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This study addresses the issue of air pollution in Pontianak, marked by high
levels of pollutant particles and chemical compounds that cause respiratory
health risks. The research involves essential air quality monitoring using
various sensors for temperature, humidity (DHT22), O2 (MQ-135), CO
(MQ-7), CO2 (MG-811), and dust (GP2Y1010AUQF), collected real-time,
leading to a notable increase in data volume. Due to limitations in internet of
things (1oT) devices, there is a need for integration between cloud and loT
through data transmission to reduce the communication time and memory
usage. The escalation in sensor data volume requires a lossless compression
technique to ensure efficient storage without sacrificing crucial information.
Compression plays a vital role in overcoming complex storage challenges,
facilitating real-time data access for monitoring, and contributing to
sustainable efforts to improve air quality in Pontianak. This research applies
the D-RAKE compression method based on basic counting procedures with

minimal memory requirements, cost-effective, low-speed microcontrollers
commonly used in 10T devices. Despite its simplicity, simulation results
indicate that the D-RAKE algorithm outperforms well-established
compression methods such as gzip, bzip2, and rar, particularly for data
sequences with sparse elements. Moreover, when applied to real-world data,
D-RAKE achieves superior compression ratios compared to loT-focused
compression techniques.
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1. INTRODUCTION

Pontianak, like many other major cities, faces significant challenges due to air pollution. The
presence of dust particles and harmful chemicals such as carbon monoxide poses serious risks to respiratory
health, making air quality monitoring an essential task [1]-[10]. The large volumes of data generated by air
quality monitoring systems require advanced data compression techniques to manage the data efficiently
[11]-[19]. This challenge is further compounded by the limitations of internet of things (IoT) devices, which
rely on cloud transmission to reduce communication time and memory usage [20]. While timely sensor data
is crucial for effective monitoring, the massive data volumes can lead to throttling issues, delaying the
transmission and processing of data. Batch processing, where data is collected periodically before
transmission, provides a partial solution. However, the continuous generation of data increases batch size,
reducing the efficiency of data delivery, processing, and storage. Thus, sophisticated data compression
methods that preserve critical information are essential for effectively managing the growing data volume
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from Pontianak’s air quality monitoring systems [21]-[26]. Data compression addresses storage challenges,
enables real-time data access for analysis, and supports efforts to improve air quality in Pontianak.
Integrating compression into monitoring systems enhances storage efficiency and ensures that critical data
remains available for analysis and informed decision-making [27], [28].

Several previous studies have explored various data compression techniques in environmental
monitoring, each contributing uniquely to the advancement of this field [29]-[33]. For instance,
Gunawan et al. [34] designed and implemented a portable outdoor air quality measurement system using
Arduino but without applying data compression, which led to challenges in data management and cloud
transmission. Wu et al. [35] proposed a method for data compression to alleviate the sensitivity packet losses
in wireless sensor network (WSN). In addition, Hossain and Roy [36] did research on data compression for
10T sensors to optimize storage using lossless data compression and achieved a compression efficiency of
50%; but it encountered some errors with the original data changing by 0% to 1.5% after decompression.
Minewaki et al. [37] conducted research on lossless compression algorithms for environmental data using
ZS.Q (zero-skip quantization); but, these methods do not fully satisfy the near-lossless (NL) condition.
Ramalingam et al. [38] delved into the benefits of data compression in real-time data transmissions and fault
analysis. Hwang et al. [39] proposed a bit depth compression (BDC) technique to compress the sensor data.
Some studies highlight that while data compression is crucial for environmental monitoring, achieving
optimal compression efficiency without compromising data integrity is still challenging. The difficulties in
optimizing these techniques for 10T sensor data under various conditions indicate a need for further research.

