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 Lithium-ion (li-ion) batteries have a high energy density and a long cycle 

life. Lithium-ion batteries have a finite lifespan, and their energy storage 

capacity diminishes with use. In order to properly plan battery maintenance, 

the state of health (SoH) of lithium-ion batteries is crucial. This study aims 

to combine two deep learning techniques (hybrid deep learning), namely 

convolutional neural network (CNN) and bidirectional long short-term 

memory (BiLSTM), for SoH estimation in li-ion batteries. This study 

contrasts hybrid deep learning methods to single deep learning models so 

that the most suitable model for accurately measuring the SoH in lithium-ion 

batteries can be determined. In comparison to other methodologies,  

CNN-BiLSTM yields the best results. The CNN-BiLSTM algorithm yields 

RMSE, mean square error (MSE), mean absolute error (MAE), and mean 

absolute percentage error (MAPE) in the following order: 0.00916, 

0.000084, 0.0048, and 0.00603. This indicates that CNN-BiLSTM, as a 

hybrid deep learning model, is able to calculate the approximate capacity of 

the lithium-ion battery more accurately than other methods. 
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1. INTRODUCTION 

Lithium-ion (li-ion) batteries have a high energy density and a long cycle life [1]. Lithium-ion 

batteries can optimize energy utilization from solar panels and provide a reliable energy supply when it is 

needed [2]. However, lithium-ion batteries have a restricted shelf life and experience a decline in energy 

storage capacity over time and use [3]. This can influence the performance of the equipment and the battery 

life. State of Health estimation on lithium-ion batteries increases battery utilization efficiency as a result. 

Estimating the state of health (SoH) of lithium-ion batteries can be accomplished using a variety of 

techniques, such as battery sensors, mathematical models, visual methods, and deep learning methods based 

on battery management technology [4], [5]. Deep learning offers more accurate estimates of SoH and 

remaining useful life (RUL) than the other methods and enables systems to monitor the state of the battery in 

actual time [6]. 

Previous research has utilized deep learning for battery health estimation using methods such as 

convolutional neural network (CNN) [7], long short-term memory (LSTM) [8], Bidirectional LSTM 

(BiLSTM) [9], and deep belief networks (DBNs) [10]. Prior studies only employed a single deep learning 

technique, which lacked generalization capabilities and was dependent on training data, resulting in 

https://creativecommons.org/licenses/by-sa/4.0/
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overfitting. This new research combines CNN and BiLSTM for Li-ion battery SoH estimation in order to 

provide more accurate results by utilizing the strengths of both methods. Hybrid deep learning can overcome 

generalization problems and reduce overfitting caused by training data dependence, thereby increasing 

estimation accuracy [11]. 

This study's objective is to employ hybrid deep learning techniques to estimate the SoH of lithium-

ion batteries. The hybrid deep learning method utilized in research is a combination of CNN and BiLSTM. 

CNN has the ability to process data with a large number of features and capture complex patterns and 

relationships between features on battery data [12]. CNN, however, is limited in its ability to analyze 

sequential data correlations and time-related data relationships. In contrast, BiLSTM has an advantage for 

overcoming CNN's limitations in that it can analyze sequential data correlations and time relationships within 

data [13]. This research contributes to combining CNN and BiLSTM to leverage the strengths of both 

methods, with the expectation of producing a hybrid deep learning method that is more powerful and more 

accurate for measuring the SoH of lithium-ion batteries. This research also compares the performance of 

hybrid deep learning and single deep learning in order to determine the optimal model for estimating SoH in 

lithium-ion batteries. 

Previous research has developed an estimate of the state of health (SoH) for lithium-ion batteries. 

Duan et al. [14] compared the machine learning techniques k-nearest neighbors (K-NN), logistic regression 

(LR), ensemble learning (EL), and support vector machine (SVM). These research results demonstrate that 

the EL method is more effective than other methods. Furthermore, the estimation of SoH in lithium-ion 

batteries using deep learning is growing. Jo et al. [15] compared the CNN, feedforward neural network 

(FNN), and long short-term memory (LSTM) and found that the LSTM method performed better than the 

other methods. Jia et al. [16] estimates SoH and RUL using Gaussian process regression (GPR) and produces 

good predictions of estimation accuracy. Khan et al. [17] compared adaptive boosting (AB), support vector 

regression (SVR), LSTM, multi-layer perceptron (MLP), bi-directional LSTM (BiLSTM), and CNN and 

resulted in the BiLSTM method being the best method compared to other methods. However, these studies 

have limitations in measuring the SoH of lithium-ion batteries using only one selected machine learning or 

deep learning method. 

