
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 15, No. 3, June 2025, pp. 3149~3161 

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i3.pp3149-3161      3149 

 

Journal homepage: http://ijece.iaescore.com 

Exploring the effectiveness of hybrid artificial bee PyCaret 

classifier in delay tolerant network against intrusions 
 

 

Rajashri Chaudhari, Manoj Deshpande 
Department of Computer Engineering, A. C. Patil College of Engineering, Kharghar, Maharashtra, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 26, 2024 

Revised Dec 20, 2024 

Accepted Jan 16, 2025 

 

 In challenging environments with intermittent connectivity and the absence of 

end-to-end paths, delay tolerant networks (DTNs) require robust security 

measures to safeguard against potential threats. This study addresses these 

issues by implementing an intrusion detection system (IDS) enhanced with 

machine learning techniques. Common threats such as distributed denial-of-

service (DDoS) and flood attacks are tackled using datasets like network 

intrusion detection (NID) and flood attack datasets. Multiple machines 

learning methods, including k-nearest neighbors (K-NN), decision trees (DT), 

logistic regression (LR), and others, are utilized to improve detection 

accuracy. A PyCaret-based approach is developed to increase efficiency while 

preserving attack detection accuracy in DTNs. Comparative research 

demonstrates that PyCaret outperforms Scikit-learn models, and the artificial 

bee PyCaret classifier (ABPC) optimizes hyperparameters to improve model 

performance. NS2 simulation shows the system's ability to thwart attacks, 

offering useful insights into DTN security and improving communication 

reliability in various situations. 

Keywords: 

Artificial bee colony 

Delay tolerant network 

Distributed denial-of-service 

attack 

Flooding attack 

Optimization 

Security 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Rajashri Chaudhari 

Department of Computer Engineering, A.C. Patil College of Engineering 

Kharghar, Maharashtra, India 

Email: c.rajashri2021@gmail.com 

 

 

1. INTRODUCTION  

Delay tolerant networking (DTN) contrasts with conventional network architectures by 

accommodating intermittent connectivity, a characteristic often absent in modern architectures [1]. DTN is 

designed to operate effectively under challenging or sporadic network conditions, categorized by higher 

latency, bandwidth constraints, increased error prospect, path instability, or variable node longevity [2]. 

Initially proposed as an abstraction of message switching, DTN architecture revolves around the concept of 

bundles, wherein messages are aggregated and transmitted. These bundles are managed by bundle routers or 

DTN gateways, which play a pivotal role in handling the instability and frequent disconnections inherent in 

DTN environments. DTNs address the challenges posed by intermittent connections, long or variable delays, 

asymmetric data rates, and high error rates through the utilization of store-and-carry message switching. DTN 

follows the store and forward technique in DTN [3]. Figure 1 shows characteristics of delay tolerant network. 

DTNs transfer messages between nodes without requiring constant connectivity, making them suited for 

demanding environments such as emergency services and disaster management [4]. However, their 

decentralized structure raises security concerns, such as packet dropping and flooding assaults. Improving DTN 

security is critical for providing reliable communication in such settings [5]. 

DTNs, despite their decentralized form, pose security risks from compromised nodes. Attacks such as 

packet dropping, flooding, and others damage routing systems, compromising message integrity and 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3149-3161 

3150 

confidentiality. Addressing these vulnerabilities before deployment is critical, as it necessitates adequate 

security methods to construct a reliable infrastructure. Challenges such as inconsistent connectivity, limited 

bandwidth, and node mobility compound security concerns, necessitating novel solutions. An intrusion 

detection system (IDS) augmented with machine learning is presented to identify flood and distributed denial-

of-service (DDoS) attacks [6]. Various routing algorithms including the store-and-forward technique improve 

resilience in uncertain circumstances. Implementations such as interplanetary overlay network-delay-tolerant 

networking (ION-DTN) highlight research efforts to address security in DTNs, emphasizing the necessity of 

integrative techniques and machine learning for dependable communication [2]. 

 

 

 
 

Figure 1. Characteristics of delay tolerant network [2] 

 

 

The objectives include creating a system to distinguish between legitimate and malicious packets in 

network traffic, devising an algorithm to thwart DOS attacks in DTN, suggesting a technique for enhancing 

network performance, and assessing the model's efficacy using the NS2 simulator [7]. Numerous studies in 

DTNs have explored using machine learning (ML) techniques to improve network security, with a focus on 

intrusion detection [8]. Initially, network intrusion detection systems (NIDS) relied on known attack signatures, 

limiting their ability to detect new or modified attacks and leaving networks vulnerable [9]. ML-based IDS 

methods have since emerged, analyzing overall behavioral patterns rather than specific attack signatures, and 

offering increased robustness in intrusion detection [10]. These ML approaches have been validated in various 

studies, demonstrating their potential to enhance security and resilience within DTNs. DTN studies have looked 

at a variety of security concerns, such as flood attacks, Black Hole attacks, fake packet attacks, packet drops, 

colluding attacks, faulty nodes, and DDOS attacks [11], [12]. Chatterjee et al. [1] explored the detection of 

various routing attacks in DTNs, revealing hurdles to enhancing performance while maintaining reliability and 

security. Their research focuses on the impact of these assaults on network performance, emphasizing nodes' 

vulnerability to malicious actions. Flood attacks, for example, include hostile nodes flooding the network with 

packets, reducing DTN resources and resulting in lower packet delivery ratios (PDR) and higher packet loss 

ratios (PLR) [13]. 

