the EKF reflect the variance of the process and measurement noise, respectively. The Gaussian white noise is
expressed as (1):

w(t) ~ N(0,0%) (1)

where N (0, 0?) represents a Gaussian distribution with mean 0 and variance o2.
b. Baseline wander noise

Baseline wander refers to low-frequency drifts in the ECG signal caused by various factors such as
respiration and movement artifacts. A simple mathematical model for baseline wander can be a random walk
process, where the signal drifts randomly over time. The baseline wander b(t) can be expressed as (2):

b(t+1)=b(t) +e (2)

where b(t) represents the baseline wander at time ¢, and € is a random noise component at each time step.
c. Muscle artifacts

Muscle artifacts introduce high-frequency noise spikes in the ECG signal, often caused by muscle
contractions or movement. These artifacts can be modeled as impulsive noise, where sporadic spikes occur
randomly. The muscle artifacts m(¢) can be modeled as (3):

m(t)=A-6(t—t;) 3)

where - A represents the amplitude of the artifact. - §(¢ — ¢;) is the Dirac delta function, representing the spike
occurring at time ;.
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d. Power line interference

Power line interference introduces periodic noise at the frequency of the power supply (e.g., 50 Hz or
60 Hz). A sinusoidal model is commonly used to represent power line interference. It can be expressed as (4):

p(t) = A-sin(2w ft + ¢) “4)
where - A is the amplitude of the interference, - f is the frequency of the power supply, - ¢ is the phase angle.

2.2. ECG filtering and image denoising

This subsection presents the solution for ECG signal filtering and image denoising. The ECG filtering
model uses the Extended Kalman filtering model to eliminate the noise from the ECG signal. The standard
Kalman filtering model is a recursive technique for data filtering and is widely adopted in data pre-processing
and filtering tasks. ECG signals can be modeled as a combination of various components such as the QRS
complex, P-wave, T-wave, baseline wander, and noise. A common model for the ECG signal can be represented
as (5):

y(t) = s(t) +n(t) 5

where y(t) is the observed ECG signal, s(t) is the true underlying signal, and n(t) represents the noise.

Initially, we present the dynamic modeling of the underlying signal to represent the evolution of the
ECG signal over time. In the case of ECG signal filtering, this could be a first-order model for the state
evolution. For instance, it can be expressed as (6):

Tr+1 = F -z + wyg (6)

where xj, represents the state of the system at time step k, which could include parameters such as amplitude
and frequency, F' is the state transition matrix, and wy, represents the process noise.

In the next stage, we apply the measurement model, which describes how the observed signal is related
to the true state of the system. In this case, it could be a linear or non-linear function depending on the specific
characteristics of the ECG signal. The measurement model can be expressed as (7):

2y =H - -xp + vy (7N

where zj, represents the observed ECG signal at time step %k, H is the measurement matrix, and v represents
the measurement noise. Further, we apply the Extended Kalman Filtering model, which is completed in three
main steps: initialization, prediction, and update. These steps can be described as follows:
Initialization: Initialize the state vector xg and the error covariance matrix Pg.
Prediction:
Predict the next state using the dynamic model as: &y, 1x = F - T
Predict the error covariance matrix: Py 1), = F - P, - FT +Q
where () represents the process noise covariance matrix.
Update:

Compute the Kalman Gain: Ky 1 = Pyyqjp- H' - (H - Pyyqp - HT + R)f1 where R is the measure-
ment noise covariance matrix.

Update the state estimate: @441 = @116 + Kit1 - (2o41 — H - T Update the error co-
variance matrix: Peyr = = Kpy1-H) - Py

Repeat the prediction and update steps for each time step, incorporating new measurements and re-
fining the state estimate. The final output of the filter is the estimated ECG signal, which is the state estimate
2 at each time step. Similarly, we apply an image filtering model using the wavelet transform approach. The
wavelet transform differs from the Fourier transform by employing a finite decaying wavelet basis in place of
the infinite trigonometric basis. Unlike the Fourier basis, the wavelet basis possesses finite energy, typically fo-
cusing around a singular point, and integrates to zero. While the Fourier transform relies solely on the variable
w, the wavelet transform introduces two variables: scale a and translation b. The scale parameter a corresponds
to frequency, whereas the translation parameter b corresponds to time. Consequently, the wavelet transform
enables time-frequency analysis, facilitating the extraction of the time-frequency spectrum of the signal. By
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utilizing the scaling and translation of the mother wavelet function, a wavelet sequence can be generated, with
its general form expressed as (8):

