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 This paper presents the generative automatic matching (GAM) approach, 

implemented through a multi-agent system (MAS), to address the challenges 

of heterogeneity across meta-models. GAM integrates automatic  

meta-model matching with model generation, offering a comprehensive 

solution to complex systems involving diverse architectures. The key 

innovation lies in its ability to automate both the detection of 

correspondences and the transformation of models, improving the precision 

and recall of matching processes. The system's scalability and adaptability 

are enhanced by MAS, allowing for efficient management of diverse meta-

models. The approach was evaluated through relational to big data UML 

meta-models (RBDU) case study. The results demonstrated high accuracy, 

with precision and recall metrics approaching 1, underscoring the robustness 

of GAM in managing heterogeneous systems. Compared to traditional 

methods, GAM offers significant advantages, including automated matching 

and generation, adaptability to various domains, and superior performance 

metrics. The study contributes to the field of model-driven engineering 

(MDE) by formalizing a method that effectively bridges the gap between 

heterogeneous meta-models. Future research will focus on refining matching 

heuristics, expanding case studies. 
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1. INTRODUCTION 

Model-driven engineering (MDE) is a software development approach that uses high-level models 

as core elements for both design and implementation, rather than just documentation. MDE promotes 

automation in various stages of development by leveraging models for generative purposes. However, the 

approach has led to diverse systems based on heterogeneous meta-models, lacking a universal standard. 

Examples include relational databases versus NoSQL systems and meta-models for similar domains like C# 

and Java [1]. A key issue identified in our previous systematic mapping review (TSMR) and multi-criteria 

analysis [2], [3] is the challenge of interoperability across systems with different meta-models, even when 

they share similar objectives. For example, migrating from SQL-based relational databases to NoSQL 

systems is complex, as is transitioning between different NoSQL systems (e.g., key-value store to document 

store). Similar difficulties arise in application development, where the growing diversity of programming 

languages and architectures, such as UML and MERISE, makes manual transitions between them 

cumbersome. The heterogeneity of meta-models and architectures also complicates system transformations in 

the domain of code generation. Our previous findings [3] revealed that 49% to 85% of the code generation 
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studies reviewed developed their own platforms by creating new domain-specific languages (DSLs). To 

address the increasing diversity of architectures and meta-models in similar or distinct domains, existing 

methods-such as static identifier-based techniques (SIB) [4]–[6], signature-based techniques (SIG) [7]–[9], 

similarity-based techniques (SIM) [10]–[15], and custom-specific language techniques (CSL) [16]–[20]-have 

aimed to match and establish correspondences between different architectural elements and meta-models of 

heterogeneous systems. These techniques seek to facilitate model transformation across platforms, 

technologies, or methodologies. However, they face notable limitations, including reliance on manual 

matching processes and the inability to automatically generate models across diverse meta-models. 

To address the limitations of existing methods, we introduce the generative automatic matching 

(GAM) approach, a novel methodology that integrates automatic meta-model matching with model generation. 

GAM offers a comprehensive solution to the challenges posed by heterogeneous systems by automatically 

detecting and matching correspondences between source and target meta-models. This process begins with the 

identification and schematization of both systems, ensuring that all key aspects of their meta-models are 

captured. The core innovation of GAM lies in its ability to automate the detection of similarities between  

meta-model elements, enabling the seamless transformation of models from the source system to the target 

system. This automation significantly reduces the complexity and manual effort typically involved in managing 

heterogeneity across platforms, technologies, and methodologies. In contrast to previous approaches, which 

often rely on manual matching or address only the model layer, GAM uniquely combines automatic meta-model 

matching and model generation. Its versatility allows it to work with a wide range of models, regardless of the 

underlying technology, making GAM a scalable and adaptable solution for heterogeneous environments. This 

approach represents a significant advancement in managing the complexity and diversity of meta-models. 

This paper advances the GAM approach by focusing on two key developments: its implementation 

using a multi-agent system (MAS) based on foundation for intelligent physical agents (FIPA) standards for 

intelligent agents [21], and its application in relational to big data UML meta-models (RBDU) case study to 

demonstrate its robustness in automatic matching. The paper is structured as follows: first, a review of 

existing approaches to address heterogeneity between systems in various domains is provided, highlighting 

their strengths and limitations. Next, the methodology of the GAM approach is detailed, including its 

architecture, mathematical formalism, and multi-agent system structure, alongside communication protocols. 