As demonstrated by numerous studies across various network applications [14], [15], they address 

security concerns such as congestion traffic management and intrusion detection, enabling proactive 

approaches to classify and mitigate security threats [16], [17]. ML integration in network security extends to 

meeting the evolving security needs of modern network environments, playing a vital role in fortifying network 

defenses and ensuring robust security measures against potential threats [18], [19]. Recent research has looked 

into machine learning methods to improve network security [20]. One study used a machine learning-based 

strategy to classify hypertext transfer protocol (HTTP) traffic as benign or dangerous to detect malware, 

obtaining an amazing 90% accuracy with the random forest (RF) algorithm [21]. Another study proposed the 

buffer management for RPRTD (BMRTD) algorithm to optimize buffer management in DTNs, improving 

message delivery efficiency by employing strategies such as drop oldest (DOA), drop least recently received 

(DLR), and drop largest (DLA) to effectively manage message queues. Studies have explored various methods 

to enhance attack detection in network security [22]. One study focuses on detecting behavioral botnet attacks, 

employing a smart system that combines the random forest classifier with principal component analysis (PCA) 

to achieve robust botnet detection [23]. Another study introduces Shield recurrent neural network (RNN), a 

framework designed to detect DDoS attacks within IoT networks, incorporating 12 different classifiers to 

enhance accuracy and reliability. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Exploring the effectiveness of hybrid artificial bee PyCaret classifier in delay … (Rajashri Chaudhari) 

3151 

The study explores machine learning-driven self-healing mechanisms in cyber-physical systems, 

highlighting their potential to improve security and prevent system failures [24]. It identifies three critical 

components for self-healing: anomaly detection, fault warning, and fault auto-remediation, emphasizing the 

importance of integrating these elements for practical use. The study introduces the efficacy artificial bee 

colony optimization-based Gaussian AOMDV (EABCO-GAOMDV) routing protocol, which addresses 

routing problems in stochastic vehicular ad hoc networks (SVANETs) [25]. The protocol attempts to improve 

route discovery and rerouting efficiency by integrating artificial bee colony optimization (EABCO) and 

Gaussian AOMDV algorithms. Extensive simulations assess EABCO-GAOMDV's performance, revealing 

better route stability, packet delivery ratio, and end-to-end delay. The protocol is adaptable to unanticipated 

environments, improving traffic rerouting efficiency and network resilience.  

Cloud computing and the internet of things (IoT) are driving future technologies, notably smart city 

development [26]. Cloud services successfully handle remote access, resulting in increased usage by 

organizations for resource optimization. Cloud service selection involves optimization based on customer 

objectives and service quality standards. Combining genetic algorithms (GAs) with ant colony optimization 

(ACO) improves cloud computing performance. The ACO+GA approach outperforms existing optimization 

methods, including energy- and reliability-aware multiobjective optimization and hybrid cuckoo particle 

swarm with artificial bee colony optimization. 

 

 

2. METHOD  

The paper describes a machine learning model for detecting various assaults in DTNs. It compares the 

performance of several ML algorithms to improve attack detection, training the model on a variety of datasets, 

including DDoS and flood attacks. Initially, standard ML models built with Scikit-learn use methods such as 

random forest (RF), XGBoost, CatBoost, logistic regression (LR), decision tree (DT), extra trees, and light 

GBM. Their performance is evaluated using many factors. The model is then enhanced using PyCaret to boost 

performance and reduce execution time. Accuracy, F1-Score, AUC, precision, recall, Matthews correlation 

coefficient (MCC), and Kappa are some of the evaluation metrics, as is training time with different classifiers. 

By comparing Scikit-learn and PyCaret models, the study seeks to discover the best-performing model for 

intrusion detection in DTNs. Figure 2 displays the ML model architecture, which includes data collection, 

preprocessing, and model training on specific attributes. The performance of the ML algorithm in classifying 

attacks is measured using the accuracy, precision, and recall metrics. 

 

 

 
 

Figure 2. Training and deployment of ML model using scikit-learn 

 

 

2.1.  Data collection 

The DTN-specific ML-based attack detection model makes use of flood attack datasets obtained from 

publicly available DDoS and flood attack records. These datasets are essential for training and testing the model 

since they offer information on network traffic patterns, communication habits, and flood attack indicators. 

With a dataset of 25,192 samples, the model is effectively trained. To enable strict evaluation, the dataset is 

divided into two subsets: 17,634 for training and 7,558 for testing. This phase evaluates the model's 

performance on unseen data, providing insights into its generalization capabilities. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3149-3161 

3152 

2.2.  Data pre-processing 

After collecting and partitioning the dataset, pre-processing procedures are used to improve data 

quality. Data cleaning detects and eliminates duplicate records, preserving integrity and decreasing 

redundancy. Missing data is handled by removal or attribution, and outliers are managed to avoid undue 

influence on results. PCA decreases dimensionality by preserving useful features and removing irrelevant ones, 

so overcoming the curse of complexity and improving generalization. Normalization and scaling normalize 

feature values, preventing larger features from dominating the learning process while also enhancing algorithm 

stability during training. This technique improves ML model efficiency, stability, and accuracy. Model 

initialization configures algorithms with specific hyperparameters that are fine-tuned for maximum 

performance. The model is iteratively trained and tested until it achieves sufficient efficiency, ensuring that 

attacks are detected and reduced in DTN. 

 

2.3.  Training 

During the training phase, each data point from the given dataset is pre-processed and features are 

extracted. This stage involves training features for each data point in the dataset and assigning classes to the 

trained features. This algorithm has two classes: normal and DDoS or flood attack. 

 

2.4.  Testing 

During testing, the test samples are passed into a machine learning classifier, which uses training 

features to classify the test instance into the provided class j. If the classifier accurately classifies a particular 

class, the process will yield a superior outcome. If the machine learning classifier's decision isn't final, the 

choice is decided using a cost minimization procedure. 