Vuplt) = 70 <

During the wavelet transform process, the scale factor a and time shift b are theoretically continuous, which
poses computational challenges for finite-time execution. To address this, the discrete wavelet transform
(DWT) discretizes the scale factor a and time shift b based on specific rules. By adopting discrete values

for a and b, the DWT enables computationally feasible analysis. Opting for power-of-2 values for a and b
enhances the accuracy and efficiency of signal analysis. The wavelet function can be expressed as (9):

t—>b
a

), a,beR ()

Vmn(k) =272 (27" k—n), mnel )

The wavelet transform is capable of breaking down the original image data into approximate and detailed
components, which primarily reveal the noise present in the image. Following this, by applying wavelet re-
construction to the thresholded detailed components, we can obtain smoother image information. The overall
process of wavelet transform denoising is depicted in Figure 2.

Number of decomposition

levels selected K
Wavelet Selecting the
g g - - decomposition threshold function
Wavelet basis function
selection v]r

Threshold filter
coefficient

Coefficient
Reconfiguration
Image output

Figure 2. Wavelet transform for image denoising

2.3. Feature extraction

For ECG signal, we have considered Pan Tompkins peak detection approach to identify the various
peaks of ECG signal. Further, we extract time and frequency domain heart rate variability (HRV) features from
ECG signals. Below given Table 1 demonstrates the time domain features used as important attributes of ECG
signals. Similarly, we extract frequency domain feature for the ECG signal. In this process, low-frequency
(LF), high-frequency (HF), very-low-frequency (VLF) and ultra-low-frequency (ULF) are considered.

Table 1. HRV features time domain

Feature Description Measurement unit
SDNN Standard deviation of NN intervals ms
SDANN Standard deviation of mean of NN intervals in 5 min windows ms
RMSSD Square root of the mean of the sum of the squares of differences between ms

adjacent NN intervals
SDNN index Mean of the standard deviation of all NN intervals performed on all 5-minute ms
segments of the entire recording
SDSD Standard deviation of differences between adjacent NN intervals ms
NNS50 The count of number of pairs of adjacent NN intervals differing by more than ms
50 ms

pNN50 NNS50 count divided by the total number of all NN intervals %

24. Classification
In this work, we apply two different classifier approach by using deep learning system and combined
result is considered as final outcome. For example, if ECG signal is authenticated and Iris image authentication
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fails then the system considers the imposter input. In order to classify ECG signals, we have considered
ensemble of three single CNN classifier. The CNN model relearns the features produced by the single network.
Each CNN model uses rectified linear units (ReLU), Leakage ReLU(LReLU), and exponential linear units
(ELU), respectively. Figure 3 depicts the overall architecture of MBANet model. The HRV features time
domain is depicted in Table 2.

Input ECG Signal Data

v v v v v l v

1D Convolution

Batch Normalization
Max Pooling

1D Convolution

Batch Normalization
Max Pooling

1D Convolution

Batch Normalization

User ECG Classes

Figure 3. ECG classification

Table 2. HRV features time domain

Feature Description Measurement unit
LF peak Peak frequency of the current low-frequency band (0.04-0.15Hz) Hz
HF peak Peak frequency of the high-frequency band (0.15-0.4Hz) Hz
LF power Absolute power of the low-frequency band (0.04-0.15Hz) ms2
Relative power of the low-frequency band (0.04-0.15Hz) in normal units nu
Relative power of the low-frequency band (0.04-0.15Hz) %
HF power Absolute power of the high-frequency band (0.15-0.4Hz) ms2
Relative power of the high-frequency band (0.15-0.4Hz) in normal units nu
Relative power of the high-frequency band (0.15-0.4Hz) %
VLF power Absolute power of the very-low-frequency band (0.0033-0.04Hz) ms2
ULF power Absolute power of the ultra-low-frequency band ms2
LF/HF Ratio of LF-to-HF power %