The RBDU case study, is then presented to illustrate the system's effectiveness. Finally, the results and 

discussion section evaluate the approach and outlines future research directions. 
 
 

2. RELATED WORK 

Several existing approaches have attempted to address architectural heterogeneity, but they have 

notable limitations. Most rely on manual or semi-automated matching processes and use fixed, non-adaptive 

algorithms. Key techniques, such as SIB [4]–[6], SIG [7]–[9], SIM [10]–[15], and CSL [16]–[20], each have 

specific drawbacks, including failure with heterogeneous models, limited scalability, and reliance on manual 

intervention. To better understand these limitations, a strengths, weaknesses, opportunities, and threats (SWOT) 

analysis in Table 1 summarizes the strengths and weaknesses of these methods, laying the groundwork for the 

more adaptive and comprehensive GAM approach. 
 
 

Table 1. SWOT analysis of matching approaches 
Static identifier-based technique (SIB) 

Characteristics Uses unique identifiers (UUIDs) to establish correspondences between model elements. Fast and requires no 

user configuration, but struggles with heterogeneous models. 
Positives Quick implementation, no user setup. 

Negatives Not suitable for heterogeneous models, poor adaptability, no automatic generation, manual correspondence. 

Signature-based techniques (SIG) 
Characteristics Compares independent models by calculating signatures (or fingerprints) for model elements. Requires user 

input to define signature functions, limiting its scope. 

Positives Compares independently built models. 
Negatives Requires user-defined identity functions, limited scope, no automatic generation, and manual 

correspondences. 

Similarity-based technique (SIM) 
Characteristics Uses heuristics to evaluate the similarity between independent model elements. More flexible but relies on 

fixed heuristics, limiting adaptability. 

Positives Accurate correspondences. 
Negatives Fixed heuristics, no automatic generation, manual correspondence. 

Custom-specific language technique (CSL) 

Characteristics 
Uses domain-specific languages to integrate semantics into matching algorithms. Flexible for domain-

specific models but requires manual specification of algorithms. 

Positives Integrates semantics. 

Negatives Manual algorithm specification, fixed heuristics 
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As emphasized in the SWOT analysis in Table 1, all existing approaches either require manual 

matching or lack the capability for automatic model generation. For instance, SIB is fast but unsuitable for 

heterogeneous models and does not support automatic generation. SIG compares independent models but 

requires user-defined functions and similarly lacks automatic generation. While SIM is accurate, it relies on 

fixed heuristics and does not support automatic generation. Lastly, CSL integrates semantics but requires 

manual specifications and depends on fixed heuristics. To address these limitations, we present a new 

approach, GAM, which will be detailed in the next section. 

 

 

3. METHODOLOGY USED  

In this section, we present the methodology employed in the design and implementation of our new 

approach, GAM. This methodology is structured around the following key components: the GAM 

architecture, which defines the overall structure of the approach; the generative matching meta-model, 

serving as the foundational framework for matching heterogeneous systems; and the GAM process, outlining 

the sequential steps for applying the approach. Additionally, the methodology incorporates mathematical 

formalism to provide a rigorous theoretical basis and a multi-agent system to ensure scalability and dynamic 

interaction among components. Finally, a case study is included to demonstrate the practical application and 

validate the effectiveness of the proposed approach. 

 

3.1.  GAM architecture 

First, we designed the architecture of our approach. GAM is built on two fundamental steps, as 

shown in Figure 1: 

− Meta-model matching: in this step, heterogeneous meta-models are automatically linked. Source  

meta-models (SMM 1 ... SMM i) are matched with target meta-models (TMM 1 ... TMM j), generating a 

matching model (MG) that identifies the correspondences between elements. 

− Model generation: based on the matching established in the first step, the source models (SM 1 ... SM i) 

are automatically transformed into target models (TM 1 ... TM j), conforming to the corresponding target  

meta-models. 

 

 

 
 

Figure 1. Comprehensive structure of the generative matching approach 
 

 

3.2.  Generative matching meta-model (MMG) 

To implement the GAM approach effectively, we designed a generative matching meta-model that 

identifies key concepts, including elements, relationships, version management, and matching history. This 
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meta-model handles the identification of correspondences between meta-model elements, ensuring 

consistency and traceability throughout the matching process. Additionally, it provides a structured 

representation to address the dynamic nature of system changes, allowing for iterative updates and 

refinements. The design incorporates mechanisms for conflict resolution and supports multiple versions to 

accommodate evolving requirements. By leveraging this meta-model, the GAM approach achieves a robust 

and scalable framework for managing complex system heterogeneities. 