This study addresses these challenges by introducing a modified D-RAKE method to improve
compression efficiency and ensure 100% accuracy in data decompression. Unlike previous methods, the
D-RAKE approach further develops the ability to effectively manage large volumes of sensor data in air
quality monitoring, ensuring that critical information is preserved while significantly reducing data size. This
novel contribution provides a solution that addresses the existing limitations of current compression
techniques, particularly in the context of large-scale air quality monitoring. The subsequent sections of this
manuscript will detail the proposed D-RAKE method, including the specific modifications made to the
compression algorithm. Simulation and experimental results will be presented to demonstrate the method's
superiority over other established lossless compression techniques, such as gzip, bzip2, and rar. The
discussion will focus on the context of air quality monitoring in Pontianak for supporting pollution reduction
initiatives in other major cities. By offering a more efficient and effective data compression solution, this
study aims to enhance the overall effectiveness of air quality monitoring efforts, contributing to improved
public health and environmental sustainability.

2. THE PROPOSED METHOD
2.1. D-RAKE method

The D-RAKE data compression algorithm is a development of RAKE’s method [40] that is used to
compress data while retaining all the information, and it is particularly efficient when applied to binary
sequences that have a low density of data points. In cases where there are minimal variations in time for
signals, the algorithm can achieve compression by processing consecutive differences between samples,
which are represented as the residue r(i) = x(i) — x(i — 1). The D-RAKE algorithm can be utilized when
the data to be compressed contains fewer than 15% of 1s to the total number of bits. Nevertheless, if the data
consists of more than 40% of 1 s, the compression method cannot be effectively applied. The D-RAKE
algorithm operates according to the rules: i) A codeword of '0' means all bits in the RAKE are '0', indicating
no '1' bits are present; ii) A codeword of L =1 + [log,T]-bits means at least one '1' bit is found in the
RAKE. The first bit of the codeword is set to '1' to indicate the presence of a '1' bit, and the remaining [log.T]
bits encode its position, PfirstP_{first}Ps;.s., which ranges from 0 to T—1; iii) The D-RAKE shifts by
Pirse +1 if @ '1' bit is found, or by T if no 'l' bit’s found; iv) This process repeats until all bits to be
compressed are processed; and v) The final compressed sequence is obtained by concatenating all the
codewords.

2.2. D-RAKE for data compression and decompression
The D-RAKE method is designed to optimize data compression that requires efficient data
management like in 10T environments. This method reduces the large datasets size while preserving their
integrity, making it ideal for handling the substantial sensor data typically generated in real-time monitoring
systems. Figure 1(a) and Figure 1(b) shows the D-RAKE data compression and decompression process.
Figure 1(a) and Figure 1(b) represent the simulation of D-RAKE algorithm. The explanation of
Figure 1(a) data compression and Figure 1(b) data decompression process is as:
— Normalization: combine all sensor values and the timestamp into a single decimal value.
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— Convert to binary: convert the normalized decimal value to binary.
— XOR operation: perform XOR operation between the binary data and default bits stored on the server.
— D-RAKE compression: compress the XOR result using the RAKE compression algorithm.

After compressing the data, it will transmit it to the cloud. Following this, the cloud will undertake
the data decompression process to guarantee the complete restoration of data for use or display. The data
decompression procedure involves normalizing the data and reverting it to its original format. The data
decompression process is delineated as:

— D-RAKE decompression: decompress the data using the RAKE decompression algorithm.

— XOR operation: perform XOR operation between the decompressed data and the default bits to get the
original binary data.

— Convert to decimal: convert the original binary data back to decimal.

— Denormalization: extract the original sensor data and timestamp from the denormalized value.
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Figure 1. The simulation of D-RAKE algorithm: (a) data compression process and (b) data decompression
process

3. METHOD

The data in this study serves as input for the developed system, which is then processed and utilized
to generate output. Specifically, the collected data includes air quality values obtained from the air quality
monitoring system, which are subjected to compression. Additionally, the study records the size of the sensor
data values both before and after compression to evaluate the effectiveness of the compression process.