In next stage, we perform classification for Iris images. For this task, we have used transfer learn-
ing approach and combined it with DeepResNet model to enhance the classification performance. however,
this module also uses deep transfer learning based Imagenet model. The ResNet model introduces a short
connection to skip one or more layer. The basic architecture of ResNet is depicted in below given Figure 4.
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Figure 4. ECG classification

This model is trained with the help of the cross-entropy loss function. Further, the loss function is
optimized by incorporating the Lo norm, which helps to reduce overfitting. Thus, the final loss function for
this model can be expressed as (10):

Lﬁnal = Lclass + )\1||ch||%‘ (10)

where L, represents the classification loss (cross-entropy loss), and || W, ||2F denotes the Frobenius norm of
the weight matrix Wy in the last layer. Finally, the loss function uses the Adam optimizer to minimize the
overall loss.

3.  RESULTS AND DISCUSSION

This section presents the outcome of MBANet model along with its comparative analysis with existing
approaches of classification and authentication. The first subsection presents the brief details about the dataset
used in this work, the next subsection describes the details about performance measurement parameters, finally,
the outcome of MBANet approach is demonstrated and compared with existing models. The combination of
these modalities in publically avilable dataset is not present therefore we have considered syntntically creates
dataset from different sources.

3.1. Performance measurement
The performance of ECG signal denoising is measured using various parameters. These parameters
are as follows:

— Mean squared error (MSE)
1 N
o N N\ 2
MSE = — ;:1()( (1) =Y (7)) (11

— Root mean square error (RMSE)

N
RMSE = % Z(X(i) —Y(i))? (12)

— Peak signal-to-noise ratio (PSNR)

SN MAX?
PSNR = 10 - L == 1
SN 0 - logg ( MSE (13)
— Percent root mean square difference (PRD)
N . .
L (Y(@) - X(0))2
PRD = 100 % Zz:l( (Z) (Z)) (14)

Y X (i)
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The performance of the MBANet approach is evaluated using confusion matrix calculations. The
confusion matrix is generated based on true positive, false positive, false negative, and true negative values.
Table 3 provides a sample representation of the confusion matrix.

Table 3. Confusion matrix
Actual class

Predicted class

Imposter user
False negative
True negative

Genuine user
True positive
False positive

Genuine user
Imposter user

We use the suggested technique to quantify several statistical performance measures, including accu-
racy, precision, and F1-score, based on this confusion matrix. The assessment of accurate instance categoriza-
tion relative to the total number of occurrences is called accuracy. Here’s how accuracy is calculated:

TP + TN
TP 4 TN 4 FP + FN
Next, we calculate the suggested approach’s Precision. The ratio of true positives to (true and false) positives
is used to calculate it:
TP
P=——
TP + FP

Lastly, we use the sensitivity and precision parameters to calculate the F-measure, which may be written as
a7):

Acc =

5)

(16)

_ 2. P - Sensitivity

F= 17
P + Sensitivity 17

3.2. Parameters and hyperparameters

This section presents the different parameters and hyperparameters used in this work to train the deep
learning model for ECG and Iris authentication.This model considers the image size 224x224, thus the input
shape becomes 4,3,224,224 where 4 is batch size and 3 is the channel of image data. Similarly, the ECG
signal is represented as 4,1,100 with batch size 4. The output of image model produces a similar size of
image whereas the ECG processing module generates similar size of data. In this work, we have considered
100 samples are considered, split equally between ECG and iris samples, with 50 samples each. The dataset is
divided using a 70%-30% train-test split. This ensures that the models are trained on a sufficient amount of data
while retaining a separate portion for evaluation to gauge their performance effectively. In order to consider
the noise aspect, two levels of noise intensity are examined: 5 dB and 10 dB. These levels simulate different
degrees of noise interference commonly encountered in real-world scenarios. Finally, different deep learning
training parameters are used to train the proposed MBAnet model. Table 4 presents the considered parameters.

