
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 2, April 2025, pp. 2345~2355

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i2.pp2345-2355  2345

Journal homepage: http://ijece.iaescore.com

Architecture of multi-agent systems for generative automatic

matching among heterogeneous systems

Zouhair Ibn Batouta1, Rachid Dehbi2, Mohamed Talea2
1LTI Laboratory, Faculty of Science Ben M’Sik, Hassan II University, Casablanca, Morocco

2LR2I Laboratory, Faculty of Science Aïn Chock, Hassan II University, Casablanca, Morocco

Article Info ABSTRACT

Article history:

Received Jun 25, 2024

Revised Nov 23, 2024

Accepted Dec 2, 2024

 This paper presents the generative automatic matching (GAM) approach,

implemented through a multi-agent system (MAS), to address the challenges

of heterogeneity across meta-models. GAM integrates automatic

meta-model matching with model generation, offering a comprehensive

solution to complex systems involving diverse architectures. The key

innovation lies in its ability to automate both the detection of

correspondences and the transformation of models, improving the precision

and recall of matching processes. The system's scalability and adaptability

are enhanced by MAS, allowing for efficient management of diverse meta-

models. The approach was evaluated through relational to big data UML

meta-models (RBDU) case study. The results demonstrated high accuracy,

with precision and recall metrics approaching 1, underscoring the robustness

of GAM in managing heterogeneous systems. Compared to traditional

methods, GAM offers significant advantages, including automated matching

and generation, adaptability to various domains, and superior performance

metrics. The study contributes to the field of model-driven engineering

(MDE) by formalizing a method that effectively bridges the gap between

heterogeneous meta-models. Future research will focus on refining matching

heuristics, expanding case studies.

Keywords:

Generative automatic matching

Heterogeneous systems

Mathematical metrics

Model-driven engineering

Multi-agent system

This is an open access article under the CC BY-SA license.

Corresponding Author:

Zouhair Ibn Batouta

LTI Laboratory, Faculty of Science Ben M’Sik, Hassan II University

Av Driss El Harti Sidi Othmane, Casablanca, 20700, Morocco

Email: zouhair.ibnbatouta@gmail.com

1. INTRODUCTION

Model-driven engineering (MDE) is a software development approach that uses high-level models

as core elements for both design and implementation, rather than just documentation. MDE promotes

automation in various stages of development by leveraging models for generative purposes. However, the

approach has led to diverse systems based on heterogeneous meta-models, lacking a universal standard.

Examples include relational databases versus NoSQL systems and meta-models for similar domains like C#

and Java [1]. A key issue identified in our previous systematic mapping review (TSMR) and multi-criteria

analysis [2], [3] is the challenge of interoperability across systems with different meta-models, even when

they share similar objectives. For example, migrating from SQL-based relational databases to NoSQL

systems is complex, as is transitioning between different NoSQL systems (e.g., key-value store to document

store). Similar difficulties arise in application development, where the growing diversity of programming

languages and architectures, such as UML and MERISE, makes manual transitions between them

cumbersome. The heterogeneity of meta-models and architectures also complicates system transformations in

the domain of code generation. Our previous findings [3] revealed that 49% to 85% of the code generation

https://creativecommons.org/licenses/by-sa/4.0/
mailto:zouhair.ibnbatouta@gmail.com

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2345-2355

2346

studies reviewed developed their own platforms by creating new domain-specific languages (DSLs). To

address the increasing diversity of architectures and meta-models in similar or distinct domains, existing

methods-such as static identifier-based techniques (SIB) [4]–[6], signature-based techniques (SIG) [7]–[9],

similarity-based techniques (SIM) [10]–[15], and custom-specific language techniques (CSL) [16]–[20]-have

aimed to match and establish correspondences between different architectural elements and meta-models of

heterogeneous systems. These techniques seek to facilitate model transformation across platforms,

technologies, or methodologies. However, they face notable limitations, including reliance on manual

matching processes and the inability to automatically generate models across diverse meta-models.

To address the limitations of existing methods, we introduce the generative automatic matching

(GAM) approach, a novel methodology that integrates automatic meta-model matching with model generation.