 

3.3.  GAM process 

The GAM process comprises two primary phases: automatic matching and automatic generation. In 

the matching phase, two meta-models (source and target) are used to automatically generate a 

correspondence model (MG), which defines the relationships between their elements. In the generation 

phase, a source model conforming to the source meta-model is automatically transformed into an equivalent 

target model, utilizing the identified correspondences. The detailed process includes these four key steps, as 

shown in Figure 2: 

− Selecting the source and target meta-models. 

− Refining the core generative MMG by adding or modifying relationships and storing refined versions in a 

cloud repository for easy access. 

− Refining the MG model through iterative or manual adjustments using cognitive agents or expert input. 

− Generating the target model, with the possibility of further refinement through expert validation or 

additional iterations. 

 

 

 
 

Figure 2. GAM process description 
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3.4.  Mathematical formalism  

We developed a mathematical formalism for the GAM MAS approach, grounded in set theory, 

where each meta-model (MMa) is represented as a set of triplets. These triplets comprise elements from the 

refined generative matching meta-model (MMG) and the relationships between them. For two meta-models, 

MMa (source) and MMb (target), the matching model (MG) captures the correspondences between their 

elements, also represented as triplets. The transformation process between source and target models leverages 

these correspondences to generate equivalent models, ensuring they conform to their respective meta-models. 

This set-based formalism provides a structured and rigorous representation of models, correspondences, and 

transformations. 

 

3.5.  Multi-agent system 

The concept of multi-agent system (MAS) stems from distributed artificial intelligence (DAI). This 

approach facilitates the understanding, modeling, and simulation of complex systems composed of multiple 

agents that exhibit intelligent behavior and interact with both each other and their external environment. 

MAS is particularly suited for solving problems in a distributed manner [22]–[28]. Each agent operates 

locally with cooperative behaviors, and through collective self-organization, a global solution emerges from 

the individual problem-solving efforts of the agents. 

 

3.6.  Case study  

To evaluate our approach, we conducted the RBDU case study, this case study involved a more 

complex heterogeneous database system incorporating the UML meta-model. For this, we developed five 

meta-models representing various database types, including relational databases and three big data NoSQL 

types (key-value store, document store, and columnar store), in addition to the UML meta-model. These 

meta-models illustrate the effectiveness of the GAM SMA approach in facilitating model transformation 

across diverse database systems. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Generative matching meta-model 

The generative matching meta-model (MMG) we designed addresses the management of lexical, 

structural, and semantic similarities to effectively match heterogeneous meta-models. Its key components 

enable the alignment and transformation of elements across meta-models by employing various similarity 

measures. This structure significantly improves the overall efficiency of the GAM SMA approach in 

automating model generation. The core of the MMG consists of several essential components, as illustrated 

in Figure 3. 

The effectiveness of our generative matching meta-model lies in its extensibility, which allows for 

flexible adaptation to various domains and architectures. At its core, MMG consists of key components that 

manage correspondences between heterogeneous meta-models, ensuring that all essential elements are 

addressed during the matching process. The Element component generalizes other elements with attributes 

such as name, ID, and description, while the Matching component efficiently manages relations between 

source and target meta-models, incorporating version control and refinement. Source and Target define the 

respective meta-models, and the AgentMetamodelHandler and AgentElementHandler facilitate the navigation 

and manipulation of meta-elements. Additionally, the AgentTransformer ensures the proper transformation of 

source elements into target elements, while LinkAlignment defines relationships like aggregation and 

similarity, which are essential for effectively aligning meta-elements. The Similarity component is crucial, as 

it captures various types of correspondences—lexical, structural, semantic, and functional—forming the 

foundation of the GAM process and enabling precise automatic model generation across diverse systems. 

 

4.2.  Multi-agent system 

By assigning specialized roles to different agents, the system efficiently handles various tasks. 

Figure 4 illustrates the Contract Net protocol, which outlines the agent societies and their communication. 