3.1. Data collection

The data collection phase involves gathering air quality parameters from multiple sensors: DHT22
for temperature and humidity, MQ-135 for oxygen (O2), MQ-7 for carbon monoxide (CO), MG-811 for
carbon dioxide (CO2), and GP2Y1010AUOF for dust particles. These measurements, along with a timestamp,
form the basis of the data for subsequent compression and analysis. Algorithm 1 presents the steps involved
in this process.
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Algorithm 1. Applying the data collection
1. function collect sensor _dataf():
timestamp= get_current_tlmestamp()
temperature=read sensor (DHT22)
humidity=read sensor (DHT22)
O2=read_sensor (MQ-135)
CO=read_sensor (MQ-7)
CO.=read_sensor (MG-811)
dust=read sensor (GP2Y1010AUQF)
sensor data=[temperature, humidity, Oz, CO, COz, dust]
0. return timestamp, sensor data

H O o Jo U b wN

Algorithm 1 outlines the steps as follows: i) The system reads sensor data for each parameter and
stores them in an array called sensor_data; ii) A timestamp is added to each collection cycle for tracking
purposes; iii) Sensor data for temperature, humidity, Oz, CO, CO., and dust particles is read using the
read_sensor(sensor_name) function and stored in an array called sensor_data; and iv) The function
returns both the timestamp and the collected sensor data for subsequent processing.

3.2. Applying the proposed method to air quality monitoring system
3.2.1. Data compression algorithm based on D-RAKE

Data compression in this system is performed using a data encoding technique based on ASCII for
converting sensor data, which is in character form, into binary form, and a data modeling technique using
XOR operations on the sensor's binary data. Algorithm 2 applying the proposed method to compress the air
quality monitoring system’s data:

Algorithm 2. Applying the proposed method to compress the air quality monitoring system’s data
function rake compress(timestamp, sensor data):

2 default data=None

3 # Step 1: Normalize and encode sensor data

4 binary data=""

5. for value in sensor data:

6

7

8

[

binary value=ascii to binary(value)
binary data += binary value
. # Step 2: Check if this is the first data
9. if is_first data():

10. default data=binary data

11. store default data(default data)

12. else:

13. default data=get default data()

14. binary data=xor operation(binary data, default data)
15. # Step 3: RAKE Compression

16. compressed data=rake algorithm(binary data)

17. return compressed data

The D-RAKE-based compression algorithm reduces the size of the collected data while preserving
its accuracy. The process involves:
a. Normalization and encoding: sensor values are converted into binary form using ASCII encoding.
b. XOR operation: if the current data is not the first data point, the system applies an XOR operation with a
default (previously stored) binary dataset to identify changes, reducing redundancy.
¢. RAKE compression: the processed binary data undergoes the RAKE compression algorithm, which
minimizes the data size.
The compressed data is returned and ready for transmission to the cloud. This approach ensures that only
significant changes in the data are stored, optimizing memory usage and transmission bandwidth.

3.2.2. Data transmission

After the sensor data values are successfully compressed, the next step involves transmitting this
compressed data to a cloud storage system for further processing. Once the data is stored in the cloud,
decompression can be performed to restore the data to its original form, making it ready for use or display.
Algorithm 3 is for the data transmission:

Algorithm 3. The data transmission
1. function transmit data to cloud(compressed data):
2. cloud store(compressed data)

The compressed data is transmitted to a cloud storage system for analysis and visualization. The transmission
process is straightforward:

D-RAKE compression for enhanced internet of things data management in ... (Kartika Sari)



2472 O3 ISSN: 2088-8708

a. The transmit_data_to_cloud() function handles the process of uploading compressed data to the cloud
storage.

b. The transmit_data_to_cloud() function uses the cloud_store() function to upload compressed data to
the cloud securely, ensuring centralized storage and accessibility for further processing.

3.2.3. Data decompression algorithm based on D-RAKE

The data decompression process is crucial in ensuring that compressed data can be accurately
restored to its original form without any loss of information or precision. This step is particularly important in
applications such as air quality monitoring, where accurate data is essential for analysis and decision-making.
Algorithm 4 implements the proposed method for decompressing air quality monitoring data, which involves
three key stages: RAKE decompression to reverse the compression process, normalization to reconstruct the
original binary values, and binary-to-ASCII conversion to translate the binary data back into usable sensor
readings. These steps ensure that the decompressed data is accurate for further use.