GAM offers a comprehensive solution to the challenges posed by heterogeneous systems by automatically

detecting and matching correspondences between source and target meta-models. This process begins with the

identification and schematization of both systems, ensuring that all key aspects of their meta-models are

captured. The core innovation of GAM lies in its ability to automate the detection of similarities between

meta-model elements, enabling the seamless transformation of models from the source system to the target

system. This automation significantly reduces the complexity and manual effort typically involved in managing

heterogeneity across platforms, technologies, and methodologies. In contrast to previous approaches, which

often rely on manual matching or address only the model layer, GAM uniquely combines automatic meta-model

matching and model generation. Its versatility allows it to work with a wide range of models, regardless of the

underlying technology, making GAM a scalable and adaptable solution for heterogeneous environments. This

approach represents a significant advancement in managing the complexity and diversity of meta-models.

This paper advances the GAM approach by focusing on two key developments: its implementation

using a multi-agent system (MAS) based on foundation for intelligent physical agents (FIPA) standards for

intelligent agents [21], and its application in relational to big data UML meta-models (RBDU) case study to

demonstrate its robustness in automatic matching. The paper is structured as follows: first, a review of

existing approaches to address heterogeneity between systems in various domains is provided, highlighting

their strengths and limitations. Next, the methodology of the GAM approach is detailed, including its

architecture, mathematical formalism, and multi-agent system structure, alongside communication protocols.

The RBDU case study, is then presented to illustrate the system's effectiveness. Finally, the results and

discussion section evaluate the approach and outlines future research directions.

2. RELATED WORK

Several existing approaches have attempted to address architectural heterogeneity, but they have

notable limitations. Most rely on manual or semi-automated matching processes and use fixed, non-adaptive

algorithms. Key techniques, such as SIB [4]–[6], SIG [7]–[9], SIM [10]–[15], and CSL [16]–[20], each have

specific drawbacks, including failure with heterogeneous models, limited scalability, and reliance on manual

intervention. To better understand these limitations, a strengths, weaknesses, opportunities, and threats (SWOT)

analysis in Table 1 summarizes the strengths and weaknesses of these methods, laying the groundwork for the

more adaptive and comprehensive GAM approach.

Table 1. SWOT analysis of matching approaches
Static identifier-based technique (SIB)

Characteristics Uses unique identifiers (UUIDs) to establish correspondences between model elements. Fast and requires no

user configuration, but struggles with heterogeneous models.
Positives Quick implementation, no user setup.

Negatives Not suitable for heterogeneous models, poor adaptability, no automatic generation, manual correspondence.

Signature-based techniques (SIG)
Characteristics Compares independent models by calculating signatures (or fingerprints) for model elements. Requires user

input to define signature functions, limiting its scope.

Positives Compares independently built models.
Negatives Requires user-defined identity functions, limited scope, no automatic generation, and manual

correspondences.

Similarity-based technique (SIM)
Characteristics Uses heuristics to evaluate the similarity between independent model elements. More flexible but relies on

fixed heuristics, limiting adaptability.

Positives Accurate correspondences.
Negatives Fixed heuristics, no automatic generation, manual correspondence.

Custom-specific language technique (CSL)

Characteristics
Uses domain-specific languages to integrate semantics into matching algorithms. Flexible for domain-

specific models but requires manual specification of algorithms.

Positives Integrates semantics.

Negatives Manual algorithm specification, fixed heuristics

Int J Elec & Comp Eng ISSN: 2088-8708 

 Architecture of multi-agent systems for generative automatic matching … (Zouhair Ibn Batouta)

2347

As emphasized in the SWOT analysis in Table 1, all existing approaches either require manual

matching or lack the capability for automatic model generation. For instance, SIB is fast but unsuitable for

heterogeneous models and does not support automatic generation. SIG compares independent models but

requires user-defined functions and similarly lacks automatic generation. While SIM is accurate, it relies on

fixed heuristics and does not support automatic generation. Lastly, CSL integrates semantics but requires

manual specifications and depends on fixed heuristics. To address these limitations, we present a new

approach, GAM, which will be detailed in the next section.

3. METHODOLOGY USED

In this section, we present the methodology employed in the design and implementation of our new

approach, GAM. This methodology is structured around the following key components: the GAM

architecture, which defines the overall structure of the approach; the generative matching meta-model,

serving as the foundational framework for matching heterogeneous systems; and the GAM process, outlining

the sequential steps for applying the approach. Additionally, the methodology incorporates mathematical

formalism to provide a rigorous theoretical basis and a multi-agent system to ensure scalability and dynamic

interaction among components. Finally, a case study is included to demonstrate the practical application and

validate the effectiveness of the proposed approach.

3.1. GAM architecture

First, we designed the architecture of our approach. GAM is built on two fundamental steps, as

shown in Figure 1:

− Meta-model matching: in this step, heterogeneous meta-models are automatically linked. Source

meta-models (SMM 1 ... SMM i) are matched with target meta-models (TMM 1 ... TMM j), generating a

matching model (MG) that identifies the correspondences between elements.