The network comprises specialized agents, each responsible for distinct functions within the GAM MAS 

approach. The CoordinatorAgent oversees coordination among agents, while the GeneratorAgent handles 

model generation based on matching results. The RefiningAgent refines the correspondences identified during 

the process, and the TransformerAgent, along with the MFTransformerAgent and FMTransformerAgent, 

converts meta-models into mathematical formalism for adaptability. Agents such as the MatchingAgent, 

MeaningSimilarityAgent, TranslationAgent, and StructuredSimilarityAgent calculate various types of 

similarities, including semantic, structural, and functional. Additionally, agents like the BasicSimilarityAgent, 

NameSimilarityAgent, and DescriptionSimilarityAgent focus on lexical similarities, while the 

FunctionalSimilarityAgent evaluates functional relationships. This integrated agent society efficiently 
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manages meta-model heterogeneity, enabling automatic model generation and significantly enhancing the 

overall effectiveness of the GAM MAS approach. 

 

 

 
 

Figure 3. The core of the GAM approach 
 

 

 
 

Figure 4. Contract Net protocol (CNP) GAM SMA 
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4.3.  Case study and matching results 

In this section, we present the meta-models developed for the case study incorporated in our 

research, along with the corresponding matching results. The purpose of these case study is to test our 

approach on different systems and evaluate its effectiveness in enabling matching and model generation 

between them. The meta-models for the RBDU case study are shown in Figure 5. Through this case study, 

we aim to assess the efficiency of the GAM MAS approach in managing diverse systems. 

 

 

 
 

 
 

Figure 5. RBDU case studies 

 

 

The results of applying the GAM SMA approach to the RBDU case study are summarized as 

follows. We present the matching results obtained from applying our approach to the RBDU case study. 

Figure 6 illustrates the matches generated between the SQL and key-value store meta-models, while Table 2 

provides a detailed summary of the automatic matching results produced by the GAM SMA approach 

between the SQL source meta-model and the UML target meta-model. 

The RBDU case study further demonstrated the strength of the GAM SMA approach in handling 

complex, heterogeneous database systems. Five meta-models, representing relational and big data NoSQL 

databases (key-value store, document store, and columnar store), were matched and transformed with high 
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accuracy. The successful matches in the case study highlight the robustness of the GAM SMA approach 

across various domains, with matching precision and recall values approaching 1. In the following section, 

we will provide a detailed analysis of the evaluation results of the GAM SMA approach, including a 

synthesis of the final quality metric calculations for the RBDU case study. 

 

 

 
 

Figure 6. Matching between SQL and key-value store- threshold: 0.5 

 

 

Table 2. Summary of the matching results between SQL and UML meta-models  
Name Similarity Neighbor 

Structural 
Flooding 
Structural 

Max Interpolation  
Moyenne 

SQLElement UMLModelElement 0.5333334 0.25 1 1 0.59444447 

SQLTable UMLClassifyer 0.2307692 0.2 0.1205332 0.230769
2 

0.18376747 

SQLTable UMLCLASS 0.125 0 0.007990999 0.125 0.04433033 

SQLcolumn UMLAttribute 0.1666667 0.4444444 0.1895308 0.444444
4 

0.26688063 

Type Type 1 0.5 0.0451359 1 0.5150453 

Type Returntype 0.4 0.5 0.04240563 0.5 0.31413521 
Type Parametertype 0.3076923 0.5 0.02927022 0.5 0.27898751 

Name Name 1 1 0.6129308 1 0.87097693 

String String 1 0.5714286 0.6036351 1 0.72502123 

 

 

4.4.  GAM evaluation 

The evaluation was conducted using well-established quality metrics commonly applied in machine 

learning and artificial intelligence, including recall, overall accuracy, F-measure, and precision [29]–[33]. 

Table 3 presents the results of these metrics after generating correspondences using the GAM MAS approach 

in the RBDU case study. The quality metrics calculated for both case studies demonstrate the overall 

effectiveness of the GAM MAS approach. The RBDU case study exhibited strong performance across 

multiple big data NoSQL meta-models, with precision consistently reaching 1. These high-quality metrics 

confirm that the GAM SMA approach is capable of handling both simple and complex systems, delivering 

reliable and accurate results.  