 

2.5.  Dataset 

The dataset is an important part of the ML model that should include a variety of intrusion data. here 

used the NID [19] dataset available on Kaggle source to train and test models. The dataset details are shown in 

Table 1. The NID dataset counterfeit in a military network environment includes extensive diversity of data 

including intrusion samples. The US Air Force LAN was blasted with multiple attacks using raw TCP/IP dump 

data. For each TCP/IP connection, data flows from a source IP address to a target IP address for some time 

duration. The dataset contains normal and attack data with 41 features including 3 qualitative and 38 

quantitative features. 

 

 

Table 1. Dataset details 
Dataset NID 

Size 5.29 MB 

Features extracted 41 
Features selected 39 

Class − Normal 

− Anomaly 

Test dataset 2.42 MB (40%) 

Train dataset 2.87 MB (60%) 

 

 

2.6.  ML model and classification 

The machine learning-based attack detection model is built on Python, which includes libraries such 

as Scikit-learn and PyCaret. Scikit-learn handles carefully data before treatment and method selection, allowing 

for detailed comparisons of machine learning algorithms. PyCaret improves productivity by automating 

operations like model training, hyperparameter tuning, and performance evaluation. While both libraries serve 

machine learning goals, Scikit-learn provides greater flexibility and control over individual components of the 

ML pipeline, whereas PyCaret accelerates workflows by automating common activities like as data 

preprocessing and model selection. The proposed model's flow utilizing PyCaret is depicted in the Figure 3. 

The process of building a PyCaret model for DTN attack detection on a flood attack dataset involves several 

key steps as mentioned below. The process begins with setting up the PyCaret environment and a simple 

interface for initializing the environment and specifying the target variable, streamlining the setup process. 

− Data preprocessing: PyCaret automates data preprocessing tasks like handling missing values and feature 

scaling for flood attack dataset in DTNs. 

− Compare models: Multiple machine learning models, like LightGBM, XGBoost, CatBoost, and ExtraTrees, 

are cross-validated to detect DTN attacks with default hyperparameters. Performance measures such as 

precision, accuracy, recall, F1-Score, AUC, Kappa, MCC, and evaluation time are calculated for each model. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Exploring the effectiveness of hybrid artificial bee PyCaret classifier in delay … (Rajashri Chaudhari) 

3153 

− Best performing model: A top model is chosen after comparing results, trained on full dataset to test 

capabilities. 

− Artificial bee PyCaret classifier (ABPC): Analyze solution space for optimization issues, find 

hyperparameters, optimize PyCaret model, protects DTNs with IDS. 

− Optimal solution and Exploitation search: ABPC sees food sources as problem-solving with nectar 

indicating value. 

− Results: The results from the validation phase are analyzed to determine the best-performing model based 

on predefined evaluation metrics. The best-performing model is selected for further refinement and 

deployment. 

− Prediction: The best-performing model is kept for later usage, making it easily available for predictions on 

new data. This persistence enables rapid detection of flood attacks in real-time DTN scenarios, allowing 

for rapid reaction and mitigation. 

 

 

 
 

Figure 3. Process of training PyCaret model 

 

 

Overall, the PyCaret model-building process streamlines the workflow for DTN attack detection, 

automating many tedious tasks and providing a user-friendly interface for model training, evaluation, and 

deployment. The ABCO method is a nature-inspired optimization strategy based on honeybee behavior. It is 

used in swarm intelligence algorithms to find the best solutions to complex problems. ABCO is important in 

machine learning models for setting hyperparameters and improving security in DTNs through IDSs. IDSs 

monitor network traffic for suspicious activity in DTNs, which face connectivity challenges. ABCO adjusts 

IDS hyperparameters to enhance detection accuracy and reduce false positives, improving DTNs' security. The 

algorithm uses food sources as solutions, with nectar content representing the desired outcome. Employed and 

observer bees focus on exploitation while scout bees explore new solutions. The algorithm begins with a 

population of food sources. 

The goal of the employed bee mechanism is to exploit the existing food source. To actualize this idea, 

they create a new solution near the current food supply. For each solution i, one element j (real number) is 

randomly chosen and coupled with the equivalent element from another randomly selected food source k. Take 

note that they have 𝑘 ≠ 𝑖. This is accomplished using the following formula. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3149-3161 

3154 

𝜈𝑖𝑗=𝑥𝑖𝑗
+ 𝜃(𝑥𝑖𝑗−𝑥𝑘𝑗)    (1) 

 

where 𝑥𝑖𝑗  is jth real number of food source i, 𝜃is a randomly generated number between [-1,1], and 𝜈𝑖𝑗  is the 

new real number of jth element of food source i. The hired bee accepts a new food source if its nectar amount 

exceeds that of the present one. Otherwise, it continues with the previous one. After looking for food sources, 

hired bees to share their discoveries with observer bees. Onlooker bees then assess the nectar information from 

all employed bees before selecting a food source based on its nectar content. Probability functions are used to 

calculate the possibility of each food source being selected by onlooker bees. 

 

𝒫𝑖 =
𝑓𝑖𝑡𝑖

∑𝑛=1
𝑆𝑁  𝑓𝑖𝑡𝑛

 (2) 

 

where 𝑓𝑖𝑡𝑖 is the nectar amount (objective value) of the food source (solution i). Using each onlooker select a 

new nearby food source and its nectar amount. If a new food source provides more nectar than the previous 

one, the bee will store the new position and discard the old one. When employed and observer bees run out of 

food, they become scout beesScout bees replace depleted food sources randomly. The procedure entails 

preserving a specific number of recent food sources produced by employed and onlooker bees. When replacing 

an exhausted food source, one of the conserved food sources is chosen using a roulette wheel based on their 

probability. 