Combining deep learning methods (hybrid deep learning) can be used to improve the accuracy of 

SoH estimation [18], [19]. The hybrid CNN-LSTM model utilized in study [20] proved superior to either 

CNN or LSTM. BiLSTM is an evolution of the LSTM paradigm, so BiLSTM always produces superior 

results. CNN is unable to analyze sequential correlations and temporal relationships in data. BiLSTM has the 

benefit of being able to examine data sequential correlations and intertemporal relationships. CNN and 

BiLSTM can provide more accurate estimates of lithium-ion battery SoH when used together. 

 

 

2. MATERIAL AND METHODS 

This study estimates the SoH in Lithium-Ion batteries using hybrid deep learning. The research uses 

five stages of method: data preprocessing, data modeling, hyperparameter tuning, and evaluation. The 

explanation of each method is as follows. 

 

2.1.  Dataset 

The study utilized data from the NASA prognostics data repository [21], [22]. The data includes 

experimental information about the lithium-ion battery used by NASA satellites. Batteries with various 

operating parameters (charging, discharging, and impedance) were tested at various temperatures. The 

dataset includes multiple attributes, including cycle, ambient temperature, datetime, capacity, voltage 

measured, current measured, temperature measured, actual load, voltage load, and time. The data includes 34 

battery types, including B0055, B0028, B0030, B0018, and B0005. Table 1 presents a subset of the dataset. 

 

2.2.  Data preprocessing 

The data preprocessing phase involves data filtering, SOH calculations, and the selection of battery 

data attributes. When data is filtered, the variety of battery with a fluctuating ratio of capacity to cycle curves is 

eliminated. The capacity and cycle curves of all varieties of batteries are examined, and the type of battery with 

a downward or good curve will be utilized in this study. The battery type data was filtered into nine distinct 

battery varieties, including B0005, B0006, B0007, B0018, B0025, B0026, B0027, B0028, and B0036. 

During the preprocessing phase, the SoH calculation is also performed using (1). State of health 

(𝑆𝑜𝐻) checks are performed on all battery types [17], [23]. 

 

𝑆𝑜𝐻 =  
𝐶𝐶

𝐶𝐼
 × 100% (1) 
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𝐶𝐶: the current cycle's maximum capacity 

𝐶𝐼: the first cycle’s maximum capacity 

The evaluation of battery data attributes is also performed during the preprocessing phase. The 

attributes cycle, ambient temperature, and datetime that are irrelevant to the li-ion battery SOH estimation 

process are removed. The data attributes utilised in this study are capacity, voltage measured, current 

measured, temperature measured, current load, voltage load, time, and SoH. The sample data after data 

preprocessing are displayed in Table 2. 
 

 

Table 1. The dataset applied in this study  
Cycle Ambient 

temperature 
Datetime Capacity Voltage 

measured 
Current 

measured 
Temperature 

measured 
Current 

load 
Voltage 

load 
Time 

1 24 2009-02-13 

23:12:28 

1.804685 4.166704 0.000899 26.507287 0.0002 4.181 29.500 

1 24 2009-02-13 

23:12:28 

1.804685 3.930981 -

1.998470 

26.555082 1.9992 2.881 39.469 

… … … … … … … … … … 

168 24 2008-05-27 
20:45:42 

1.325079 3.587336 0.001219 34.565580 0.0006 0.000 2810.640 

 

 

Table 2. The dataset after data preprocessing 
Capacity Voltage 

measured 
Current 

measured 
Temperature 

measured 
Current 

load 
Voltage 

load 
Time SoH 

1.804685 4.166704 0.000899 26.507287 0.0002 4.181 29.500 1.000000 

1.804685 3.930981 -1.998470 26.555082 1.9992 2.881 39.469 0.946788 
… … … … … … … … 

1.325079 3.587336 0.001219 34.565580 0.0006 0.000 2810.640 0.734243 

 

 

2.3.  Data modeling  

This study estimates SoH using hybrid deep learning techniques, including standard deep learning-

LSTM, Standard deep learning-BiLSTM, standard deep learning-SimpleRNN, CNN-LSTM, CNN-BiLSTM, 

and CNN-SimpleRNN. Hybrid deep learning methods are also compared to deep learning methods such as 

Standard Deep Learning, LSTM, BiLSTM, SimpleRNN, and CNN. Training battery data is conducted using 

battery data B0005, B0006, B0007, B0018, B0025, B0026, B0027, B0028, and B0036. The training data is 

differentiated by combining data for all battery types with training data for each battery type. In addition, 

data testing is conducted using B0055 battery data.  

