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 This study addresses the issue of air pollution in Pontianak, marked by high 

levels of pollutant particles and chemical compounds that cause respiratory 

health risks. The research involves essential air quality monitoring using 

various sensors for temperature, humidity (DHT22), O2 (MQ-135), CO 

(MQ-7), CO2 (MG-811), and dust (GP2Y1010AU0F), collected real-time, 

leading to a notable increase in data volume. Due to limitations in internet of 

things (IoT) devices, there is a need for integration between cloud and IoT 

through data transmission to reduce the communication time and memory 

usage. The escalation in sensor data volume requires a lossless compression 

technique to ensure efficient storage without sacrificing crucial information. 

Compression plays a vital role in overcoming complex storage challenges, 

facilitating real-time data access for monitoring, and contributing to 

sustainable efforts to improve air quality in Pontianak. This research applies 

the D-RAKE compression method based on basic counting procedures with 

minimal memory requirements, cost-effective, low-speed microcontrollers 

commonly used in IoT devices. Despite its simplicity, simulation results 

indicate that the D-RAKE algorithm outperforms well-established 

compression methods such as gzip, bzip2, and rar, particularly for data 

sequences with sparse elements. Moreover, when applied to real-world data, 

D-RAKE achieves superior compression ratios compared to IoT-focused 

compression techniques. 
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1. INTRODUCTION 

Pontianak, like many other major cities, faces significant challenges due to air pollution. The 

presence of dust particles and harmful chemicals such as carbon monoxide poses serious risks to respiratory 

health, making air quality monitoring an essential task [1]–[10]. The large volumes of data generated by air 

quality monitoring systems require advanced data compression techniques to manage the data efficiently 

[11]–[19]. This challenge is further compounded by the limitations of internet of things (IoT) devices, which 

rely on cloud transmission to reduce communication time and memory usage [20]. While timely sensor data 

is crucial for effective monitoring, the massive data volumes can lead to throttling issues, delaying the 

transmission and processing of data. Batch processing, where data is collected periodically before 

transmission, provides a partial solution. However, the continuous generation of data increases batch size, 

reducing the efficiency of data delivery, processing, and storage. Thus, sophisticated data compression 

methods that preserve critical information are essential for effectively managing the growing data volume 
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from Pontianak's air quality monitoring systems [21]–[26]. Data compression addresses storage challenges, 

enables real-time data access for analysis, and supports efforts to improve air quality in Pontianak. 

Integrating compression into monitoring systems enhances storage efficiency and ensures that critical data 

remains available for analysis and informed decision-making [27], [28].  

Several previous studies have explored various data compression techniques in environmental 

monitoring, each contributing uniquely to the advancement of this field [29]–[33]. For instance,  

Gunawan et al. [34] designed and implemented a portable outdoor air quality measurement system using 

Arduino but without applying data compression, which led to challenges in data management and cloud 

transmission. Wu et al. [35] proposed a method for data compression to alleviate the sensitivity packet losses 

in wireless sensor network (WSN). In addition, Hossain and Roy [36] did research on data compression for 

IoT sensors to optimize storage using lossless data compression and achieved a compression efficiency of 

50%; but it encountered some errors with the original data changing by 0% to 1.5% after decompression. 

Minewaki et al. [37] conducted research on lossless compression algorithms for environmental data using 

ZS.Q (zero-skip quantization); but, these methods do not fully satisfy the near-lossless (NL) condition. 

Ramalingam et al. [38] delved into the benefits of data compression in real-time data transmissions and fault 

analysis. Hwang et al. [39] proposed a bit depth compression (BDC) technique to compress the sensor data. 

Some studies highlight that while data compression is crucial for environmental monitoring, achieving 

optimal compression efficiency without compromising data integrity is still challenging. The difficulties in 

optimizing these techniques for IoT sensor data under various conditions indicate a need for further research. 

This study addresses these challenges by introducing a modified D-RAKE method to improve 

compression efficiency and ensure 100% accuracy in data decompression. Unlike previous methods, the  

D-RAKE approach further develops the ability to effectively manage large volumes of sensor data in air 

quality monitoring, ensuring that critical information is preserved while significantly reducing data size. This 

novel contribution provides a solution that addresses the existing limitations of current compression 

techniques, particularly in the context of large-scale air quality monitoring. The subsequent sections of this 

manuscript will detail the proposed D-RAKE method, including the specific modifications made to the 

compression algorithm. Simulation and experimental results will be presented to demonstrate the method's 

superiority over other established lossless compression techniques, such as gzip, bzip2, and rar. The 

discussion will focus on the context of air quality monitoring in Pontianak for supporting pollution reduction 

initiatives in other major cities. By offering a more efficient and effective data compression solution, this 

study aims to enhance the overall effectiveness of air quality monitoring efforts, contributing to improved 

public health and environmental sustainability. 