 
(𝑓𝑘−𝑓𝑐𝑠)−1

∑𝑖=1
𝑏𝑎𝑐𝑘(𝑓𝑖−𝑓𝑐𝑠𝑖

)
−1    (3) 

 

The amount of nectar in the saved and current food sources is represented by 𝑓𝑖 and 𝑓𝑐𝑠, respectively. The 

roulette wheel divides the interval [0, 1] into back subintervals. 

 

[0, (𝑓1 − 𝑓𝑐𝑠)−1], … , [∑ (𝑓𝑖 − 𝑓𝑐𝑠𝑖
)

−1𝑘−1
𝑖=1 , ∑ (𝑓𝑖 − 𝑓𝑐𝑠𝑖

)
−1𝑘

𝑖=1  ] , … , [∑ (𝑓𝑖 − 𝑓𝑐𝑠𝑖
)

−1
, 1𝑏𝑎𝑐𝑘−1

𝑖=1 ] (4) 

 

The subintervals correspond to saved food sources, with the i-th subinterval denoting the most recent 

saved food source. The next step is to generate a random real number between 0 and 1. The food source is then 

chosen depending on the subinterval to which this number belongs. 

 

Pseudo code for PyCaret model: 

a. Load the flood attack datasets, which contain records of DDoS and flood attacks. 

b. Preprocess the data to remove missing values, scale features, and encode categorical variables, resulting in 

well-formatted datasets appropriate for model training. 

c. To analyze the model, many machine learning techniques are used, including LightGBM, XGBoost, 

CatBoost, ExtraTrees, and others. 

d. Prepare the data for training validation. 

e. Use metrics like accuracy, AUC, recall, precision, F1-Score, kappa, and MCC to evaluate the model's 

performance. 

f. The validation results are examined to determine the best-performing model based on established 

evaluation criteria. 

g. Optimizing results using the ABC algorithm. 

h. Compare the results to existing approaches and demonstrate the effectiveness of the new approach. 

i. Use the trained model to make predictions. 

 

Algorithm 1. For hybrid artificial bee PyCaret classifier 
1. import numpy as np 

2. def measom(variables_values=[0, 0]): 

3. x1, x2 = variables_values 

4. func_value = -np.cos(x1) * np.cos(x2) * np.exp(-((x1 - np.pi) * 2 + (x2 - np.pi) * 2)) 

5. return func_value 

6. def artificial_bee_colony_optimization(food_sources=20, iterations=100, 

min_values=[5,5], max_values=[5, 5], employed_bees=5, outlookers_bees=5, 

limit=10,target_function=measom, verbose=True, start_init=None, target_value=None): 

7. sources  = initial_variables(food_sources, min_values, max_values, target_function, 

start_init) 

8. fitness  = fitness_function(sources, fitness_calc) 

9. best_bee = sources[np.argmin(sources[:, -1]), :] 

10. return best_bee 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Exploring the effectiveness of hybrid artificial bee PyCaret classifier in delay … (Rajashri Chaudhari) 

3155 

11. def initial_variables(size, min_values, max_values, target_function, start_init): 
a. dim = len(min_values) 

12. if start_init is not None: 
a. population = start_init 

13. else: 
14. population = np.random.uniform(min_values, max_values, (size, dim)) 
15. if hasattr(target_function, 'vectorized'): 

a. fitness_values = target_function(population) 

16. else: 
17. fitness_values = np.apply_along_axis(target_function, 1, population) 
18. population = np.hstack((population, fitness_values[:, np.newaxis])) 
19. return population 
20. def fitness_function(sources, fitness_calc): 
21. return sources[:, -1] 
22. def fitness_calc(): 
23. pass 
24. custom_grid = { 

a. 'max_depth': [None, 10, 20, 30, 40, 50], 

b. 'min_samples_split': [2, 5, 10], 

c. 'min_samples_leaf': [1, 2, 4], 

d. } 

25. best_params = None 
26. best_min_value = float('inf') 
27. for max_depth in custom_grid['max_depth']: 
28.    for min_samples_split in custom_grid['min_samples_split']: 
29.        for min_samples_leaf in custom_grid['min_samples_leaf']: 

i. print(f"Running ABCO with max_depth: {max_depth}, min_samples_split: 

{min_samples_split}, min_samples_leaf: {min_samples_leaf}") 

ii. abco_result = artificial_bee_colony_optimization() 

iii. variables = abco_result[:-1]   

iv. minimum = abco_result[-1]      

v. if minimum < best_min_value: 

vi. best_min_value = minimum 

vii. best_params = {'max_depth': max_depth, 'min_samples_split': 

min_samples_split, 'min_samples_leaf': min_samples_leaf} 

viii. print("Results:") 

ix. print(f"Optimal Variables: {variables}") 

x. print(f"Minimum Value: {minimum}") 

xi. print("="*50) 

30. print("Best Parameters:") 
31. print(best_params) 
print(f"Corresponding Minimum Value: {best_min_value}") 

 

2.7.  Simulation and experimental setup 

NS2, or network simulator 2, is an open-source tool that is useful for investigating DTNs and their 

vulnerability to assaults. It simulates genuine DTN situations, including incompatible connectivity, delays, and 

disconnections. NS2 enables the injection of malicious attacks such as floods and DDoS attacks to evaluate 

security mechanisms. Simulation parameters and their values used during experimental setup is shown in  

Table 2. To simulate an IDS within NS2, the simulation parameters, including network topology and node 

characteristics, are defined. A routing protocol is established for a network of 20 nodes, as depicted in the 

figure showcasing nodes within the NS2 environment. Each node is assigned unique attributes, such as colors 

and shapes, specifying their locations and connectivity parameters. Simulation of a network in NS2 

environment is shown in Figure 4. 