− Model generation: based on the matching established in the first step, the source models (SM 1 ... SM i)

are automatically transformed into target models (TM 1 ... TM j), conforming to the corresponding target

meta-models.

Figure 1. Comprehensive structure of the generative matching approach

3.2. Generative matching meta-model (MMG)

To implement the GAM approach effectively, we designed a generative matching meta-model that

identifies key concepts, including elements, relationships, version management, and matching history. This

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2345-2355

2348

meta-model handles the identification of correspondences between meta-model elements, ensuring

consistency and traceability throughout the matching process. Additionally, it provides a structured

representation to address the dynamic nature of system changes, allowing for iterative updates and

refinements. The design incorporates mechanisms for conflict resolution and supports multiple versions to

accommodate evolving requirements. By leveraging this meta-model, the GAM approach achieves a robust

and scalable framework for managing complex system heterogeneities.

3.3. GAM process

The GAM process comprises two primary phases: automatic matching and automatic generation. In

the matching phase, two meta-models (source and target) are used to automatically generate a

correspondence model (MG), which defines the relationships between their elements. In the generation

phase, a source model conforming to the source meta-model is automatically transformed into an equivalent

target model, utilizing the identified correspondences. The detailed process includes these four key steps, as

shown in Figure 2:

− Selecting the source and target meta-models.

− Refining the core generative MMG by adding or modifying relationships and storing refined versions in a

cloud repository for easy access.

− Refining the MG model through iterative or manual adjustments using cognitive agents or expert input.

− Generating the target model, with the possibility of further refinement through expert validation or

additional iterations.

Figure 2. GAM process description

Int J Elec & Comp Eng ISSN: 2088-8708 

 Architecture of multi-agent systems for generative automatic matching … (Zouhair Ibn Batouta)

2349

3.4. Mathematical formalism

We developed a mathematical formalism for the GAM MAS approach, grounded in set theory,

where each meta-model (MMa) is represented as a set of triplets. These triplets comprise elements from the

refined generative matching meta-model (MMG) and the relationships between them. For two meta-models,

MMa (source) and MMb (target), the matching model (MG) captures the correspondences between their

elements, also represented as triplets. The transformation process between source and target models leverages

these correspondences to generate equivalent models, ensuring they conform to their respective meta-models.

This set-based formalism provides a structured and rigorous representation of models, correspondences, and

transformations.

3.5. Multi-agent system

The concept of multi-agent system (MAS) stems from distributed artificial intelligence (DAI). This

approach facilitates the understanding, modeling, and simulation of complex systems composed of multiple

agents that exhibit intelligent behavior and interact with both each other and their external environment.

MAS is particularly suited for solving problems in a distributed manner [22]–[28]. Each agent operates

locally with cooperative behaviors, and through collective self-organization, a global solution emerges from

the individual problem-solving efforts of the agents.

3.6. Case study

To evaluate our approach, we conducted the RBDU case study, this case study involved a more

complex heterogeneous database system incorporating the UML meta-model. For this, we developed five

meta-models representing various database types, including relational databases and three big data NoSQL

types (key-value store, document store, and columnar store), in addition to the UML meta-model. These

meta-models illustrate the effectiveness of the GAM SMA approach in facilitating model transformation

across diverse database systems.

4. RESULTS AND DISCUSSION

4.1. Generative matching meta-model

The generative matching meta-model (MMG) we designed addresses the management of lexical,

structural, and semantic similarities to effectively match heterogeneous meta-models. Its key components

enable the alignment and transformation of elements across meta-models by employing various similarity

measures. This structure significantly improves the overall efficiency of the GAM SMA approach in

automating model generation. The core of the MMG consists of several essential components, as illustrated

in Figure 3.

The effectiveness of our generative matching meta-model lies in its extensibility, which allows for

flexible adaptation to various domains and architectures. At its core, MMG consists of key components that

manage correspondences between heterogeneous meta-models, ensuring that all essential elements are

addressed during the matching process. The Element component generalizes other elements with attributes

such as name, ID, and description, while the Matching component efficiently manages relations between

source and target meta-models, incorporating version control and refinement. Source and Target define the

respective meta-models, and the AgentMetamodelHandler and AgentElementHandler facilitate the navigation

and manipulation of meta-elements. Additionally, the AgentTransformer ensures the proper transformation of

source elements into target elements, while LinkAlignment defines relationships like aggregation and

similarity, which are essential for effectively aligning meta-elements. The Similarity component is crucial, as

it captures various types of correspondences—lexical, structural, semantic, and functional—forming the

foundation of the GAM process and enabling precise automatic model generation across diverse systems.