 

 

2. THE PROPOSED METHOD 

2.1. D-RAKE method 

The D-RAKE data compression algorithm is a development of RAKE’s method [40] that is used to 

compress data while retaining all the information, and it is particularly efficient when applied to binary 

sequences that have a low density of data points. In cases where there are minimal variations in time for 

signals, the algorithm can achieve compression by processing consecutive differences between samples, 

which are represented as the residue 𝑟(𝑖) = 𝑥(𝑖) − 𝑥(𝑖 − 1). The D-RAKE algorithm can be utilized when 

the data to be compressed contains fewer than 15% of 1s to the total number of bits. Nevertheless, if the data 

consists of more than 40% of 1 s, the compression method cannot be effectively applied. The D-RAKE 

algorithm operates according to the rules: i) A codeword of '0' means all bits in the RAKE are '0', indicating 

no '1' bits are present; ii) A codeword of 𝐿 = 1 + ⌈𝑙𝑜𝑔2𝑇⌉-bits means at least one '1' bit is found in the 

RAKE. The first bit of the codeword is set to '1' to indicate the presence of a '1' bit, and the remaining ⌈log2T⌉ 
bits encode its position, 𝑃𝑓𝑖𝑟𝑠𝑡𝑃_{𝑓𝑖𝑟𝑠𝑡}𝑃𝑓𝑖𝑟𝑠𝑡, which ranges from 0 to T−1; iii) The D-RAKE shifts by 

𝑃𝑓𝑖𝑟𝑠𝑡 +1 if a '1' bit is found, or by T if no '1' bit’s found; iv) This process repeats until all bits to be 

compressed are processed; and v) The final compressed sequence is obtained by concatenating all the 

codewords. 

 

2.2. D-RAKE for data compression and decompression 

The D-RAKE method is designed to optimize data compression that requires efficient data 

management like in IoT environments. This method reduces the large datasets size while preserving their 

integrity, making it ideal for handling the substantial sensor data typically generated in real-time monitoring 

systems. Figure 1(a) and Figure 1(b) shows the D-RAKE data compression and decompression process. 

Figure 1(a) and Figure 1(b) represent the simulation of D-RAKE algorithm. The explanation of 

Figure 1(a) data compression and Figure 1(b) data decompression process is as: 

− Normalization: combine all sensor values and the timestamp into a single decimal value. 
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− Convert to binary: convert the normalized decimal value to binary. 

− XOR operation: perform XOR operation between the binary data and default bits stored on the server. 

− D-RAKE compression: compress the XOR result using the RAKE compression algorithm. 

After compressing the data, it will transmit it to the cloud. Following this, the cloud will undertake 

the data decompression process to guarantee the complete restoration of data for use or display. The data 

decompression procedure involves normalizing the data and reverting it to its original format. The data 

decompression process is delineated as: 

− D-RAKE decompression: decompress the data using the RAKE decompression algorithm. 

− XOR operation: perform XOR operation between the decompressed data and the default bits to get the 

original binary data. 

− Convert to decimal: convert the original binary data back to decimal. 

− Denormalization: extract the original sensor data and timestamp from the denormalized value. 

 

 

 
(a) 

 

 
(b) 

 

Figure 1. The simulation of D-RAKE algorithm: (a) data compression process and (b) data decompression 

process 

 

 

3. METHOD 

The data in this study serves as input for the developed system, which is then processed and utilized 

to generate output. Specifically, the collected data includes air quality values obtained from the air quality 

monitoring system, which are subjected to compression. Additionally, the study records the size of the sensor 

data values both before and after compression to evaluate the effectiveness of the compression process. 