 

 

Table 3. Quality measurement results for the big data RBDU section 
  Measures 

Meta-model couples Heuristic Recall Precision F-Measure Overall 

(SQL, Key-Value) NameMatching 0.6 1 0.75 0.6 

Neighbour Structural 0.5 1 0.666666667 0.5 

Flooding Structural 1 1 1 1 
(SQL, DocumentStore) NameMatching 0.8 1 0.88888889 0.8 

Neighbour Structural 0.6 1 0.75 0.6 

Flooding Structural 0.8 1 0.88888889 0.8 
(SQL, Columnar) NameMatching 0.875 1 0.93333333 0.875 

Neighbour Structural 1 0.8 0.888888889 0.75 

Flooding Structural 0.375 1 0.545454545 0.375 
FINAL Values NameMatching 0.85714286 1 0.92307692 0.85714286 

Neighbour Structural 0.764705882 0.866666667 0.8125 0.647058824 

Flooding Structural 0.647058824 1 0.785714286 0.647058824 
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The metric results obtained after generating matches using the GAM SMA approach for the big data 

meta-models in the RBDU case study. We opted to separate the evaluation results for big data meta-models 

from those of the SQL/UML pair, shown in Table 4, to analyze the impact of meta-model domain similarity 

on the generation results. The final metrics for the RBDU case study are summarized in Table 5, where the 

weighted sum method was applied, assigning a weight of 1 to each pair to calculate the overall results. 

Table 5 display the final metric results, reflecting the average values calculated by the corresponding 

functions. It is noteworthy that all metrics are close to 1, underscoring the high quality and accuracy of the 

results obtained. Our evaluation demonstrates that the GAM SMA approach significantly outperforms 

existing methods such as SIB, SIG, SIM, and CLS, as highlighted in the SWOT analysis in Table 1. Unlike 

these methods, which either lack automatic model generation or rely on fixed heuristics, GAM MAS 

integrates both matching and generation processes, making it highly adaptable to a wide range of systems and 

architectures. The use of a MAS enhances scalability and flexibility, allowing for efficient management of 

diverse meta-models. The case study confirmed GAM MAS's effectiveness in addressing the challenges of 

automatic matching and model generation between heterogeneous meta-models. All quality metrics 

approached values close to 1, highlighting the high precision and reliability of the correspondences and 

transformations achieved. 

 

 

Table 4. Quality measurement results for SQL/UML pair 
  Measures 
Meta-model couples Heuristic Recall Precision F-measure Overall 

(SQL, UML) Maximum Similarity 0.666666667 1 0.8 0.666666667 

 

 

Table 5. Final quality metrics GAM SMA 
  Measures 
Case study Function Recall Precision F-Measure Overall 

RBDU Final Similarity 0.80952381175 1 0.89230769 0.80952381175 

 

 

4.5.  Limitations 

The GAM MAS approach provides a robust solution by integrating automatic meta-model matching 

with model generation, effectively addressing the complexities of heterogeneous systems and technologies. 

This significantly improves precision and recall metrics, with successful implementation demonstrating 

important implications for managing heterogeneity across different development systems and architectures. It 

enhances the efficiency and accuracy of creating interoperable systems, especially in complex environments 

with diverse systems and meta-models. The high quality of results, reflected in metrics nearing 1, highlights 

the reliability and effectiveness of the approach in producing accurate correspondences. However, several 

areas for future research remain. First, improving the automatic matching heuristics is a key priority. For 

instance, weight and threshold calculations could be refined through advanced techniques, such as the Rock 

method for weight determination or fuzzy logic. Integrating new heuristics and testing them could further 

optimize the matching accuracy. Another critical direction is applying the generative automatic matching 

approach to address data layer interoperability challenges [34], particularly between big data NoSQL and 

relational databases. The versatility and adaptability of GAM MAS offer numerous research opportunities 

across a wide range of domains. Future work could extend its application to areas such as IT governance, 

e-learning, e-healthcare, IoT, search engines, and the Semantic Web. These expansions would not only enrich 

the knowledge base but also enhance the capabilities of the agents, broadening the scope of the research. 

Additionally, we plan to develop a comprehensive GUI application on the .NET platform to facilitate broader 

adoption and practical use of GAM SMA, ensuring it remains a flexible and effective tool for tackling future 

challenges in automatic matching and system interoperability. 

 

 

5. CONCLUSION  

This paper presented the implementation of the GAM approach using a MAS architecture. GAM 

MAS represents a novel paradigm that combines automatic matching and model generation to address the 

heterogeneity of meta-models. Our approach facilitates the generation of models through automatic matching 

between various heterogeneous systems. 

The evaluation using quality metrics and case studies demonstrated the validity and effectiveness of 

our approach. Specifically, the RBDU case study highlighted the robustness and adaptability of GAM SMA. 