4.2. Multi-agent system

By assigning specialized roles to different agents, the system efficiently handles various tasks.

Figure 4 illustrates the Contract Net protocol, which outlines the agent societies and their communication.

The network comprises specialized agents, each responsible for distinct functions within the GAM MAS

approach. The CoordinatorAgent oversees coordination among agents, while the GeneratorAgent handles

model generation based on matching results. The RefiningAgent refines the correspondences identified during

the process, and the TransformerAgent, along with the MFTransformerAgent and FMTransformerAgent,

converts meta-models into mathematical formalism for adaptability. Agents such as the MatchingAgent,

MeaningSimilarityAgent, TranslationAgent, and StructuredSimilarityAgent calculate various types of

similarities, including semantic, structural, and functional. Additionally, agents like the BasicSimilarityAgent,

NameSimilarityAgent, and DescriptionSimilarityAgent focus on lexical similarities, while the

FunctionalSimilarityAgent evaluates functional relationships. This integrated agent society efficiently

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2345-2355

2350

manages meta-model heterogeneity, enabling automatic model generation and significantly enhancing the

overall effectiveness of the GAM MAS approach.

Figure 3. The core of the GAM approach

Figure 4. Contract Net protocol (CNP) GAM SMA

Int J Elec & Comp Eng ISSN: 2088-8708 

 Architecture of multi-agent systems for generative automatic matching … (Zouhair Ibn Batouta)

2351

4.3. Case study and matching results

In this section, we present the meta-models developed for the case study incorporated in our

research, along with the corresponding matching results. The purpose of these case study is to test our

approach on different systems and evaluate its effectiveness in enabling matching and model generation

between them. The meta-models for the RBDU case study are shown in Figure 5. Through this case study,

we aim to assess the efficiency of the GAM MAS approach in managing diverse systems.

Figure 5. RBDU case studies

The results of applying the GAM SMA approach to the RBDU case study are summarized as

follows. We present the matching results obtained from applying our approach to the RBDU case study.

Figure 6 illustrates the matches generated between the SQL and key-value store meta-models, while Table 2

provides a detailed summary of the automatic matching results produced by the GAM SMA approach

between the SQL source meta-model and the UML target meta-model.

The RBDU case study further demonstrated the strength of the GAM SMA approach in handling

complex, heterogeneous database systems. Five meta-models, representing relational and big data NoSQL

databases (key-value store, document store, and columnar store), were matched and transformed with high

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2345-2355

2352

accuracy. The successful matches in the case study highlight the robustness of the GAM SMA approach

across various domains, with matching precision and recall values approaching 1. In the following section,

we will provide a detailed analysis of the evaluation results of the GAM SMA approach, including a

synthesis of the final quality metric calculations for the RBDU case study.

Figure 6. Matching between SQL and key-value store- threshold: 0.5

Table 2. Summary of the matching results between SQL and UML meta-models
Name Similarity Neighbor

Structural
Flooding
Structural

Max Interpolation
Moyenne

SQLElement UMLModelElement 0.5333334 0.25 1 1 0.59444447

SQLTable UMLClassifyer 0.2307692 0.2 0.1205332 0.230769
2

0.18376747

SQLTable UMLCLASS 0.125 0 0.007990999 0.125 0.04433033

SQLcolumn UMLAttribute 0.1666667 0.4444444 0.1895308 0.444444
4

0.26688063

Type Type 1 0.5 0.0451359 1 0.5150453

Type Returntype 0.4 0.5 0.04240563 0.5 0.31413521
Type Parametertype 0.3076923 0.5 0.02927022 0.5 0.27898751

Name Name 1 1 0.6129308 1 0.87097693

String String 1 0.5714286 0.6036351 1 0.72502123

4.4. GAM evaluation

The evaluation was conducted using well-established quality metrics commonly applied in machine

learning and artificial intelligence, including recall, overall accuracy, F-measure, and precision [29]–[33].

Table 3 presents the results of these metrics after generating correspondences using the GAM MAS approach

in the RBDU case study. The quality metrics calculated for both case studies demonstrate the overall

effectiveness of the GAM MAS approach. The RBDU case study exhibited strong performance across

multiple big data NoSQL meta-models, with precision consistently reaching 1. These high-quality metrics

confirm that the GAM SMA approach is capable of handling both simple and complex systems, delivering

reliable and accurate results.