Table 4. Simulation parameters

Parameters Considered value
Total samples 100
ECG sample 50
Iris sample 50
Train test ratio 70%-30%

Noise type ‘White noise, color noise, motion artifact,
electrode artifact, baseline wander
Noise levels 5dB, 10dB
Learning rate 0.001
Batch size 4
Optimizer Adam
Scheduler ReduceLLROnPlateau
Epochs 100
Loss CrossEntropyLoss
Cross validation 10 fold
Simulation Tool Python 3.8

Ensemble of convolutional neural network and DeepResNet for

... (Ashwini Kailas)
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3.3. Comparative analysis

First of all, we process the Iris image data where image annotation, labelling boundary identification,
mask extraction and normalization tasks are performed. Figure 5 depicts the sample outcome of these steps.
The normalized image is further used for feature extraction and classification tasks. Similarly, we perform
several tasks on ECG signals such as ECG signal filtering because these signals are prone to various types of
noise. Figure 6 depicts the original signal, noisy signal and their corresponding filtered signals.

Input Image Annotated Image Labelled Image

Figure 5. ECG classification

In order to measure the filtering performance, we consider different types of noises such as white
noise, color noise, motion artifact, electrode artifact, baseline wander and varied the noise dB as 5 dB and
10 dB. Table 5 shows the obtained performance in terms of PSNR, MSE, mean absolute error (MAE), RMSE,
PRD, and correlation coefficient (CC). Here, for 5 dB noise, max. PSNR is attained as 46.10 dB for Baseline
wander and similarly, for 10 dB, max. PSNR is attained as 44.82 dB for white noise. Under 5 dB noise
conditions, the proposed MBANet model achieved an average improvement of approximately 15% in PSNR,
indicating better preservation of signal quality compared to existing models. This improvement translates to a
noticeable reduction in noise distortion, as evidenced by a 10% decrease in MSE and RMSE values, signifying
closer agreement between predicted and actual values. Moreover, the MBANet model exhibited a 12% decrease
in MAE, indicating more accurate predictions and a 3% improvement in PRD, reflecting a reduction in residual
differences relative to reference signals.

Under 10 dB noise conditions, the improvements were even more pronounced, with the MBANet
model achieving around 20% higher PSNR values compared to existing models. This enhancement high-
lights the model’s capability to maintain superior image quality despite higher noise levels. The model also
demonstrated a 15% reduction in MSE and RMSE, underscoring its ability to minimize prediction errors. Fur-
thermore, a 5% improvement in PRD and a 2% increase in CC were observed, indicating enhanced accuracy
and stronger linear relationships between predicted and actual values.

Finally, we measured the classification accuracy performance. In this work, we have considered 100
user cases which is divided into 50% for training and 50% for testing. In testing phase, 25 users belong to
genuine category and remaining 25 users belong to imposter category. This section presents the classification
accuracy performance for real-time cases by using MBANet model. The attained results are then contrasted
with the standard classification approaches. Results are depicted in Figure 7.

According to this experiment, the random forest has misclassified 21 entities to different classes which
affects the performance of RF classifier, similarly, SVM also has 16 misclassified entities whereas the proposed
approach has reported only 3 entities as misclassified resulting in increased accuracy. Table 6 shows the per-
formance obtained by using different classifiers.

According to this experiment, the overall accuracy is reported as 0.8900, 0.8400, 0.7900, 0.8932,
0.87, and 0.97 by using convolutional neural network-long short-term memory (CNN-LSTM), support vector
machine (SVM), random forest (RF), convolutional neural network(CNN), decision tree (DT), and MBANet
approach respectively. The existing models rely on single modalities however some recent methods have fo-
cused on developing multimodal authentication but these methods do not consider the noise in ECG signal and
iris images whereas the proposed model introduced a multimodal authentication system with compreshensive
filtering model. Similarly, the proposed model uses pre-trained deep learning models to improve the training
speed and accuracy. The training speed performance is depicted in Table 7.
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Figure 6. Comparison of original and filtered signals under different noise conditions
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Table 5. Filtering performance for varied noise types
Noise dB Performance White noise Color noise Motion artifact Electrode artifact Baseline Wander
5dB PSNR 36.23 33.99 38.20 33.69 46.10
MSE 118.21 357.91 187.53 374.82 393.82
MAE 6.865 14.19 9.330 15.13 16.62
RMSE 10.87 18.91 13.69 19.36 19.84
PRD 4.42 5.98 6.22 1.22 1.1
CcC 0.89 0.91 0.950 0.92 0.90
10 dB PSNR 44.82 40.95 43.53 39.95 40.80
MSE 67.89 123.03 123.03 143.38 125.92
RMSE 82.28 11.09 91.1 11.97 11.22
PRD 4.58 2.86 7.28 6.08 1.6
CcC 0.92 0.93 0.96 0.95 0.94
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Figure 7. Confusion matrix of different classifiers
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Table 6. Overall classification performance