 CNN-BiLSTM model is a hybrid deep learning technique that combines 1-D CNN with BiLSTM 

models. The CNN model is processed in parallel with the BiLSTM model. The CNN and BiLSTM models 

are combined to produce a model with concatenated features for estimating SoH. SoH calculations are 

performed during training and data testing so that predicted and actual SoH values can be compared. 

The CNN model contains 1-dimensional convolutional which activates certain features of the data to 

produce a feature map, followed by rectified linear units (ReLU) which enable faster and more effective 

training. Furthermore, max pooling simplifies the output by performing nonlinear downsampling thereby 

reducing the number of parameters that the network needs to learn. The process continues with 

1-dimensional convolutional+RELU and max pooling again. Then, flatten layer to convert the two-

dimensional feature matrix into a vector. Finally, the fully connected layer (FCL) with the activation function 

is added with the number of neurons. 

The BiLSTM model contains the BiLSTM layer and the dropout layer is repeated twice. The model 

is continued with dense_1 and dense_2 layers. Then, Flatten layer and FCL. The models are combined to 

produce concatenated features that combine features from the CNN and BiLSTM models. The model output 

can produce SoH estimates. The architecture of the CNN-BiLSTM model is shown in Figure 1. 

 

2.4.  Hyperparameter tuning 

The hyperparameter optimization phase determines the parameters of the optimal experimental 

scenario. This study employs the parameters loss function, optimizer, batch_size, model activation, and 

epoch. Mean_squared_error is the loss function utilized in this study. Meanwhile, Adam is the optimizer 

used. Batch_Size is set to 50. The era utilized is 30. Then the employed activation model is tanh. 

 

2.5.  Evaluation 

The research utilised four metrics to assess the effectiveness of the implemented procedure. This 

deep learning method is evaluated using mean absolute error (MAE), mean square error (MSE), mean 
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absolute percentage error (MAPE), and root mean square error (RMSE). In equations (2), (3), (4), and (5), 

the metrics are displayed [24], [25]. 𝑛 is the amount of data that is measured or predicted. 𝑦𝑖  is the actual 

SoH used in real terms, while 𝑦𝑖
~ is the predicted SoH produced by the model.  

 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑦𝑖 − 𝑦𝑖

~)2𝑛
𝑖=1    (2) 

 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑦𝑖 −  𝑦𝑖

~)2𝑛
𝑖=1   (3) 

 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑛

𝑖=1 𝑦𝑖 − 𝑦𝑖
~|    (4) 

 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
 ∑ |

𝑦𝑖− 𝑦𝑖
~

𝑦𝑖
|𝑛

𝑖=1   (5) 

 

 

 
 

Figure 1. The CNN-BiLSTM architecture 

 

 

3. RESULTS AND DISCUSSION 

In this section, the results of the research are explained along with a comprehensive discussion. This 

section consists of data collection and results and discussion. The explanation of each method is as follows. 

 

3.1.  Data collection 

In the NASA prognostics data repository, there are 301,710 records. There are a total of 251,073 

records after preprocessing. The data are utilised as training data to construct a hybrid deep learning model 

for estimating the SoH of lithium-ion batteries. Using 22,662 records from the B0055 dataset to evaluate the 

deep learning model. 