Table 3. Quality measurement results for the big data RBDU section
 Measures

Meta-model couples Heuristic Recall Precision F-Measure Overall

(SQL, Key-Value) NameMatching 0.6 1 0.75 0.6

Neighbour Structural 0.5 1 0.666666667 0.5

Flooding Structural 1 1 1 1
(SQL, DocumentStore) NameMatching 0.8 1 0.88888889 0.8

Neighbour Structural 0.6 1 0.75 0.6

Flooding Structural 0.8 1 0.88888889 0.8
(SQL, Columnar) NameMatching 0.875 1 0.93333333 0.875

Neighbour Structural 1 0.8 0.888888889 0.75

Flooding Structural 0.375 1 0.545454545 0.375
FINAL Values NameMatching 0.85714286 1 0.92307692 0.85714286

Neighbour Structural 0.764705882 0.866666667 0.8125 0.647058824

Flooding Structural 0.647058824 1 0.785714286 0.647058824

Int J Elec & Comp Eng ISSN: 2088-8708 

 Architecture of multi-agent systems for generative automatic matching … (Zouhair Ibn Batouta)

2353

The metric results obtained after generating matches using the GAM SMA approach for the big data

meta-models in the RBDU case study. We opted to separate the evaluation results for big data meta-models

from those of the SQL/UML pair, shown in Table 4, to analyze the impact of meta-model domain similarity

on the generation results. The final metrics for the RBDU case study are summarized in Table 5, where the

weighted sum method was applied, assigning a weight of 1 to each pair to calculate the overall results.

Table 5 display the final metric results, reflecting the average values calculated by the corresponding

functions. It is noteworthy that all metrics are close to 1, underscoring the high quality and accuracy of the

results obtained. Our evaluation demonstrates that the GAM SMA approach significantly outperforms

existing methods such as SIB, SIG, SIM, and CLS, as highlighted in the SWOT analysis in Table 1. Unlike

these methods, which either lack automatic model generation or rely on fixed heuristics, GAM MAS

integrates both matching and generation processes, making it highly adaptable to a wide range of systems and

architectures. The use of a MAS enhances scalability and flexibility, allowing for efficient management of

diverse meta-models. The case study confirmed GAM MAS's effectiveness in addressing the challenges of

automatic matching and model generation between heterogeneous meta-models. All quality metrics

approached values close to 1, highlighting the high precision and reliability of the correspondences and

transformations achieved.

Table 4. Quality measurement results for SQL/UML pair
 Measures
Meta-model couples Heuristic Recall Precision F-measure Overall

(SQL, UML) Maximum Similarity 0.666666667 1 0.8 0.666666667

Table 5. Final quality metrics GAM SMA
 Measures
Case study Function Recall Precision F-Measure Overall

RBDU Final Similarity 0.80952381175 1 0.89230769 0.80952381175

4.5. Limitations

The GAM MAS approach provides a robust solution by integrating automatic meta-model matching

with model generation, effectively addressing the complexities of heterogeneous systems and technologies.

This significantly improves precision and recall metrics, with successful implementation demonstrating

important implications for managing heterogeneity across different development systems and architectures. It

enhances the efficiency and accuracy of creating interoperable systems, especially in complex environments

with diverse systems and meta-models. The high quality of results, reflected in metrics nearing 1, highlights

the reliability and effectiveness of the approach in producing accurate correspondences. However, several

areas for future research remain. First, improving the automatic matching heuristics is a key priority. For

instance, weight and threshold calculations could be refined through advanced techniques, such as the Rock

method for weight determination or fuzzy logic. Integrating new heuristics and testing them could further

optimize the matching accuracy. Another critical direction is applying the generative automatic matching

approach to address data layer interoperability challenges [34], particularly between big data NoSQL and

relational databases. The versatility and adaptability of GAM MAS offer numerous research opportunities

across a wide range of domains. Future work could extend its application to areas such as IT governance,

e-learning, e-healthcare, IoT, search engines, and the Semantic Web. These expansions would not only enrich

the knowledge base but also enhance the capabilities of the agents, broadening the scope of the research.

Additionally, we plan to develop a comprehensive GUI application on the .NET platform to facilitate broader

adoption and practical use of GAM SMA, ensuring it remains a flexible and effective tool for tackling future

challenges in automatic matching and system interoperability.