 

3.1. Data collection 

The data collection phase involves gathering air quality parameters from multiple sensors: DHT22 

for temperature and humidity, MQ-135 for oxygen (O₂), MQ-7 for carbon monoxide (CO), MG-811 for 

carbon dioxide (CO₂), and GP2Y1010AU0F for dust particles. These measurements, along with a timestamp, 

form the basis of the data for subsequent compression and analysis. Algorithm 1 presents the steps involved 

in this process. 
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Algorithm 1. Applying the data collection 
1. function collect_sensor_data(): 

2. timestamp=get_current_timestamp() 

3. temperature=read_sensor(DHT22) 

4. humidity=read_sensor(DHT22) 

5. O2=read_sensor(MQ-135) 

6. CO=read_sensor(MQ-7) 

7. CO2=read_sensor(MG-811) 

8. dust=read_sensor(GP2Y1010AU0F) 

9. sensor_data=[temperature, humidity, O2, CO, CO2, dust] 

10. return timestamp, sensor_data 

 

Algorithm 1 outlines the steps as follows: i) The system reads sensor data for each parameter and 

stores them in an array called 𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑎𝑡𝑎; ii) A timestamp is added to each collection cycle for tracking 

purposes; iii) Sensor data for temperature, humidity, O₂, CO, CO₂, and dust particles is read using the 

𝑟𝑒𝑎𝑑_𝑠𝑒𝑛𝑠𝑜𝑟(𝑠𝑒𝑛𝑠𝑜𝑟_𝑛𝑎𝑚𝑒) function and stored in an array called 𝑠𝑒𝑛𝑠𝑜𝑟_𝑑𝑎𝑡𝑎; and iv) The function 

returns both the timestamp and the collected sensor data for subsequent processing. 

 

3.2. Applying the proposed method to air quality monitoring system 

3.2.1. Data compression algorithm based on D-RAKE 

Data compression in this system is performed using a data encoding technique based on ASCII for 

converting sensor data, which is in character form, into binary form, and a data modeling technique using 

XOR operations on the sensor's binary data. Algorithm 2 applying the proposed method to compress the air 

quality monitoring system’s data: 

 

Algorithm 2. Applying the proposed method to compress the air quality monitoring system’s data 
1. function rake_compress(timestamp, sensor_data): 

2. default_data=None 

3. # Step 1: Normalize and encode sensor data 

4. binary_data="" 

5. for value in sensor_data: 

6. binary_value=ascii_to_binary(value) 

7. binary_data += binary_value 

8. # Step 2: Check if this is the first data 

9. if is_first_data(): 

10. default_data=binary_data 

11. store_default_data(default_data) 

12. else: 

13. default_data=get_default_data() 

14. binary_data=xor_operation(binary_data, default_data) 

15. # Step 3: RAKE Compression 

16. compressed_data=rake_algorithm(binary_data) 

17. return compressed_data 

 

The D-RAKE-based compression algorithm reduces the size of the collected data while preserving 

its accuracy. The process involves: 

a. Normalization and encoding: sensor values are converted into binary form using ASCII encoding. 

b. XOR operation: if the current data is not the first data point, the system applies an XOR operation with a 

default (previously stored) binary dataset to identify changes, reducing redundancy. 

c. RAKE compression: the processed binary data undergoes the RAKE compression algorithm, which 

minimizes the data size. 

The compressed data is returned and ready for transmission to the cloud. This approach ensures that only 

significant changes in the data are stored, optimizing memory usage and transmission bandwidth. 

 

3.2.2. Data transmission 

After the sensor data values are successfully compressed, the next step involves transmitting this 

compressed data to a cloud storage system for further processing. Once the data is stored in the cloud, 

decompression can be performed to restore the data to its original form, making it ready for use or display. 

Algorithm 3 is for the data transmission: 

 

Algorithm 3. The data transmission 
1. function transmit_data_to_cloud(compressed_data): 
2. cloud_store(compressed_data) 

 

The compressed data is transmitted to a cloud storage system for analysis and visualization. The transmission 

process is straightforward: 
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a. The 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡_𝑑𝑎𝑡𝑎_𝑡𝑜_𝑐𝑙𝑜𝑢𝑑() function handles the process of uploading compressed data to the cloud 

storage. 

b. The 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡_𝑑𝑎𝑡𝑎_𝑡𝑜_𝑐𝑙𝑜𝑢𝑑() function uses the 𝑐𝑙𝑜𝑢𝑑_𝑠𝑡𝑜𝑟𝑒() function to upload compressed data to 

the cloud securely, ensuring centralized storage and accessibility for further processing. 