Algorithm 4. Applying the proposed method to decompress the air quality monitoring system’s data
1. function rake decompress():
compressed data=retrieve from cloud()
# Step 1: RAKE Decompression
binary data=rake decompression algorithm(compressed data)
# Step 2: Normalization using XOR with default data
default data=get default data()
original binary data=xor operation(binary data, default data)
# Step 3: Convert binary to original sensor data
9. sensor data=binary to ascii(original binary data)
10. return sensor data
11. function rake decompression algorithm(compressed data):
12. binary data=compressed data # Placeholder for the algorithm
13. return binary data
14. function binary to ascii (binary data):
15. ascii data=""
16. for i in range(0, len(binary data), 8):
17. byte=binary data[i:i+8]
18. ascii data += chr(int(byte, 2))
19. return ascii data.split()
20. function ascii_to binary(value):
21. binary value=""
22. for char in str(value):
23. binary value += format (ord(char), '08b"')
24. return binary value
25. function xor operation (datal, data2):

0 J o Ul wN

26. return ''.join (['l' if bl != b2 else '0' for bl, b2 in zip(datal, data2)])
27. function rake algorithm(data): # Implement RAKE compression algorithm
28. compressed data=data # for the actual RAKE

29. return compressed data

Algorithm 4 explains that the data decompression process consists of three main stages:

a. Retrieving compressed data: The process begins by retrieving compressed data from cloud storage using
the retrieve_from_cloud() function. Once the data is successfully retrieved, the first stage, RAKE
decompression, is performed. The rake_decompression_algorithm() function is used to reverse the
RAKE compression logic, converting the compressed binary data back into its decompressed binary form.

b. Data normalization: In the second stage, normalization is performed by reconstructing the original binary
values using an XOR operation between the decompressed binary data and a default dataset. This step is
executed using the xor_operation() function, which restores the data to its original state prior to
compression. The default dataset serves as a reference to accurately reverse any transformations applied
during the compression process.

c. Binary-to-ASCII conversion: The third and final stage involves converting the reconstructed binary data
back into the original sensor values using binary-to-ASCII conversion. The binary_to_ascii() function
processes the binary data in 8-bit chunks (bytes) and converts them into their corresponding ASCII
characters. The resulting data is then split into individual sensor values, completing the decompression
process.

Through these steps, Algorithm 4 ensures that compressed data can be accurately restored without any loss of

information. This is crucial for applications that demand high precision, such as air quality monitoring

systems.
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3.3. Data testing

The system utilizes a structure consisting of input, processing, and output. Testing begins by
inserting sensor data into the system to evaluate its performance. During the processing phase, data is
compressed and decompressed. The test results are obtained by examining the data that has been compressed
and transmitted through the 10T gateway to the cloud. Each parameter, including data size, compression,
decompression efficiency, and the compression and decompression ratio, is then evaluated to assess the test
results. Figure 2 provides a visual representation of the test block diagram.

OUtpLIt

Figure 2. The test block diagram

3.4. Evaluating the performance of text file data compression algorithms

Once the testing system has been set up, the subsequent step involves conducting tests and
measurements on the implemented system. Afterward, a comprehensive analysis is carried out to determine if
the system aligns with the initial plan. Evaluating the performance of text file data compression algorithms
are about compression-decompression ratio and compression-decompression efficiency [41]-[43].
a. Compression ratio

Compression ratio (CR) is a measure that quantifies the relationship between the number of bits
before compression and after compression. The formula for calculating the CR is presented in (1).

Number of Bits BEFORE Compression
CR = (1)

Number of Bits AFTER Compression

b. Compression efficiency

Compression efficiency (CE%) refers to the effectiveness of a compression algorithm or technique
in reducing the size or volume of data while retaining its essential information or quality. It is a measure of
how well the compression process reduces the number of bits or bytes needed to represent the data [44].

CE% =100 x (1 - CiR) @)
The CE is presented in percentages to describe a measure of data compression's success.