5. CONCLUSION

This paper presented the implementation of the GAM approach using a MAS architecture. GAM

MAS represents a novel paradigm that combines automatic matching and model generation to address the

heterogeneity of meta-models. Our approach facilitates the generation of models through automatic matching

between various heterogeneous systems.

The evaluation using quality metrics and case studies demonstrated the validity and effectiveness of

our approach. Specifically, the RBDU case study highlighted the robustness and adaptability of GAM SMA.

This work fills a significant knowledge gap by providing a formalized method for meta-model matching and

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2345-2355

2354

generation, contributing to the field of model-driven engineering. Compared to existing methods, GAM SMA

offers several advantages:

The GAM approach introduces significant innovations compared to existing methods. Unlike

traditional approaches that often rely on manual matching and lack mechanisms for automatic model

generation, GAM seamlessly integrates both processes, ensuring greater efficiency and consistency.

Furthermore, GAM demonstrates exceptional adaptability by handling a wide range of meta-models and

technologies, effectively addressing the limitations of methods such as static identifier-based technique (SIB),

SIG, SIM, and CSL technique, as highlighted in the SWOT analysis. In addition, GAM enhances key

performance metrics, offering improved precision and recall, which underscores its potential to transform

software development practices by delivering more accurate and reliable results.

Future research will focus on enhancing the heuristics for automatic matching and integrating

additional case studies to further validate the approach. We also plan to develop a comprehensive GUI

application using the .NET platform to facilitate broader adoption and practical application of GAM SMA,

which will further enhance automatic matching and model generation in various domains such as AI, IT

governance, E-learning, E-healthcare, internet of things (IoT), search engines, chatbots, and the Semantic

Web. Another significant area for future research lies in applying generative automatic matching to address

data layer interoperability and migration issues. Our team is currently working in this field, aiming to

overcome interoperability problems between big data NoSQL and relational databases. GAM MAS can help

automate system matching structure generation and explore data layer transformation.

REFERENCES
[1] Z. I. Batouta, R. Dehbi, M. Talea, and H. Omar, “Generative matching between heterogeneous meta-model’ systems based on

hybrid heuristic,” Journal of Information Technology Research, vol. 12, no. 2, pp. 53–71, 2019, doi: 10.4018/JITR.2019040104.
[2] Z. I. Batouta, R. Dehbi, M. Talea, and O. Hajoui, “Multi-criteria analysis and advanced comparative study between automatic

generation approaches in software engineering,” Journal of Theoretical and Applied Information Technology, vol. 81, no. 3,

pp. 609–620, 2015.
[3] Z. I. Batouta, R. Dehbi, M. Talea, and O. Hajoui, “Automation in code generation: Tertiary and systematic mapping review,”

Colloquium in Information Science and Technology, CIST, vol. 0, pp. 200–205, 2016, doi: 10.1109/CIST.2016.7805042.

[4] X. Yaozong, S. Xuebin, Z. Shuhua, Z. Qiujun, and J. Weinan, “Static Analysis Method of C Code Based on Model Checking and
Defect Pattern Matching,” in 2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems, ICPICS

2023, 2023, pp. 567–573. doi: 10.1109/ICPICS58376.2023.10235566.

[5] F. A. Somogyi and M. Asztalos, “Systematic review of matching techniques used in model-driven methodologies,” Software and
Systems Modeling, vol. 19, no. 3, pp. 693–720, 2020, doi: 10.1007/s10270-019-00760-x.

[6] J. Ren et al., “Matching algorithms: fundamentals, applications and challenges,” IEEE Transactions on Emerging Topics in

Computational Intelligence, vol. 5, no. 3, pp. 332–350, 2021, doi: 10.1109/TETCI.2021.3067655.
[7] T. Lyons and A. D. McLeod, “Signature methods in machine learning,” arXiv preprint arXiv:2206.14674, 2022, 2022.

[8] C. Cuchiero, G. Gazzani, and S. Svaluto-Ferro, “Signature-based models: theory and calibration,” SIAM Journal on Financial

Mathematics, vol. 14, no. 3, pp. 910–957, 2023, doi: 10.1137/22M1512338.
[9] M. T. Shafiq and S. R. Lockley, “Application of signature-based matching for IFC model comparison,” International Journal of

Construction Management, vol. 22, no. 9, pp. 1765–1774, 2022, doi: 10.1080/15623599.2020.1742630.

[10] P. Yang, H. Wang, J. Yang, Z. Qian, Y. Zhang, and X. Lin, “Deep learning approaches for similarity computation: a survey,”
IEEE Transactions on Knowledge and Data Engineering, 2024, doi: 10.1109/TKDE.2024.3422484.