 

3.2.3. Data decompression algorithm based on D-RAKE 

The data decompression process is crucial in ensuring that compressed data can be accurately 

restored to its original form without any loss of information or precision. This step is particularly important in 

applications such as air quality monitoring, where accurate data is essential for analysis and decision-making. 

Algorithm 4 implements the proposed method for decompressing air quality monitoring data, which involves 

three key stages: RAKE decompression to reverse the compression process, normalization to reconstruct the 

original binary values, and binary-to-ASCII conversion to translate the binary data back into usable sensor 

readings. These steps ensure that the decompressed data is accurate for further use. 

 

Algorithm 4. Applying the proposed method to decompress the air quality monitoring system’s data 
1. function rake_decompress(): 

2. compressed_data=retrieve_from_cloud() 

3. # Step 1: RAKE Decompression 

4. binary_data=rake_decompression_algorithm(compressed_data) 

5. # Step 2: Normalization using XOR with default data 

6. default_data=get_default_data() 

7. original_binary_data=xor_operation(binary_data, default_data) 

8. # Step 3: Convert binary to original sensor data 

9. sensor_data=binary_to_ascii(original_binary_data) 

10. return sensor_data 

11. function rake_decompression_algorithm(compressed_data): 

12. binary_data=compressed_data # Placeholder for the algorithm 

13. return binary_data 

14. function binary_to_ascii(binary_data): 

15. ascii_data="" 

16. for i in range(0, len(binary_data), 8): 

17. byte=binary_data[i:i+8] 

18. ascii_data += chr(int(byte, 2)) 

19. return ascii_data.split() 

20. function ascii_to_binary(value): 

21. binary_value="" 

22. for char in str(value): 

23. binary_value += format(ord(char), '08b') 

24. return binary_value 

25. function xor_operation (data1, data2): 

26. return ''.join (['1' if b1 != b2 else '0' for b1, b2 in zip(data1, data2)]) 

27. function rake_algorithm(data): # Implement RAKE compression algorithm  

28. compressed_data=data # for the actual RAKE  

29. return compressed_data 

 

Algorithm 4 explains that the data decompression process consists of three main stages: 

a. Retrieving compressed data: The process begins by retrieving compressed data from cloud storage using 

the 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒_𝑓𝑟𝑜𝑚_𝑐𝑙𝑜𝑢𝑑() function. Once the data is successfully retrieved, the first stage, RAKE 

decompression, is performed. The 𝑟𝑎𝑘𝑒_𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚() function is used to reverse the 

RAKE compression logic, converting the compressed binary data back into its decompressed binary form. 

b. Data normalization: In the second stage, normalization is performed by reconstructing the original binary 

values using an XOR operation between the decompressed binary data and a default dataset. This step is 

executed using the 𝑥𝑜𝑟_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛() function, which restores the data to its original state prior to 

compression. The default dataset serves as a reference to accurately reverse any transformations applied 

during the compression process. 

c. Binary-to-ASCII conversion: The third and final stage involves converting the reconstructed binary data 

back into the original sensor values using binary-to-ASCII conversion. The 𝑏𝑖𝑛𝑎𝑟𝑦_𝑡𝑜_𝑎𝑠𝑐𝑖𝑖() function 

processes the binary data in 8-bit chunks (bytes) and converts them into their corresponding ASCII 

characters. The resulting data is then split into individual sensor values, completing the decompression 

process. 

Through these steps, Algorithm 4 ensures that compressed data can be accurately restored without any loss of 

information. This is crucial for applications that demand high precision, such as air quality monitoring 

systems. 
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3.3. Data testing 

The system utilizes a structure consisting of input, processing, and output. Testing begins by 

inserting sensor data into the system to evaluate its performance. During the processing phase, data is 

compressed and decompressed. The test results are obtained by examining the data that has been compressed 

and transmitted through the IoT gateway to the cloud. Each parameter, including data size, compression, 

decompression efficiency, and the compression and decompression ratio, is then evaluated to assess the test 

results. Figure 2 provides a visual representation of the test block diagram. 

 

 

 
 

Figure 2. The test block diagram 

 

 

3.4. Evaluating the performance of text file data compression algorithms 

Once the testing system has been set up, the subsequent step involves conducting tests and 

measurements on the implemented system. Afterward, a comprehensive analysis is carried out to determine if 

the system aligns with the initial plan. Evaluating the performance of text file data compression algorithms 

are about compression-decompression ratio and compression-decompression efficiency [41]–[43]. 

a. Compression ratio 

Compression ratio (CR) is a measure that quantifies the relationship between the number of bits 

before compression and after compression. The formula for calculating the CR is presented in (1). 