3.5. Evaluating the performance of text file data compression algorithms

Before delving into the technical metrics, it is essential to establish the importance of evaluating
compression and decompression processes. These metrics provide insights into the effectiveness of an
algorithm in reducing data size while preserving its integrity. Two critical measures used for this evaluation
are the decompression ratio (DR) and decompression efficiency (DE).
a. Decompression ratio

DR is determined by comparing the number of bits before and after decompression. The formula for
calculating the decompression ratio is illustrated as (3).

Number of Bits BEFORE Compression

DR =

©)

Number of Bits AFTER decompression

b. Decompression efficiency (DE%) is shown in (4).
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The decompression efficiency (DE%) further evaluates the algorithm's performance by expressing
the effectiveness of decompression as a percentage. It is determined using (4):

DE% = 100 x (1 — ﬁ) (4)

DE is expressed as a percentage, representing a metric that quantifies the effectiveness of data decompression.

4. RESULTS AND DISCUSSION

This study reveals that the D-RAKE algorithm greatly improves data compression efficiency in air
quality monitoring over traditional methods. Experimental results show that D-RAKE can reduce data size by
up to 68.67% while maintaining the integrity of essential information. This higher CE means that more data
can be stored and transmitted more quickly, which is crucial for real-time applications in air quality
monitoring. This success is supported by direct comparisons of compression efficiency between D-RAKE
and other traditional methods.

To further validate these findings, the performance of the D-RAKE algorithm was compared with
five other compression methods, namely rar, bzip2, gzip, RAKE, and D-RAKE, using two air quality
datasets: Ds1 (Dataset 1), representing indoor air quality data, and Ds2 (Dataset 2), representing outdoor air
quality data. This comparison reveals that D-RAKE consistently outperforms the other methods in
compression efficiency, particularly with Dataset 1, which has more stable data variations. Traditional
compression methods like rar, bzip2, and gzip demonstrated lower performance compared to D-RAKE,
especially when handling data with more dynamic variations in Ds2. Meanwhile, RAKE, the predecessor of
D-RAKE, also showed good efficiency but still fell short of D-RAKE's performance. These results
underscore the superiority of D-RAKE in various scenarios and will be discussed in more detail in the
following subsections.

In conclusion, the development of the D-RAKE algorithm represents a significant advancement in
data compression for air quality monitoring. The study highlights the algorithm’s ability to improve data
storage and transmission efficiency within 10T systems, which can lead to faster response times and more
informed decision-making in air quality management. Despite these promising results, several questions
remain unanswered, such as how D-RAKE can be further adapted or enhanced to work effectively with
various sensor types and different environmental conditions. Future research could focus on refining the
D-RAKE algorithm to increase its speed and efficiency, as well as exploring its potential applications in
other 0T domains.

4.1. CE parameter

The CE parameter is determined by calculating the CR, taking into consideration the data size
before and after compression. In this research, data from sensors were collected across six different time
intervals for each testing experiment, yielding diverse data size measurements. This was conducted to assess
how the size of the data being compressed affects the CE parameter. Each time interval underwent 50 times
collecting data and 6 times testing iterations (T1-T6 times in collecting data sensor), ensuring that the
research conclusions could be applied universally to all compressed sensor data. The data compression
testing experiments were carried out using a modified version of the D-RAKE data compression algorithm to
discern variations in the CE parameter values across. Table 1 shows the outcomes obtained from the sensor
data compression tests.

Table 1. CE parameter testing
Trial number (Tn)

Data size before compression (Bytes) T1 T2 T3 T4 T5 T6
1,208 2,416 4,252 7,781 11,645 15,356

Data size after compression (Byte)  MIN 398 767 1,306 2,074 3,396 4,349
MAX 506 901 1,521 3,176 4,219 6,593

AVG 488 8864 14573 25928 3,7685 4,810

CR-compression ratio 247 2.73 2.92 3.001 3.09 3.19
CE-compression efficiency (%) 59.6 63.31 65.7 66.67 67.63 68.67