This work fills a significant knowledge gap by providing a formalized method for meta-model matching and 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2345-2355 

2354 

generation, contributing to the field of model-driven engineering. Compared to existing methods, GAM SMA 

offers several advantages: 

The GAM approach introduces significant innovations compared to existing methods. Unlike 

traditional approaches that often rely on manual matching and lack mechanisms for automatic model 

generation, GAM seamlessly integrates both processes, ensuring greater efficiency and consistency. 

Furthermore, GAM demonstrates exceptional adaptability by handling a wide range of meta-models and 

technologies, effectively addressing the limitations of methods such as static identifier-based technique (SIB), 

SIG, SIM, and CSL technique, as highlighted in the SWOT analysis. In addition, GAM enhances key 

performance metrics, offering improved precision and recall, which underscores its potential to transform 

software development practices by delivering more accurate and reliable results. 

Future research will focus on enhancing the heuristics for automatic matching and integrating 

additional case studies to further validate the approach. We also plan to develop a comprehensive GUI 

application using the .NET platform to facilitate broader adoption and practical application of GAM SMA, 

which will further enhance automatic matching and model generation in various domains such as AI, IT 

governance, E-learning, E-healthcare, internet of things (IoT), search engines, chatbots, and the Semantic 

Web. Another significant area for future research lies in applying generative automatic matching to address 

data layer interoperability and migration issues. Our team is currently working in this field, aiming to 

overcome interoperability problems between big data NoSQL and relational databases. GAM MAS can help 

automate system matching structure generation and explore data layer transformation. 

 

 

REFERENCES 
[1] Z. I. Batouta, R. Dehbi, M. Talea, and H. Omar, “Generative matching between heterogeneous meta-model’ systems based on 

hybrid heuristic,” Journal of Information Technology Research, vol. 12, no. 2, pp. 53–71, 2019, doi: 10.4018/JITR.2019040104. 
[2] Z. I. Batouta, R. Dehbi, M. Talea, and O. Hajoui, “Multi-criteria analysis and advanced comparative study between automatic 

generation approaches in software engineering,” Journal of Theoretical and Applied Information Technology, vol. 81, no. 3,  

pp. 609–620, 2015. 
[3] Z. I. Batouta, R. Dehbi, M. Talea, and O. Hajoui, “Automation in code generation: Tertiary and systematic mapping review,” 

Colloquium in Information Science and Technology, CIST, vol. 0, pp. 200–205, 2016, doi: 10.1109/CIST.2016.7805042. 

[4] X. Yaozong, S. Xuebin, Z. Shuhua, Z. Qiujun, and J. Weinan, “Static Analysis Method of C Code Based on Model Checking and 
Defect Pattern Matching,” in 2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems, ICPICS 

2023, 2023, pp. 567–573. doi: 10.1109/ICPICS58376.2023.10235566. 

[5] F. A. Somogyi and M. Asztalos, “Systematic review of matching techniques used in model-driven methodologies,” Software and 
Systems Modeling, vol. 19, no. 3, pp. 693–720, 2020, doi: 10.1007/s10270-019-00760-x. 

[6] J. Ren et al., “Matching algorithms: fundamentals, applications and challenges,” IEEE Transactions on Emerging Topics in 

Computational Intelligence, vol. 5, no. 3, pp. 332–350, 2021, doi: 10.1109/TETCI.2021.3067655. 
[7] T. Lyons and A. D. McLeod, “Signature methods in machine learning,” arXiv preprint arXiv:2206.14674, 2022, 2022. 

[8] C. Cuchiero, G. Gazzani, and S. Svaluto-Ferro, “Signature-based models: theory and calibration,” SIAM Journal on Financial 

Mathematics, vol. 14, no. 3, pp. 910–957, 2023, doi: 10.1137/22M1512338. 
[9] M. T. Shafiq and S. R. Lockley, “Application of signature-based matching for IFC model comparison,” International Journal of 

Construction Management, vol. 22, no. 9, pp. 1765–1774, 2022, doi: 10.1080/15623599.2020.1742630. 

[10] P. Yang, H. Wang, J. Yang, Z. Qian, Y. Zhang, and X. Lin, “Deep learning approaches for similarity computation: a survey,” 
IEEE Transactions on Knowledge and Data Engineering, 2024, doi: 10.1109/TKDE.2024.3422484. 