 

 

Table 2. Experimental setup simulation parameters and their values 
Parameter Values 

Transmission range 200 m 

Number of nodes 20 

Routing protocol Maxprop, Epidemic, ProPhet 
Simulation area 1000 m by 1000 m 

Travel speed 2 ms 

Antenna type Omni Antenna 
Propagation Two Ray Ground (Radio) 

MAC IEEE 802.11 

Traffic type CBR Constant Bit Rate-UDP traffic 
Interface Queue Priority Queue 

Queue length 50 (max packets in queue) 
Network interface WirelessPhy 

Message generation rate 100 Kbps 

Packet size 1000 bytes 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3149-3161 

3156 

 
 

Figure 4. Simulation of nodes in NS2 

 

 

3. RESULTS AND DISCUSSION  

The proposed approach tests different models to identify the most effective technique for attack 

detection in DTNs. Scikit-learn and PyCaret models are trained and compared for performance. This analysis 

is crucial for developing an efficient attack detection system in the DTN environment. The model is evaluated 

using the NS2 simulator in a simulated environment. 

 

3.1. Performance comparison while using Scikit-learn models 

The classically trained model is tested with RF, XGBoost, CatBoost, LR, DT, Extra Trees, and Light 

GBM classifiers. LightGBM leads the competition in terms of accuracy, AUC, recall, and F1-Score. DT 

distinguishes out for its short time investment. CatBoost performs similarly to other high-performance models, 

although it takes significantly longer to execute. LR ranks last in total model performance while taking less 

time. RF, XGBoost, DT, and extra trees all perform well, albeit their execution times vary. RF has a longer 

execution time than LR, Light GBM, and extra trees. Figure 5 shows comparison of ML algorithm using Scikit-

learn. 

 

 

 
 

Figure 5. Model comparison in ML model using Scikit-learn 

 

 

3.2. Performance comparison while using PyCaret 

After applying the PyCaret model to the flood attack dataset, the model is tested with a variety of 

methods, including GB, k-nearest neighbors (K-NN), AdaBoost, support vector machines (SVM), linear 

0

0.5

1

1.5

2

2.5

3

3.5

4

Random Forest XGBoost CatBoost Logistic
Regression

Decision Tree Extra Trees Light GBM

Sc
o

re
s

Model

Model comparison

Accuracy AUC Recall F1 score Time Taken (s)



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Exploring the effectiveness of hybrid artificial bee PyCaret classifier in delay … (Rajashri Chaudhari) 

3157 

discriminant analysis (LDA), Ridge, quadratic discriminant analysis (QDA), Naïve Bayes (NB), and Dummy 

classifiers. LightGBM performs well across multiple metrics, with good Accuracy (0.9974), AUC (0.9999), 

Recall (0.9974), Precision (0.9975), F1-Score (0.9974), and Kappa (0.9949). Additionally, XGBoost, extra 

trees, RF, and DT work similarly to LightGBM. However, CatBoost has the longest execution time as shown 

in Table 3.  

 

 

Table 3. Comparing performance of ML models in PyCaret 
Model Accuracy AUC Recall Precision F1-Score Kappa MCC TT (S) 

LightGBM 0.9974 0.9999 0.9974 0.9975 0.9974 0.9949 0.9949 0.4250 

XGBoost 0.9972 0.9999 0.9972 0.9972 0.9972 0.9943 0.9943 0.1150 

CatBoost 0.9969 0.9998 0.9969 0.9969 0.9969 0.9938 0.9939 1.7430 
ExtraTrees 0.9968 0.9999 0.9968 0.9968 0.9968 0.9935 0.9935 0.1640 

RF 0.9960 0.9999 0.9960 0.9960 0.9960 0.9920 0.9920 0.1870 

DT 0.9947 0.9946 0.9947 0.9947 0.9947 0.9893 0.9893 0.0700 
GB 0.9921 0.9996 0.9921 0.9921 0.9921 0.9842 0.9842 0.5590 

K-NN 0.9916 0.9975 0.9916 0.9916 0.9916 0.9831 0.9832 0.1300 

AdaBoost 0.9830 0.9987 0.9830 0.9831 0.9830 0.9659 0.9660 0.2000 
SVM 0.9715 0.0000 0.9715 0.9717 0.9715 0.9426 0.9429 0.0620 

LR 0.9704 0.9947 0.9704 0.9706 0.9704 0.9404 0.9407 0.1020 

LDA 0.9639 0.9936 0.9639 0.9641 0.9638 0.9273 0.9276 0.0740 
Ridge 0.9634 0.0000 0.9634 0.9637 0.9634 0.9264 0.9267 0.0570 

QDA 0.9531 0.9702 0.9531 0.9549 0.9530 0.9055 0.9075 0.0670 

NB 0.9248 0.9697 0.9248 0.9252 0.9248 0.8490 0.8494 0.0640 
Dummy 0.5339 0.5000 0.5339 0.2850 0.3716 0.0000 0.0000 0.0730 

 

 

LightGBM outperforms XGBoost slightly with superior performance in accuracy, AUC, recall, 

precision, F1, Kappa, and MCC. DT has faster execution but worse overall performance compared to 

LightGBM, XGBoost, CatBoost, Extra Trees, and RF models. Ridge, SVM, LR, LDA, QDA, NB, and Dummy 

classifier perform poorly with shorter execution time. Figure 6 depicts comparison of ML algorithms using 

PyCaret. 