Table 1 presents that the data size before compression gradually increases from T1 to T6, indicating
variations in the data sizes used for testing. The data size before compression ranges from 1,208 bytes in T1
to 15,356 bytes in T6. After compression, the data size is significantly reduced, with the smallest compressed
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data size recorded in T1 at 398 bytes and the largest in T6 at 6,593 bytes. The CR displayed in the table
shows how each trial yielded varying ratios, starting from 2.47 in T1 and increasing to 3.19 in T6. This
increase in the compression ratio aligns with the increase in the initial data size, indicating that the D-RAKE
algorithm becomes more effective when working with larger data sets. The CE also gradually increased from
59.6% in T1 to 68.67% in T6. This suggests that the larger the compressed data, the higher the efficiency
achieved by the D-RAKE algorithm. The increase in efficiency demonstrates the D-RAKE algorithm's
effectiveness in reducing data size while preserving essential information. To better understand the
performance of the D-RAKE algorithm as presented in Table 1, Figure 3 provides a visual representation of
CE parameter.

Figure 3 presents the efficiency of sensor data compression employing the D-RAKE compression
technique derived from six distinct testing scenarios, covering intervals of 5, 10, 15, 20, 25, and 30 minutes,
each repeated 50 times to ensure comprehensive insights applicable across all compressed sensor data. The
D-RAKE method demonstrates superior CE compared to various other lossless compression methods. This is
primarily attributed to its focus solely on converting sensor data into binary format, disregarding characters, and
retaining only the decimal values of default and subsequent sensor data. Consequently, the resulting binary
values undergo significant fluctuations with changes in decimal values. For instance, if the humidity sensor
records a value of 54.22, this method omits characters, resulting in 5,422. Subsequent conversion yields
[1010100101110], followed by normalization to obtain 5,423, then converted to binary form. XOR operation
with the default binary value of 5,423, producing [1010100101111], results in numerous 1" bits. Increased
discrepancies in decimal data amplify the likelihood of '1' binary occurrences during XOR operations.
Conversely, the RAKE algorithm proves more efficient with a higher frequency of binary '0' occurrences.

Compression efficiency
70%

68%

68.67%
66% 65.70%

64%
° 63.31%

62%

Percentage (%0)

60%

58%
T1 T2 T3 T4 T5 T6

—0=—Trial Number (Tn) Trial Number

Figure 3. CE parameters

4.2. DE Parameter

During the data decompression testing phase, the D-RAKE method was applied. In each individual
test run, data samples were collected over six distinct periods to investigate how the length of the data
segment affected the process. After this, the data underwent compression and subsequent decompression to
evaluate its ability to return to its original state. Table 2 provides a summary of the data decompression
testing using the D-RAKE algorithm.

Based on the data decompression testing outcomes, it was observed that the data length remained
constant both before and after decompression, without any alterations. Additionally, when converting the
compressed data, the values of the data before and after compression were IDENTICAL and UNCHANGED
in all decompression trials. As a result, it can be inferred that the data was entirely and successfully restored
to its original state with no loss, achieving a 100% recovery rate.

Table 2. The summary of data compression testing

Trial number  Original data size ~ Average data size after Data size after DR-decompression
(Tn) (Byte) compression (Byte) decompression (Byte) ratio (%)
T1 1,208 488 1,208 100
T2 2,416 886.4 2,416 100
T3 4,252 1,457.3 4,252 100
T4 7,781 2,592.8 7,781 100
T5 11,645 3,768.5 11,645 100
T6 15,356 4,810 15,356 100
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4.3. Comparison results with some other compression method