[11] Z. Pan, G. Pan, and A. Monti, “Semantic-similarity-based schema matching for management of building energy data,” Energies,

vol. 15, no. 23, 2022, doi: 10.3390/en15238894.
[12] M. Auch, M. Weber, P. Mandl, and C. Wolff, “Similarity-based analyses on software applications: a systematic literature review,”

Journal of Systems and Software, vol. 168, 2020, doi: 10.1016/j.jss.2020.110669.

[13] D. K. Po, “Similarity based information retrieval using Levenshtein distance algorithm,” International Journal of Advances in
Scientific Research and Engineering, vol. 06, no. 04, pp. 6–10, 2020, doi: 10.31695/ijasre.2020.33780.

[14] Z. Yuan, L. Yan, and Z. Ma, “Structural similarity measure between UML class diagrams based on UCG,” Requirements

Engineering, vol. 25, no. 2, pp. 213–229, 2020, doi: 10.1007/s00766-019-00317-w.
[15] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A versatile graph matching algorithm and its application to

schema matching,” in Proceedings - International Conference on Data Engineering, 2002, pp. 117–128. doi:

10.1109/ICDE.2002.994702.
[16] F. Wrede, C. Rieger, and H. Kuchen, “Generation of high-performance code based on a domain-specific language for algorithmic

skeletons,” Journal of Supercomputing, vol. 76, no. 7, pp. 5098–5116, 2020, doi: 10.1007/s11227-019-02825-6.

[17] L. N. Lyadova, A. O. Sukhov, and M. R. Nureev, “An Ontology-Based Approach to the Domain Specific Languages Design,” in
15th IEEE International Conference on Application of Information and Communication Technologies, AICT 2021, 2021. doi:

10.1109/AICT52784.2021.9620493.

[18] G. Czech, M. Moser, and J. Pichler, “A systematic mapping study on best practices for domain-specific modeling,” Software
Quality Journal, vol. 28, no. 2, pp. 663–692, 2020, doi: 10.1007/s11219-019-09466-1.

[19] K. Panayiotou, C. Doumanidis, E. Tsardoulias, and A. L. Symeonidis, “SmAuto: a domain-specific-language for application

development in smart environments,” Pervasive and Mobile Computing, vol. 101, 2024, doi: 10.1016/j.pmcj.2024.101931.
[20] G. K. Halley, L. Vanfretti, and M. De Castro, “Interactive model transformations from the common information model (CIM) to

modelica,” in 2024 9th International Conference on Smart and Sustainable Technologies, SpliTech 2024, 2024, pp. 1–5. doi:

10.23919/SpliTech61897.2024.10612559.
[21] FIPA, “FIPA ACL message structure specification,” fipa.org, 2002. Accessed: Oct. 06, 2024). [Online], Available:

http://www.fipa.org/specs/fipa00061/SC00061G.pdf

Int J Elec & Comp Eng ISSN: 2088-8708 

 Architecture of multi-agent systems for generative automatic matching … (Zouhair Ibn Batouta)

2355

[22] G. Dodig-Crnkovic and M. Burgin, “A systematic approach to autonomous agents,” Philosophies, vol. 9, no. 2, 2024, doi:
10.3390/philosophies9020044.

[23] A. Amirkhani and A. H. Barshooi, “Consensus in multi-agent systems: a review,” Artificial Intelligence Review, vol. 55, no. 5,

pp. 3897–3935, 2022, doi: 10.1007/s10462-021-10097-x.
[24] R. Calegari, G. Ciatto, V. Mascardi, and A. Omicini, “Logic-based technologies for multi-agent systems: a systematic literature

review,” Autonomous Agents and Multi-Agent Systems, vol. 35, no. 1, 2021, doi: 10.1007/s10458-020-09478-3.

[25] D. Calvaresi, Y. Dicente Cid, M. Marinoni, A. F. Dragoni, A. Najjar, and M. Schumacher, “Real-time multi-agent systems:
rationality, formal model, and empirical results,” Autonomous Agents and Multi-Agent Systems, vol. 35, no. 1, 2021, doi:

10.1007/s10458-020-09492-5.

[26] R. C. Cardoso and A. Ferrando, “A review of agent-based programming for multi-agent systems,” Computers, vol. 10, no. 2,
pp. 1–15, 2021, doi: 10.3390/computers10020016.