 

 

 
 

Figure 6. Model Comparison in ML model using PyCaret 

 

 

3.3. Artificial bee colony optimizer 

These scores are the outcome of a 10-fold cross-validation. Table 4 shows performance metrics for 

each of the ten folds. Particularly, fold 0 has the best performance, with higher metrics across all categories, 

including accuracy (0.9977), AUC (0.9977), recall (0.9977), precision (0.9977), F1-Score (0.9977), Kappa 

coefficient (0.9954), and MCC (0.9954). As a result, the other folds perform significantly worse than fold 0. 

Fold 1 has the lowest accuracy compared to the other folds. The average performance of all folds is accuracy 

(0.9957), AUC (0.9957), recall (0.9957), precision (0.9957), F1 (0.9957), kappa (0.9913), and MCC (0.9913). 

The standard deviation of all folds is accuracy, AUC, recall, precision, F1 is 0.0019 and Kappa, MCC is 0.0039. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
co

re
s

Model

PyCaret Model Comparison

Accuracy AUC Recall Precision F1-score Kappa MCC TT (S)



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3149-3161 

3158 

Table 4. Fold cross-validation score 
 Accuracy AUC Recall Precision F1-Score Kappa MCC 

Fold 

0 0.9977 0.9977 0.9977 0.9977 0.9977 0.9954 0.9954 

1 0.9909 0.9911 0.9909 0.9910 0.9909 0.9818 0.9818 

2 0.9960 0.9961 0.9960 0.9960 0.9960 0.9920 0.9920 
3 0.9943 0.9942 0.9943 0.9943 0.9943 0.9886 0.9886 

4 0.9960 0.9962 0.9960 0.9960 0.9960 0.9920 0.9920 

5 0.9943 0.9942 0.9943 0.9943 0.9943 0.9886 0.9886 
6 0.9972 0.9971 0.9972 0.9972 0.9972 0.9943 0.9943 

7 0.9972 0.9970 0.9972 0.9972 0.9972 0.9943 0.9943 

8 0.9960 0.9960 0.9960 0.9960 0.9960 0.9920 0.9920 
9 0.9972 0.9972 0.9972 0.9972 0.9972 0,9943 0.9943 

Mean 0.9957 0.9957 0.9957 0.9957 0.9957 0.9913 0.9913 

Std 0.0019 0.0019 0.0019 0.0019 0.0019 0.0039 0.0039 

 

 

3.4 Comparing the mean value before and after optimization 

Figure 7 shows the comparison of mean values before and after optimization on various performance 

metrics. A comparison is done between the model's performance before and after optimization. Figure 7 depicts 

how the accuracy of the proposed model improves after optimization. Additionally, multiple performance 

indicators such as AUC, recall, precision, F1-Score, Kappa, and Matthews correlation coefficient (MCC) 

shows improvement after adjusting values. Before optimization, the model's TT(S) was 0.2558, indicating the 

computational effort involved. However, after optimization, the proposed approach improves performance 

across various criteria, indicating a more efficient and effective model. 

 

 

 
 

Figure 7. Comparing the mean value before and after optimization 

 

 

3.5.  Performance comparison of the proposed model with existing models 

Table 5 shows comparison of artificial bee PyCaret Classifier model performance with other existing 

models. The suggested artificial bee PyCaret classifier outperforms various current models, including PyCaret 

using the random forest (RF) algorithm, PyCaret using extreme gradient boosting, the NP technique, and 

AutoML using the PyCaret model. This demonstrates the efficacy of the technique in enhancing prediction 

performance. The artificial Bee PyCaret classifier takes advantage of the capabilities of both PyCaret and ABC 

algorithms, resulting in more accurate and robust model predictions. Figure 8 depicts comparison of proposed 

model and existing algorithms as above. 

 

 

Table 5. Comparison of the proposed model and other existing algorithms 
Reference Model Algorithm Accuracy TT (S) 

The proposed model Hybrid ABPC LightGBM 0.9957 0.4250 

PyCaret RF 0.9960 0.1870 

Bajpai and Sharma [27] PyCaret ExGBoost 0.8371 - 
PyCaret RF 0.8355 - 

Baroumand et al. [28] NP approach RF 0.757 - 

Hassan and Alshareef [29] AutoML using PyCaret RF 0.9916 - 

0

0.2

0.4

0.6

0.8

1

1.2

Accuracy AUC Recall Precision F1-score Kappa MCC TT(S)

V
al

u
es

Performance Metrics

Comparing the mean value before and after optimization

Before optimization After Optimization



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Exploring the effectiveness of hybrid artificial bee PyCaret classifier in delay … (Rajashri Chaudhari) 

3159 

 
 

Figure 8. Comparison of proposed model and existing algorithms 

 

 

3.6. Simulation results  

Data transmission is initiated by a subset of nodes known as packet senders. The simulator monitors 

packet receipt at nodes and identifies any that display malicious features. Simulation results provide 

information about packet transmission dynamics and the detection of hazardous packets in the network.  

Figure 9 depicts simulation results for sender node 5 to receiver node 9. During the DTN simulation, attacks 

are launched on certain nodes, resulting in the creation of malicious traffic or unusual behavior. The IDS 

examines network traffic, comparing packets and nodes to predetermined criteria to detect malicious behavior. 

As the simulation runs, packets move over the network, and the results are utilized to evaluate metrics such as 

packet loss and received packet correctness. This aids in determining the IDSs efficacy in minimizing attacks 

within the DTN. 