The comparison of CE across several data compression methods, including rar, bzip2, gzip, RAKE,
and D-RAKE, was conducted using two air quality datasets, Ds1 which represents indoor air quality data,
and Ds2 that represents outdoor air quality data. The RAR method shows stable compression efficiency
across both datasets, with 28.0% for Ds1 and 36.4% for Ds2. In contrast, bzip2 exhibits significant variation,
with very low compression efficiency at 4.3% for Ds1, but a substantial improvement to 35.4% for Ds2. The
gzip method performs similarly to RAR, with identical efficiency values across both datasets. RAKE, a more
recent method, demonstrates improved efficiency compared to traditional methods, achieving 32.1% for Ds1
and 40.2% for Ds2. However, D-RAKE, an advanced version of RAKE, stands out as the most effective
method, achieving the highest compression efficiencies, with 68.67% for Ds1 and 51.6% for Ds2, making it
the most efficient in reducing data size. These findings confirm the effectiveness of the D-RAKE algorithm
in efficiently compressing data and reducing data size while preserving essential information. This
observation serves as evidence of the algorithm's superiority in improving data compression for air quality
monitoring. The comparison between the D-RAKE method and other compression methods, such as rar,
bzip2, gzip, and the original RAKE method, is shown in Table 3.

To better understand the performance of different data compression methods, a comparative analysis
was conducted using two datasets, Ds1 and Ds2. The CE of various methods, including rar, bzip2, gzip,
RAKE, and D-RAKE, was evaluated across these datasets. Figure 3 illustrates the results of this comparison,
highlighting the CE (%) achieved by each method in both indoor and outdoor settings. This visual
representation provides a clear and concise overview of how each method performs under different
environmental conditions, with particular emphasis on the superiority of the D-RAKE algorithm. Figure 4
shows the results.

Figure 4 shows a comprehensive comparison chart, showcasing the CE of several data compression
methods tested. This chart is based on two air quality datasets, Ds1 and Ds2. In this chart, it is evident that
D-RAKE has the highest CE across both datasets. For Ds1, which represents indoor data, D-RAKE achieves
nearly double the CE compared to other methods, demonstrating D-RAKE's ability to compress more stable
data with smaller variations effectively. For Ds2, which reflects outdoor data, D-RAKE also shows the best
performance, although its CE is slightly lower than for Ds1 due to the greater data variability in outdoor
environments. The RAKE method, which is the predecessor of D-RAKE, also shows relatively good
performance but still falls short of D-RAKE in terms of CE. Meanwhile, traditional methods such as rar,
bzip2, and gzip, though stable, are unable to reach the levels of CE demonstrated by D-RAKE. This figure
visually emphasizes the superiority of the D-RAKE method in data compression, especially in the context of
air quality monitoring, where reducing data size and preserving essential information are crucial.

Table 3. Compression efficiencies in the case of real-world air quality data
DataSet CErar (%) CEbzip2 (%) CEgzip (%) CERAKE (%) CED-RAKE (%)
Dsl 28.0 43 28.0 32.1 68.67
Ds2 36.4 35.4 36.4 40.2 51.6

Compression efficiency (CE)

63.67 CED-RAKE(%)
< Dst g 0 CERAKE(%)
3 43 )

E 28] Cegzip(%)
< EilG O CEbzip2(%)
2 Ds2 A @ Cerar(%)
< 354 1
a 36,4 ]
0 10 20 30 40 50 60 70
Mean of CE%

Figure 4. Mean of CE% in the case of real-world air quality data

5. CONCLUSION
This research clearly shows that the D-RAKE algorithm significantly improves data compression
efficiency in loT-based air quality monitoring systems. Our findings reveal that D-RAKE can reduce data
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size by over 68% while preserving the integrity of critical information. This achievement is particularly
important for managing data in 10T environments, where fast data transmission and storage efficiency are
crucial for real-time applications. The comprehensive comparison of methods in this study confirms that
D-RAKE consistently outperforms other compression methods. Its ability to reduce data size while
maintaining important information makes it a standout solution for air quality monitoring. However, there are
still some questions to explore, such as how the algorithm can be further optimized to work with different
types of sensors and under various environmental conditions. Although D-RAKE is highly efficient, its
complexity could affect processing speed, which needs further investigation. Looking ahead, future work will
focus on refining the algorithm for smoother integration into real-time air quality monitoring systems and
adapting it to different environmental conditions and sensor setups. Collaboration with industry for practical
implementation, the development of user-friendly interfaces, and continuous validation will be key to
establishing D-RAKE as a leading solution for data compression in air quality monitoring, ultimately
contributing to better environmental management and public health.
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