 

3.2.  Result and discussion 

This study uses eleven experimental scenarios for the estimation of the state of health of li-ion 

batteries. The experimental scenarios used are standard deep learning-LSTM, standard deep learning-

BiLSTM, standard deep learning-SimpleRNN, CNN-LSTM, CNN-BiLSTM, CNN-SimpleRNN, standard 

deep learning, LSTM, BiLSTM, SimpleRNN, and CNN. The evaluation results of each method for 

estimating the SoH of lithium-ion batteries are displayed in Table 3. 
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The evaluation findings of this research, as shown in Table 3, indicate that CNN-BiLSTM 

outperformed other approaches. The CNN-BiLSTM approach yields the following values in the order of 

RMSE, MSE, MAE, and MAPE: 0.00916, 0.000084, 0.0048, and 0.00603. The hybrid deep learning method 

that obtained the next best results was standard deep learning-BiLSTM which obtained RMSE, MSE, MAE, 

and MAPE values respectively as follows: 0.00969, 0.000094, 0.00575, and 0.00724. The model that 

received the next best evaluation for a single deep learning model was BiLSTM with RMSE, MSE, MAE, 

and MAPE values respectively as follows 0.01075, 0.00011, 0.00649, and 0.00756. 

 

 

Table 3. The evaluation of RMSE, MSE, MAE, and MAPE 
Methods RMSE MSE MAE MAPE 

Standard deep learning-LSTM 0.01094 0.00011 0.0058 0.00771 

Standard deep learning-BiLSTM 0.00969 0.000094 0.00575 0.00724 
Standard deep learning-SimpleRNN 0.01293 0.00016 0.00665 0.00814 

CNN-LSTM 0.0168 0.00028 0.01013 0.01399 

CNN-BiLSTM 0.00916 0.000084 0.0048 0.00603 

CNN-SimpleRNN 0.01471 0.00021 0.00756 0.00902 

Standard deep learning 0.04249 0.0018 0.02995 0.03824 

BiLSTM 0.01075 0.00011 0.00649 0.00756 
LSTM 0.01483 0.00022 0.01085 0.01264 

SimpleRNN 0.01311 0.00017 0.00758 0.0092 

CNN 0.02514 0.00063 0.01584 0.01928 

 

 

This research also evaluates the performance of each battery type to estimate the State of Health of 

li-ion batteries. The following battery types are utilized: B0005, B0006, B0007, B0018, B0025, B0026, 

B0027, B0028, and B0036. Each type of battery is evaluated using standard deep learning, LSTM, BiLSTM, 

SimpleRNN, and CNN. Table 4 displays the evaluation results for RMSE, MSE, MAE, and MAPE for each 

type of battery used to estimate SoH. 

Table 4 of the evaluation results for this study revealed that BiLSTM consistently produced the best 

results when compared to standard deep learning, LSTM, SimpleRNN, and CNN for each battery type. The 

B0025 battery achieved the greatest evaluation value with RMSE, MSE, MAE, and MAPE values of 

0.00059, 3.4871, 0.00047, and 0.00048, respectively. Then, the model with the second-best evaluation results 

for each type of battery data is the SimpleRNN model. 

This study illustrates the comparison curve between SoH and SoH predictions for every cycle. SoH 

that is used is SoH data from battery B0055, while SoH that is predicted is SoH prediction result from 

training data. The comparison of SoH and SoH predictions is depicted in Figure 2 (see in appendix). SoH is 

represented by the blue line, and predicted SoH is represented by the orange line. 

Figure 2 shows that CNN-BiLSTM has a reasonably accurate model prediction and is near to the 

SoH value when compared to other methods. Figure 2 consists of subfigures including Figure 2(a) standard 

deep learning-LSTM, Figure 2(b) standard deep learning-BiLSTM, Figure 2(c) standard deep learning-

SimpleRNN, Figure 2(d) CNN-LSTM, Figure 2(e) CNN-BiLSTM, Figure 2(f) CNN-SimpleRNN,  

Figure 2(g) standard deep learning, Figure 2(h) LSTM, Figure 2(i) BiLSTM, Figure 2(j) SimpleRNN, and  

Figure 2(k) CNN. CNN-BiLSTM provides model predictions within a range near or close to actual SoH 

values, resulting in superior performance in terms of prediction. Furthermore, CNN-BiLSTM can generalize 

well from training data to random data. CNN-BiLSTM has a low error rate when predicting SoH values. 

CNN-BiLSTM can effectively apply significant patterns extracted from training data to new data. 