 

 

 
 

Figure 9. Simulation results for 5 to 9 nodes 

 

 

4. CONCLUSION  

DTNs are at risk from increasing attacks such as DDoS, flooding, and attacks due to their inconsistent 

connectivity. ML-based IDSs use algorithms to detect malicious activity within DTNs, which improves 

network security against developing threats. The study demonstrates the effectiveness of ML approaches, 

especially the Scikit-learn and PyCaret models, in DTNs. LightGBM outperforms both models on criteria such 

as accuracy, AUC, recall, and F1-Score. While DT provides the best time efficiency, its overall performance 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3149-3161 

3160 

is lower. PyCaret simplifies data preprocessing, and LightGBM consistently outperforms across metrics while 

drastically lowering processing time. CatBoost outperforms other algorithms despite its greater execution time. 

PyCaret is recommended by the study for its highly efficient attack detection capabilities. ABCO improves 

feature selection by replicating honeybee foraging behavior, which effectively explores the feature space. 

 

 

FUNDING INFORMATION  

Authors state no funding involved. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT  

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration.  

 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Rajashri Chaudhari ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

Manoj Deshpande  ✓  ✓  ✓    ✓ ✓ ✓ ✓  

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT  

Authors state no conflict of interest. 

 

 

DATA AVAILABILITY  

The authors confirm that the data supporting the findings of this study are available within the article 

[and/or its supplementary materials]. 

 

 

REFERENCES 
[1] S. Chatterjee, M. Nandan, A. Ghosh, and S. Banik, “DTNMA: Identifying routing attacks in delay-tolerant network,” in Cyber 

Intelligence and Information Retrieval, 2022, pp. 3–15. doi: 10.1007/978-981-16-4284-5_1. 

[2] S. P., S. U., C. Iwendi, S. Mohan, and G. Srivastava, “Field-programmable gate arrays in a low power vision system,” Computers 
& Electrical Engineering, vol. 90, Mar. 2021, doi: 10.1016/j.compeleceng.2021.106996. 

[3] A. V. Vasilakos, Y. Zhang, and T. Spyropoulos, Eds., Delay tolerant networks. CRC Press, 2016. doi: 10.1201/b11309. 

[4] D. I. Elewaily, H. A. Ali, A. I. Saleh, and M. M. Abdelsalam, “Delay/disruption-tolerant networking-based the integrated deep-
space relay network: state-of-the-art,” Ad Hoc Networks, vol. 152, Jan. 2024, doi: 10.1016/j.adhoc.2023.103307. 

[5] P. Tiwari, “Secure group communication in delay tolerant mobile ad-hoc network,” International Journal of Advanced Computer 

Technology, vol. 12, no. 5, pp. 1–10, 2023. 
[6] S. Shafi, S. Mounika, and S. Velliangiri, “Machine learning and trust based AODV routing protocol to mitigate flooding and 

blackhole attacks in MANET,” Procedia Computer Science, vol. 218, pp. 2309–2318, 2023, doi: 10.1016/j.procs.2023.01.206. 

[7] S. Perumal, V. Raman, G. N. Samy, B. Shanmugam, K. Kisenasamy, and S. Ponnan, “Comprehensive literature review on delay 
tolerant network (DTN) framework for improving the efficiency of internet connection in rural regions of Malaysia,” International 

Journal of System Assurance Engineering and Management, vol. 13, no. S1, pp. 764–777, Mar. 2022, doi: 10.1007/s13198-022-

01632-2. 
[8] S. Fraihat, S. Makhadmeh, M. Awad, M. A. Al-Betar, and A. Al-Redhaei, “Intrusion detection system for large-scale IoT NetFlow 

networks using machine learning with modified Arithmetic optimization algorithm,” Internet of Things, vol. 22, Jul. 2023, doi: 

10.1016/j.iot.2023.100819. 
[9] S. V. N. S. Kumar, M. Selvi, and A. Kannan, “A comprehensive survey on machine learning-based intrusion detection systems for 

secure communication in internet of things,” Computational Intelligence and Neuroscience, vol. 2023, no. 1, Jan. 2023, doi: 

10.1155/2023/8981988. 
[10] A. Halimaa A. and K. Sundarakantham, “Machine learning based intrusion detection system,” in 2019 3rd International Conference 

on Trends in Electronics and Informatics (ICOEI), Apr. 2019, pp. 916–920. doi: 10.1109/ICOEI.2019.8862784. 

[11] K. V. Krishna and K. G. Reddy, “Classification of distributed denial of service attacks in VANET: A survey,” Wireless Personal 
Communications, vol. 132, no. 2, pp. 933–964, Sep. 2023, doi: 10.1007/s11277-023-10643-6. 

[12] W. Khalid et al., “A taxonomy on misbehaving nodes in delay tolerant networks,” Computers & Security, vol. 77, pp. 442–471, 

Aug. 2018, doi: 10.1016/j.cose.2018.04.015. 
[13] W. Khalid, N. Ahmed, M. Khalid, A. Ud Din, A. Khan, and M. Arshad, “FRID: Flood attack mitigation using resources efficient 

intrusion detection techniques in delay tolerant networks,” IEEE Access, vol. 7, pp. 83740–83760, 2019, doi: 

10.1109/ACCESS.2019.2924587. 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Exploring the effectiveness of hybrid artificial bee PyCaret classifier in delay … (Rajashri Chaudhari) 

3161 

[14] H. Sharma, A. Haque, and F. Blaabjerg, “Machine learning algorithms for wireless sensor networks: A survey,” Electronics, vol. 
10, no. 9, Apr. 2021, doi: 10.3390/electronics10091012. 