 

𝐶𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝐵𝐸𝐹𝑂𝑅𝐸 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 𝐴𝐹𝑇𝐸𝑅 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
 (1) 

 

b. Compression efficiency 

Compression efficiency (CE%) refers to the effectiveness of a compression algorithm or technique 

in reducing the size or volume of data while retaining its essential information or quality. It is a measure of 

how well the compression process reduces the number of bits or bytes needed to represent the data [44]. 

 

𝐶𝐸% =100 × (1 - 
1

𝐶𝑅
) (2) 

 

The 𝐶𝐸 is presented in percentages to describe a measure of data compression's success. 

 

3.5. Evaluating the performance of text file data compression algorithms 

Before delving into the technical metrics, it is essential to establish the importance of evaluating 

compression and decompression processes. These metrics provide insights into the effectiveness of an 

algorithm in reducing data size while preserving its integrity. Two critical measures used for this evaluation 

are the decompression ratio (DR) and decompression efficiency (DE). 

a. Decompression ratio  

DR is determined by comparing the number of bits before and after decompression. The formula for 

calculating the decompression ratio is illustrated as (3). 

 

𝐷𝑅 =  
Number of Bits BEFORE Compression

Number of Bits AFTER decompression 
 (3) 

 

b. Decompression efficiency (DE%) is shown in (4). 
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The decompression efficiency (DE%) further evaluates the algorithm's performance by expressing 

the effectiveness of decompression as a percentage. It is determined using (4): 

 

𝐷𝐸% = 100 𝑥 (1 − 
1

𝐷𝑅
 ) (4) 

 

𝐷𝐸 is expressed as a percentage, representing a metric that quantifies the effectiveness of data decompression.  

 

 

4. RESULTS AND DISCUSSION  

This study reveals that the D-RAKE algorithm greatly improves data compression efficiency in air 

quality monitoring over traditional methods. Experimental results show that D-RAKE can reduce data size by 

up to 68.67% while maintaining the integrity of essential information. This higher CE means that more data 

can be stored and transmitted more quickly, which is crucial for real-time applications in air quality 

monitoring. This success is supported by direct comparisons of compression efficiency between D-RAKE 

and other traditional methods. 

To further validate these findings, the performance of the D-RAKE algorithm was compared with 

five other compression methods, namely rar, bzip2, gzip, RAKE, and D-RAKE, using two air quality 

datasets: Ds1 (Dataset 1), representing indoor air quality data, and Ds2 (Dataset 2), representing outdoor air 

quality data. This comparison reveals that D-RAKE consistently outperforms the other methods in 

compression efficiency, particularly with Dataset 1, which has more stable data variations. Traditional 

compression methods like rar, bzip2, and gzip demonstrated lower performance compared to D-RAKE, 

especially when handling data with more dynamic variations in Ds2. Meanwhile, RAKE, the predecessor of 

D-RAKE, also showed good efficiency but still fell short of D-RAKE's performance. These results 

underscore the superiority of D-RAKE in various scenarios and will be discussed in more detail in the 

following subsections. 

In conclusion, the development of the D-RAKE algorithm represents a significant advancement in 

data compression for air quality monitoring. The study highlights the algorithm’s ability to improve data 

storage and transmission efficiency within IoT systems, which can lead to faster response times and more 

informed decision-making in air quality management. Despite these promising results, several questions 

remain unanswered, such as how D-RAKE can be further adapted or enhanced to work effectively with 

various sensor types and different environmental conditions. Future research could focus on refining the  

D-RAKE algorithm to increase its speed and efficiency, as well as exploring its potential applications in 

other IoT domains. 

 

4.1. CE parameter 

The CE parameter is determined by calculating the CR, taking into consideration the data size 

before and after compression. In this research, data from sensors were collected across six different time 

intervals for each testing experiment, yielding diverse data size measurements. This was conducted to assess 

how the size of the data being compressed affects the CE parameter. Each time interval underwent 50 times 

collecting data and 6 times testing iterations (T1-T6 times in collecting data sensor), ensuring that the 

research conclusions could be applied universally to all compressed sensor data. The data compression 

testing experiments were carried out using a modified version of the D-RAKE data compression algorithm to 

discern variations in the CE parameter values across. Table 1 shows the outcomes obtained from the sensor 

data compression tests. 