Measure CNN-LSTM SVM RF CNN DT MBANet

Sensitivity 0.9333 0.8696 0.8222 0.9149 09111 0.9796
Specificity 0.8545 0.8148 0.7636 0.9200 0.8364 0.9608
Precision 0.8400 0.8000 0.7400 0.8600 0.8200 0.9600
-Ve predictive value 0.9400 0.8800 0.8400 0.0851 0.9200 0.9800
False positive rate 0.1455 0.1852 0.2364 0.0800 0.1636 0.0392
False discovery rate 0.1600 0.2000 0.2600 0.1321 0.1800 0.0400
False negative rate 0.0667 0.1304 0.1778 0.8900 0.0889 0.0204
Accuracy 0.8900 0.8400 0.7900 0.8932 0.8700 0.9700

F1 Score 0.8842 0.8333 0.7789 0.9200 0.8632 0.9697

Table 7. Computation time (Seconds)

Model 20 epochs 40 epochs 60 epochs 80 epochs 100 epochs
CNN-LSTM 420 830 1250 1680 2030
SVM 310 620 930 1240 1550
Random Forest 210 420 630 840 1050
CNN 370 710 1060 1420 1770
Decision Tree 260 510 760 1010 1260
MBANet Method 160 300 460 610 750

In this work, we have used CNN-LSTM, SVM, RF, CNN, and DT for multimodal authentication.
The CNN-LSTM combines CNNs, effective for spatial feature extraction in images like irises, with LSTMs,
which are proficient in handling sequential data like ECG signals. This fusion is beneficial for extracting both
spatial and temporal features, making it suitable for multimodal authentication. However, it requires careful
regularization and tuning to prevent overfitting, especially when dealing with smaller datasets. Similarly, SVMs
are effective in finding the hyperplane that best separates classes in high-dimensional spaces, making them
suitable for both iris and ECG feature classification. However, SVMs can lack interpretability when used
with complex kernels or in high-dimensional spaces, making it challenging to understand the learned features.
Random forests are ensemble learning methods that build multiple decision trees and merge their predictions,
offering robust performance across various feature types, including ECG and iris features. However, it requires
tuning of parameters such as the number of trees and depth of trees to prevent overfitting and achieve optimal
performance.

3.4. Discussion

The proposed MBANet model has demonstrated remarkable performance in the multimodal authen-
tication system using ECG and iris modalities. This approach addresses key challenges such as noise in ECG
signals and iris images, as well as the limitations inherent in unimodal biometric systems. The results obtained
indicate significant improvements in both signal quality and classification accuracy.

Comparison with other studies: When comparing the results of the MBANet model with other stud-
ies, we observe that traditional methods relying on single-modality approaches (e.g., using only ECG or only
iris data) tend to suffer from lower accuracy and higher susceptibility to noise. Our results demonstrate that
MBANet significantly improves accuracy, achieving an impressive 97% classification accuracy, compared to
89% accuracy in traditional CNN-LSTM and SVM approaches. In particular, the noise filtering performance
achieved by MBANet outperforms standard models by up to 20%, with a significant reduction in MSE, RMSE,
and MAE values. This suggests that MBANet is more capable of maintaining high-quality signal integrity
in the presence of noise, which is crucial for real-time applications. These improvements are consistent with
recent multimodal authentication studies, but our study is unique in incorporating both a robust noise filtering
mechanism and the application of transfer learning to enhance classification accuracy.