[15] D. P. Kumar, T. Amgoth, and C. S. R. Annavarapu, “Machine learning algorithms for wireless sensor networks: A survey,” 

Information Fusion, vol. 49, pp. 1–25, Sep. 2019, doi: 10.1016/j.inffus.2018.09.013. 
[16] J.-Y. Yu, E. Lee, S.-R. Oh, Y.-D. Seo, and Y.-G. Kim, “A survey on security requirements for WSNs: Focusing on the characteristics 

related to security,” IEEE Access, vol. 8, pp. 45304–45324, 2020, doi: 10.1109/ACCESS.2020.2977778. 

[17] S. B. Balasubramanian et al., “Machine learning based IoT system for secure traffic management and accident detection in smart 
cities,” PeerJ Computer Science, vol. 9, Mar. 2023, doi: 10.7717/peerj-cs.1259. 

[18] K. He, D. D. Kim, and M. R. Asghar, “Adversarial machine learning for network intrusion detection systems: a comprehensive 

survey,” IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 538–566, 2023, doi: 10.1109/COMST.2022.3233793. 
[19] R. Ahmad, R. Wazirali, and T. Abu-Ain, “Machine learning for wireless sensor networks security: An overview of challenges and 

issues,” Sensors, vol. 22, no. 13, Jun. 2022, doi: 10.3390/s22134730. 

[20] A. Singh, “Classification of malware in HTTPs traffic using machine learning approach,” El-Cezeri Fen ve Mühendislik Dergisi, 
Jan. 2022, doi: 10.31202/ecjse.990318. 

[21] A. Karami and N. Derakhshanfard, “BMRTD: Buffer Management policy based on Remaining Time to encounter nodes with the 

Destination node in delay tolerant networks.” Jan. 31, 2023. doi: 10.21203/rs.3.rs-2522936/v1. 
[22] O. E. Taylor and P. S. Ezekiel, “A smart system for detecting behavioural botnet attacks using random forest classifier with principal 

component analysis,” European Journal of Artificial Intelligence and Machine Learning, vol. 1, no. 2, pp. 11–16, Mar. 2022, doi: 

10.24018/ejai.2022.1.2.4. 
[23] F. Alasmary, S. Alraddadi, S. Al-Ahmadi, and J. Al-Muhtadi, “ShieldRNN: A distributed flow-based DDoS detection solution for 

IoT using sequence majority voting,” IEEE Access, vol. 10, pp. 88263–88275, 2022, doi: 10.1109/ACCESS.2022.3200477. 

[24] O. Johnphill et al., “Self-healing in cyber–physical systems using machine learning: A critical analysis of theories and tools,” Future 
Internet, vol. 15, no. 7, Jul. 2023, doi: 10.3390/fi15070244. 

[25] M. Kayalvizhi and S. Geetha, “Efficacy artificial bee colony optimization-based gaussian AOMDV (EABCO-GAOMDV) routing 

protocol for seamless traffic rerouting in stochastic vehicular ad hoc network,” International Journal of Computer Networks and 
Applications, vol. 10, no. 6, pp. 993–1014, Dec. 2023, doi: 10.22247/ijcna/2023/223694. 

[26] J. Jayaudhaya, R. Jayaraj, and K. K. Ramash, “A new integrated approach for cloud service composition and sharing using a hybrid 

algorithm,” Mathematical Problems in Engineering, vol. 2024, pp. 1–11, Feb. 2024, doi: 10.1155/2024/3136546. 
[27] S. Bajpai and K. Sharma, “A framework for intrusion detection models for IoT networks using deep learning.” Sep. 01, 2022. doi: 

10.21203/rs.3.rs-2010844/v1. 

[28] S. Baroumand, A. Zaman, and L. Mihaylova, “Attack detection and fault‐tolerant control of interconnected cyber‐physical systems 
against simultaneous replayed time‐delay and false‐data injection attacks,” IET Control Theory & Applications, vol. 17, no. 5, pp. 

527–541, Mar. 2023, doi: 10.1049/cth2.12393. 

[29] M. K. Hassan and I. Y. Alshareef, “Drift detection and model update using unsupervised AutoML in IoT,” WSEAS Transactions on 
Computers, vol. 22, pp. 332–337, Dec. 2023, doi: 10.37394/23205.2023.22.38. 

 

 

BIOGRAPHIES OF AUTHORS   

 

 

Rajashri Chaudhari     is a research scholar and currently pursuing a Ph.D. in 

Computer Engineering from ACPCE, Kharghar, Navi Mumbai, Maharashtra, India. She 

completed her M. E. in Computer Science and Engineering in 2017 and completed B. E. degree 

in Computer Engineering in 2014. Her research interest includes network security, wireless 

network, delay tolerant network, network routing, machine learning, PyCaret optimization. She 

can be contacted at email: c.rajashri2021@gmail.com. 

  

 

Manoj Deshpande     has obtained his M.Tech and PhD from Indian Institute of 

Technology Bombay, Mumbai in 2002 and 2009 respectively from IDP in Systems and Control 

Engineering. Currently he is working as professor and dean at A. C. Patil College of 

Engineering Navi Mumbai. He can be contacted at email: mmdeshpande@acpce.ac.in. 

 

https://orcid.org/0000-0003-1426-7251
https://scholar.google.com/citations?user=gxSII8QAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=59374141000
https://www.webofscience.com/wos/author/record/KFB-6090-2024
https://orcid.org/0009-0005-4103-9475
https://scholar.google.com/citations?user=I_HoGzYAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=24775612000
https://www.webofscience.com/wos/author/record/LUY-8743-2024