 

 

Table 1. CE parameter testing 
Trial number (Tn) 

Data size before compression (Bytes) T1 T2 T3 T4 T5 T6 

1,208 2,416 4,252 7,781 11,645 15,356 

Data size after compression (Byte) MIN 398 767 1,306 2,074 3,396 4,349 
MAX 506 901 1,521 3,176 4,219 6,593 

AVG 488 886,4 1,457.3 2592.8 3,768.5 4,810 

CR-compression ratio 2.47 2.73 2.92 3.001 3.09 3.19 
CE-compression efficiency (%) 59.6 63.31 65.7 66.67 67.63 68.67 

 

 

Table 1 presents that the data size before compression gradually increases from T1 to T6, indicating 

variations in the data sizes used for testing. The data size before compression ranges from 1,208 bytes in T1 

to 15,356 bytes in T6. After compression, the data size is significantly reduced, with the smallest compressed 
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data size recorded in T1 at 398 bytes and the largest in T6 at 6,593 bytes. The CR displayed in the table 

shows how each trial yielded varying ratios, starting from 2.47 in T1 and increasing to 3.19 in T6. This 

increase in the compression ratio aligns with the increase in the initial data size, indicating that the D-RAKE 

algorithm becomes more effective when working with larger data sets. The CE also gradually increased from 

59.6% in T1 to 68.67% in T6. This suggests that the larger the compressed data, the higher the efficiency 

achieved by the D-RAKE algorithm. The increase in efficiency demonstrates the D-RAKE algorithm's 

effectiveness in reducing data size while preserving essential information. To better understand the 

performance of the D-RAKE algorithm as presented in Table 1, Figure 3 provides a visual representation of 

CE parameter.  

Figure 3 presents the efficiency of sensor data compression employing the D-RAKE compression 

technique derived from six distinct testing scenarios, covering intervals of 5, 10, 15, 20, 25, and 30 minutes, 

each repeated 50 times to ensure comprehensive insights applicable across all compressed sensor data. The  

D-RAKE method demonstrates superior CE compared to various other lossless compression methods. This is 

primarily attributed to its focus solely on converting sensor data into binary format, disregarding characters, and 

retaining only the decimal values of default and subsequent sensor data. Consequently, the resulting binary 

values undergo significant fluctuations with changes in decimal values. For instance, if the humidity sensor 

records a value of 54.22, this method omits characters, resulting in 5,422. Subsequent conversion yields 

[1010100101110], followed by normalization to obtain 5,423, then converted to binary form. XOR operation 

with the default binary value of 5,423, producing [1010100101111], results in numerous '1' bits. Increased 

discrepancies in decimal data amplify the likelihood of '1' binary occurrences during XOR operations. 

Conversely, the RAKE algorithm proves more efficient with a higher frequency of binary '0' occurrences. 

 

 

 
 

Figure 3. CE parameters 

 

 

4.2. DE Parameter 

During the data decompression testing phase, the D-RAKE method was applied. In each individual 

test run, data samples were collected over six distinct periods to investigate how the length of the data 

segment affected the process. After this, the data underwent compression and subsequent decompression to 

evaluate its ability to return to its original state. Table 2 provides a summary of the data decompression 

testing using the D-RAKE algorithm. 

Based on the data decompression testing outcomes, it was observed that the data length remained 

constant both before and after decompression, without any alterations. Additionally, when converting the 

compressed data, the values of the data before and after compression were IDENTICAL and UNCHANGED 

in all decompression trials. As a result, it can be inferred that the data was entirely and successfully restored 

to its original state with no loss, achieving a 100% recovery rate. 

 

 

Table 2. The summary of data compression testing 
Trial number 

 (Tn) 

Original data size  

(Byte) 

Average data size after  

compression (Byte) 

Data size after  

decompression (Byte) 

DR-decompression  

ratio (%) 

T1 1,208 488 1,208 100 
T2 2,416 886.4 2,416 100 

T3 4,252 1,457.3 4,252 100 

T4 7,781 2,592.8 7,781 100 

T5 11,645 3,768.5 11,645 100 

T6 15,356 4,810 15,356 100 
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4.3. Comparison results with some other compression method 