[27] W. Du and S. Ding, “A survey on multi-agent deep reinforcement learning: from the perspective of challenges and applications,”

Artificial Intelligence Review, vol. 54, no. 5, pp. 3215–3238, 2021, doi: 10.1007/s10462-020-09938-y.
[28] Maciej Serda et al., “ESG, Competitive advantage and financial performances: a preliminary research,” Uniwersytet śląski, vol. 7,

no. 1, pp. 969–986, 2020.

[29] A. K. Chopra, S. H. Christie, and M. P. Singh, “An evaluation of communication protocol languages for engineering multiagent
systems,” Journal of Artificial Intelligence Research, vol. 69, pp. 1351–1393, 2020, doi: 10.1613/JAIR.1.12212.

[30] A. Arabiat and M. Altayeb, “Enhancing internet of things security: evaluating machine learning classifiers for attack prediction,”

International Journal of Electrical and Computer Engineering, vol. 14, no. 5, pp. 6036–6046, 2024, doi:
10.11591/ijece.v14i5.pp6036-6046.

[31] Bharti, N. S. Gill, and P. Gulia, “Exploring machine learning techniques for fake profile detection in online social networks,”

International Journal of Electrical and Computer Engineering, vol. 13, no. 3, pp. 2962–2971, 2023, doi:
10.11591/ijece.v13i3.pp2962-2971.

[32] W. Abdullah and A. Salah, “A novel hybrid deep learning model for price prediction,” International Journal of Electrical and

Computer Engineering, vol. 13, no. 3, pp. 3420–3431, Jun. 2023, doi: 10.11591/ijece.v13i3.pp3420-3431.
[33] I. Slimani et al., “Automated machine learning: the new data science challenge,” International Journal of Electrical and

Computer Engineering, vol. 12, no. 4, pp. 4243–4252, 2022, doi: 10.11591/ijece.v12i4.pp4243-4252.

[34] A. Erraji, A. Maizate, M. Ouzzif, and Z. Ibn Batouta, “Migrating data semantic from relational database system to NOSQL
systems to improve data quality for big data analytics system,” ECS Transactions, vol. 107, no. 1, pp. 19495–19503, 2022, doi:

10.1149/10701.19495ecst.

BIOGRAPHIES OF AUTHORS

Zouhair Ibn Batouta is a computer science professor and a researcher at the LTI

Laboratory, Hassan II University, Morocco. His research focuses on the fields of computer

science and software engineering. He can be contacted at email: zouhair.ibnbatouta@gmail.com.

Rachid Dehbi is a professor and researcher at the LR2I Laboratory, Hassan II

University, Morocco. His expertise includes various areas of computer science and software

engineering. He can be contacted at email: dehbirac@yahoo.fr.

Mohamed Talea is a professor and the head of the LTI Laboratory at Hassan II

University, Morocco. He has contributed significantly to the fields of computer science and

software engineering. He can be contacted at email: taleamohamed@yahoo.fr.

mailto:zouhair.ibnbatouta@gmail.com
mailto:dehbirac@yahoo.fr
mailto:taleamohamed@yahoo.fr
https://orcid.org/0000-0002-5534-0788
https://scholar.google.fr/citations?hl=fr&user=zIoUswgAAAAJ&view_op=list_works&gmla=ALUCkoVbvK4Z0473J-JUsaFiyFLlGZyCDI9KSZJeJSnhwZ14IFs1lbY5B2Tsc-BqPni_4FiYGoJ5AZNZJ5GXp-IZLBJcZ4pH1AyRnFMH7bSSYCHg7WdHSkgJUJU2DVsgJCvUexc-xSMJQIwb4qnZHayCJVAADDP02rQy
https://www.scopus.com/authid/detail.uri?authorId=56990076100
https://www.webofscience.com/wos/author/record/LRB-2850-2024
https://orcid.org/0009-0000-2638-440X
https://scholar.google.com/citations?hl=fr&view_op=list_works&gmla=AL3_zihqksXqYwSRNUxW-KGqg1nyE0mAScn1f-EYT7bi0Fv6Cd-X8zVnt7GzwbWKnVhqc2Vdk1oUcE7rtqNUqhB7dvG_jydebAvgYDAOWT-Tp2YekL9FurVwLQ&user=xJ8oqEgAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55542086500
https://www.webofscience.com/wos/author/record/LSJ-5521-2024
https://orcid.org/0000-0003-2364-0804
https://scholar.google.fr/citations?hl=fr&user=3ztbunUAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55542641500
https://www.webofscience.com/wos/author/record/GQR-1036-2022