[11] Z. Pan, G. Pan, and A. Monti, “Semantic-similarity-based schema matching for management of building energy data,” Energies, 

vol. 15, no. 23, 2022, doi: 10.3390/en15238894. 
[12] M. Auch, M. Weber, P. Mandl, and C. Wolff, “Similarity-based analyses on software applications: a systematic literature review,” 

Journal of Systems and Software, vol. 168, 2020, doi: 10.1016/j.jss.2020.110669. 

[13] D. K. Po, “Similarity based information retrieval using Levenshtein distance algorithm,” International Journal of Advances in 
Scientific Research and Engineering, vol. 06, no. 04, pp. 6–10, 2020, doi: 10.31695/ijasre.2020.33780. 

[14] Z. Yuan, L. Yan, and Z. Ma, “Structural similarity measure between UML class diagrams based on UCG,” Requirements 

Engineering, vol. 25, no. 2, pp. 213–229, 2020, doi: 10.1007/s00766-019-00317-w. 
[15] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A versatile graph matching algorithm and its application to 

schema matching,” in Proceedings - International Conference on Data Engineering, 2002, pp. 117–128. doi: 

10.1109/ICDE.2002.994702. 
[16] F. Wrede, C. Rieger, and H. Kuchen, “Generation of high-performance code based on a domain-specific language for algorithmic 

skeletons,” Journal of Supercomputing, vol. 76, no. 7, pp. 5098–5116, 2020, doi: 10.1007/s11227-019-02825-6. 

[17] L. N. Lyadova, A. O. Sukhov, and M. R. Nureev, “An Ontology-Based Approach to the Domain Specific Languages Design,” in 
15th IEEE International Conference on Application of Information and Communication Technologies, AICT 2021, 2021. doi: 

10.1109/AICT52784.2021.9620493. 

[18] G. Czech, M. Moser, and J. Pichler, “A systematic mapping study on best practices for domain-specific modeling,” Software 
Quality Journal, vol. 28, no. 2, pp. 663–692, 2020, doi: 10.1007/s11219-019-09466-1. 

[19] K. Panayiotou, C. Doumanidis, E. Tsardoulias, and A. L. Symeonidis, “SmAuto: a domain-specific-language for application 

development in smart environments,” Pervasive and Mobile Computing, vol. 101, 2024, doi: 10.1016/j.pmcj.2024.101931. 
[20] G. K. Halley, L. Vanfretti, and M. De Castro, “Interactive model transformations from the common information model (CIM) to 

modelica,” in 2024 9th International Conference on Smart and Sustainable Technologies, SpliTech 2024, 2024, pp. 1–5. doi: 

10.23919/SpliTech61897.2024.10612559. 
[21] FIPA, “FIPA ACL message structure specification,” fipa.org, 2002. Accessed: Oct. 06, 2024). [Online], Available: 

http://www.fipa.org/specs/fipa00061/SC00061G.pdf  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Architecture of multi-agent systems for generative automatic matching … (Zouhair Ibn Batouta) 

2355 

[22] G. Dodig-Crnkovic and M. Burgin, “A systematic approach to autonomous agents,” Philosophies, vol. 9, no. 2, 2024, doi: 
10.3390/philosophies9020044. 

[23] A. Amirkhani and A. H. Barshooi, “Consensus in multi-agent systems: a review,” Artificial Intelligence Review, vol. 55, no. 5,  

pp. 3897–3935, 2022, doi: 10.1007/s10462-021-10097-x. 
[24] R. Calegari, G. Ciatto, V. Mascardi, and A. Omicini, “Logic-based technologies for multi-agent systems: a systematic literature 

review,” Autonomous Agents and Multi-Agent Systems, vol. 35, no. 1, 2021, doi: 10.1007/s10458-020-09478-3. 

[25] D. Calvaresi, Y. Dicente Cid, M. Marinoni, A. F. Dragoni, A. Najjar, and M. Schumacher, “Real-time multi-agent systems: 
rationality, formal model, and empirical results,” Autonomous Agents and Multi-Agent Systems, vol. 35, no. 1, 2021, doi: 

10.1007/s10458-020-09492-5. 

[26] R. C. Cardoso and A. Ferrando, “A review of agent-based programming for multi-agent systems,” Computers, vol. 10, no. 2,  
pp. 1–15, 2021, doi: 10.3390/computers10020016. 

[27] W. Du and S. Ding, “A survey on multi-agent deep reinforcement learning: from the perspective of challenges and applications,” 

Artificial Intelligence Review, vol. 54, no. 5, pp. 3215–3238, 2021, doi: 10.1007/s10462-020-09938-y. 
[28] Maciej Serda et al., “ESG, Competitive advantage and financial performances: a preliminary research,” Uniwersytet śląski, vol. 7, 

no. 1, pp. 969–986, 2020. 