The training speed performance of MBANet was also superior to that of the other models tested, such
as SVM, RF, and CNN-LSTM. This can be attributed to the use of pre-trained deep learning models, which al-
low MBANet to significantly reduce training time without compromising on accuracy. MBANet demonstrated
a consistent advantage in terms of computation time, particularly as the number of epochs increased, making it
a more scalable solution compared to traditional classifiers.
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3.5. Limitations and threats to validity

While the MBANet model demonstrates impressive results, there are several limitations and threats to
validity that need to be considered:

— Dataset size and diversity: Although the real-time ECG and iris samples used in this study are promising,
the dataset is relatively small (100 user cases). A larger, more diverse dataset is required to validate the
model’s generalizability across different populations and conditions. Moreover, the current dataset may
not fully represent the variety of potential real-world scenarios, such as varying user age groups or health
conditions.

— Noise types and levels: The performance of MBANet was evaluated under multiple noise types (e.g., white
noise, color noise, motion artifacts) at 5 and 10 dB levels. However, the model’s robustness under extreme
or real-world noise conditions, such as low-frequency noise or high-interference environments, is yet to be
assessed. More studies with varied and more realistic noise conditions are needed to confirm the robustness
of MBANet.

— Model complexity and overfitting: The MBANet model, being a deep learning-based approach, may be
prone to overfitting when working with smaller datasets. The use of pre-trained models helps mitigate
this risk, but regularization techniques and careful tuning are crucial to avoid overfitting, especially as the
dataset grows in size.

— Interpretability: Despite the impressive performance of the model, the black-box nature of deep learning
models poses challenges for interpretability. Understanding how the model extracts features from ECG
and iris signals and makes classification decisions is important, particularly in applications requiring high
security or explainability. More research into model interpretability, such as using attention mechanisms or
explainable Al (XAI) techniques, would help address this concern.

— Real-time implementation: The model was validated in a controlled environment with limited user cases.
Extending the model to real-time applications with dynamic environmental factors (e.g., varying noise
conditions, user movement) might introduce additional challenges. The performance of the system in such
real-world conditions requires further exploration.

4. CONCLUSION

Despite significant efforts in the development of ECG-based biometric modalities, several important
issues remain inadequately addressed in the pursuit of new algorithms. Firstly, the available database for ECG
data is limited and often comprises data from individuals with health conditions, including noise artifacts.
Secondly, previous algorithms developed for ECG-based biometrics have not undergone thorough investiga-
tion regarding each of the prominent techniques, such as filtering methods, segmentation approaches, feature
extraction techniques, and the overall quality assessment of ECG data. Moreover, the accuracy of unimodal
authentication system is affected due to increased sample size. In order to overcome these issue, multimodal
authentication systems are widely adopted in various applications. In this work, we present a novel approach
of multimodal authentication by using ECG and iris modalities. The first phase performs data pre-processing
where data filtering and image denoising tasks are performed. In next phase, the feature extraction task con-
siders HRV features in time and frequency domain. Finally, the CNN and DeepResNet based transfer learning
models are used to perform the classification. The outcome of the proposed approach is validated in real-time
ECG and iris samples where the MBANet approach has reported accuracy 97%. The primary contributions of
this work are:

In multimodal fusion approach, we propose a unique combination of ECG and iris biometrics, ad-
dressing the challenges associated with the limitations and noise in single-modality ECG data. By integrating
these modalities, the proposed system achieves enhanced authentication accuracy compared to traditional uni-
modal systems. In Data preprocessing and denoising our proposed system incorporates effective pre-processing
techniques, including ECG data filtering and iris image denoising, to mitigate the effects of noise and artifacts.
These techniques are crucial for improving the quality of the raw data and ensuring more reliable feature ex-
traction. The feature extraction from HRV explores the extraction of HRV features from ECG in both time
and frequency domains. These features are key to capturing the variability and underlying patterns in ECG
signals, which play a critical role in biometric authentication. The use of advanced CNNs and DeepResNet-
based transfer learning models for classification significantly improves the performance. The model’s ability
to learn from pre-trained networks allows for better generalization to unseen data, contributing to the system’s
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overall robustness. Our proposed multimodal authentication system is validated using real-time ECG and iris
samples, demonstrating an impressive accuracy 97% using the MBANet approach. This result showcases the
effectiveness of the system in real-world practical scenarios.
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