The comparison of CE across several data compression methods, including rar, bzip2, gzip, RAKE, 

and D-RAKE, was conducted using two air quality datasets, Ds1 which represents indoor air quality data, 

and Ds2 that represents outdoor air quality data. The RAR method shows stable compression efficiency 

across both datasets, with 28.0% for Ds1 and 36.4% for Ds2. In contrast, bzip2 exhibits significant variation, 

with very low compression efficiency at 4.3% for Ds1, but a substantial improvement to 35.4% for Ds2. The 

gzip method performs similarly to RAR, with identical efficiency values across both datasets. RAKE, a more 

recent method, demonstrates improved efficiency compared to traditional methods, achieving 32.1% for Ds1 

and 40.2% for Ds2. However, D-RAKE, an advanced version of RAKE, stands out as the most effective 

method, achieving the highest compression efficiencies, with 68.67% for Ds1 and 51.6% for Ds2, making it 

the most efficient in reducing data size. These findings confirm the effectiveness of the D-RAKE algorithm 

in efficiently compressing data and reducing data size while preserving essential information. This 

observation serves as evidence of the algorithm's superiority in improving data compression for air quality 

monitoring. The comparison between the D-RAKE method and other compression methods, such as rar, 

bzip2, gzip, and the original RAKE method, is shown in Table 3. 

To better understand the performance of different data compression methods, a comparative analysis 

was conducted using two datasets, Ds1 and Ds2. The CE of various methods, including rar, bzip2, gzip, 

RAKE, and D-RAKE, was evaluated across these datasets. Figure 3 illustrates the results of this comparison, 

highlighting the CE (%) achieved by each method in both indoor and outdoor settings. This visual 

representation provides a clear and concise overview of how each method performs under different 

environmental conditions, with particular emphasis on the superiority of the D-RAKE algorithm. Figure 4 

shows the results. 

Figure 4 shows a comprehensive comparison chart, showcasing the CE of several data compression 

methods tested. This chart is based on two air quality datasets, Ds1 and Ds2. In this chart, it is evident that  

D-RAKE has the highest CE across both datasets. For Ds1, which represents indoor data, D-RAKE achieves 

nearly double the CE compared to other methods, demonstrating D-RAKE's ability to compress more stable 

data with smaller variations effectively. For Ds2, which reflects outdoor data, D-RAKE also shows the best 

performance, although its CE is slightly lower than for Ds1 due to the greater data variability in outdoor 

environments. The RAKE method, which is the predecessor of D-RAKE, also shows relatively good 

performance but still falls short of D-RAKE in terms of CE. Meanwhile, traditional methods such as rar, 

bzip2, and gzip, though stable, are unable to reach the levels of CE demonstrated by D-RAKE. This figure 

visually emphasizes the superiority of the D-RAKE method in data compression, especially in the context of 

air quality monitoring, where reducing data size and preserving essential information are crucial. 

 

 

Table 3. Compression efficiencies in the case of real-world air quality data 
DataSet CErar (%) CEbzip2 (%) CEgzip (%) CERAKE (%) CED-RAKE (%) 

Ds1 28.0 4.3 28.0 32.1 68.67 
Ds2 36.4 35.4 36.4 40.2 51.6 

 

 

 
 

Figure 4. Mean of CE% in the case of real-world air quality data 

 

 

5. CONCLUSION 

This research clearly shows that the D-RAKE algorithm significantly improves data compression 

efficiency in IoT-based air quality monitoring systems. Our findings reveal that D-RAKE can reduce data 
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size by over 68% while preserving the integrity of critical information. This achievement is particularly 

important for managing data in IoT environments, where fast data transmission and storage efficiency are 

crucial for real-time applications. The comprehensive comparison of methods in this study confirms that  

D-RAKE consistently outperforms other compression methods. Its ability to reduce data size while 

maintaining important information makes it a standout solution for air quality monitoring. However, there are 

still some questions to explore, such as how the algorithm can be further optimized to work with different 

types of sensors and under various environmental conditions. Although D-RAKE is highly efficient, its 

complexity could affect processing speed, which needs further investigation. Looking ahead, future work will 

focus on refining the algorithm for smoother integration into real-time air quality monitoring systems and 

adapting it to different environmental conditions and sensor setups. Collaboration with industry for practical 

implementation, the development of user-friendly interfaces, and continuous validation will be key to 

establishing D-RAKE as a leading solution for data compression in air quality monitoring, ultimately 

contributing to better environmental management and public health. 
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