[29] A. K. Chopra, S. H. Christie, and M. P. Singh, “An evaluation of communication protocol languages for engineering multiagent 
systems,” Journal of Artificial Intelligence Research, vol. 69, pp. 1351–1393, 2020, doi: 10.1613/JAIR.1.12212. 

[30] A. Arabiat and M. Altayeb, “Enhancing internet of things security: evaluating machine learning classifiers for attack prediction,” 

International Journal of Electrical and Computer Engineering, vol. 14, no. 5, pp. 6036–6046, 2024, doi: 
10.11591/ijece.v14i5.pp6036-6046. 

[31] Bharti, N. S. Gill, and P. Gulia, “Exploring machine learning techniques for fake profile detection in online social networks,” 

International Journal of Electrical and Computer Engineering, vol. 13, no. 3, pp. 2962–2971, 2023, doi: 
10.11591/ijece.v13i3.pp2962-2971. 

[32] W. Abdullah and A. Salah, “A novel hybrid deep learning model for price prediction,” International Journal of Electrical and 

Computer Engineering, vol. 13, no. 3, pp. 3420–3431, Jun. 2023, doi: 10.11591/ijece.v13i3.pp3420-3431. 
[33] I. Slimani et al., “Automated machine learning: the new data science challenge,” International Journal of Electrical and 

Computer Engineering,  vol. 12, no. 4, pp. 4243–4252, 2022, doi: 10.11591/ijece.v12i4.pp4243-4252. 

[34] A. Erraji, A. Maizate, M. Ouzzif, and Z. Ibn Batouta, “Migrating data semantic from relational database system to NOSQL 
systems to improve data quality for big data analytics system,” ECS Transactions, vol. 107, no. 1, pp. 19495–19503, 2022, doi: 

10.1149/10701.19495ecst. 

 

 

BIOGRAPHIES OF AUTHORS   
 

 

Zouhair Ibn Batouta     is a computer science professor and a researcher at the LTI 

Laboratory, Hassan II University, Morocco. His research focuses on the fields of computer 

science and software engineering. He can be contacted at email: zouhair.ibnbatouta@gmail.com. 

  

 

Rachid Dehbi     is a professor and researcher at the LR2I Laboratory, Hassan II 

University, Morocco. His expertise includes various areas of computer science and software 

engineering. He can be contacted at email: dehbirac@yahoo.fr. 

  

 

Mohamed Talea     is a professor and the head of the LTI Laboratory at Hassan II 

University, Morocco. He has contributed significantly to the fields of computer science and 

software engineering. He can be contacted at email: taleamohamed@yahoo.fr. 

 

mailto:zouhair.ibnbatouta@gmail.com
mailto:dehbirac@yahoo.fr
mailto:taleamohamed@yahoo.fr
https://orcid.org/0000-0002-5534-0788
https://scholar.google.fr/citations?hl=fr&user=zIoUswgAAAAJ&view_op=list_works&gmla=ALUCkoVbvK4Z0473J-JUsaFiyFLlGZyCDI9KSZJeJSnhwZ14IFs1lbY5B2Tsc-BqPni_4FiYGoJ5AZNZJ5GXp-IZLBJcZ4pH1AyRnFMH7bSSYCHg7WdHSkgJUJU2DVsgJCvUexc-xSMJQIwb4qnZHayCJVAADDP02rQy
https://www.scopus.com/authid/detail.uri?authorId=56990076100
https://www.webofscience.com/wos/author/record/LRB-2850-2024
https://orcid.org/0009-0000-2638-440X
https://scholar.google.com/citations?hl=fr&view_op=list_works&gmla=AL3_zihqksXqYwSRNUxW-KGqg1nyE0mAScn1f-EYT7bi0Fv6Cd-X8zVnt7GzwbWKnVhqc2Vdk1oUcE7rtqNUqhB7dvG_jydebAvgYDAOWT-Tp2YekL9FurVwLQ&user=xJ8oqEgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55542086500
https://www.webofscience.com/wos/author/record/LSJ-5521-2024
https://orcid.org/0000-0003-2364-0804
https://scholar.google.fr/citations?hl=fr&user=3ztbunUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55542641500
https://www.webofscience.com/wos/author/record/GQR-1036-2022