Figure 2 illustrates that compared to other approaches, the standard deep learning model accurately 

forecasts real SoH values throughout a broad spectrum. Conventional deep learning methods provide less 

precise model predictions for predicting SoH values. The model is influenced by bias in the training data, 

leading it to routinely forecast SoH values that are too high, resulting in a substantial disparity between the 

actual and anticipated SoH. The significant disparities across SoH curves might arise from measurement 

mistakes or flaws during the calculation of the precise SoH value. Should the data used for model training be 

inaccurate, it is likely that the model's predictions will also be imprecise. 

CNN-BiLSTM is the optimal model for estimating SoH in lithium-ion batteries, according to this 

study. This technique is preferable to other hybrid and deep learning techniques. This is due to the fact that 

the combination of CNN and BiLSTM models can produce optimal model performance, allowing for better 

state of health prediction compared to other models. CNN's model excels at extracting hierarchical features 

from data in order to identify patterns that are difficult to recognise in numerical data. In contrast, BiLSTM is 

able to capture temporal patterns in data sequences. By combining CNN and BiLSTM, models are able to 

extract vital information, resulting in more robust representations of features. In addition, model CNN-

BiLSTM can help reduce overfitting. CNN has a propensity to generate a large number of features, and 
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BiLSTM can help control the complexity of the model by utilizing contextual information from both data 

input directions. This can reduce the risk of overfitting that can occur with deep learning models. Utilizing 

the strengths of each architecture makes the combination of the CNN and BiLSTM models more 

advantageous than other models. 

 

 

Table 4. The evaluation of RMSE, MSE, MAE, and MAPE for each battery type 
Methods RMSE MSE MAE MAPE 

Battery B0005 
Standard deep learning 0.05273 0.00278 0.031307 0.037176 

BiLSTM 0.00492 2.42811 0.00407 0.00484 

LSTM 0.04317 0.00186 0.03761 0.04714 
SimpleRNN 0.01277 0.00016 0.01018 0.01203 

CNN 0.05279 0.00278 0.03122 0.03697 

Battery B0006 
Standard deep learning 0.07394 0.005468 0.0432 0.05756 

BiLSTM 0.00270 7.3333 0.00215 0.00284 

LSTM 0.01328 0.00017 0.00901 0.01094 
SimpleRNN 0.00557 3.10398 0.00413 0.00558 

CNN 0.07145 0.00510 0.04021 0.05311 

Battery B0007 
Standard Deep Learning 0.01601 0.00025 0.00903 0.01063 

BiLSTM 0.00412 1.70461 0.00372 0.00425 

LSTM 0.01727 0.0002 0.01233 0.01325 
SimpleRNN 0.006872 4.72300 0.00492 0.00576 

CNN 0.01488 0.00022 0.00761 0.00890 

Battery B0018 
Standard Deep Learning 0.02497 0.00062 0.01443 0.01701 

BiLSTM 0.00707 5.00178 0.00592 0.00693 

LSTM 0.00803 6.46041 0.00541 0.00669 
SimpleRNN 0.02302 0.00053 0.00958 0.01146 

CNN 0.02823 0.00079 0.01776 0.02113 

Battery B0025 
Standard deep learning 0.00461 2.12995 0.00390 0.00397 

BiLSTM 0.00059 3.48716 0.00047 0.00048 

LSTM 0.00570 3.26040 0.00513 0.00524 
SimpleRNN 0.00089 8.00543 0.00058 0.00059 

CNN 0.00457 2.08875 0.00410 0.00418 

Battery B0026 
Standard deep learning 0.00871 7.59889 0.00418 0.00472 

BiLSTM 0.00228 5.20353 0.00197 0.00207 

LSTM 0.00242 5.86066 0.00170 0.00174 
SimpleRNN 0.00512 2.62785 0.00491 0.00509 

CNN 0.00277 7.71735 0.00219 0.00228 

Battery B0027 
Standard deep learning 0.00295 8.74244 0.00228 0.00231 

BiLSTM 0.00075 5.72049 0.00057 0.00057 

LSTM 0.00721 5.20097 0.00663 0.00671 
SimpleRNN 0.00367 1.35289 0.00342 0.00346 

CNN 0.00315 9.97627 0.00265 0.00267 
Battery B0028 

Standard deep learning 0.00352 1.24535 0.00278 0.00285 

BiLSTM 0.00146 2.14991 0.00095 0.00098 

LSTM 0.00464 2.15431 0.00398 0.00407 

SimpleRNN 0.00158 2.51209 0.00137 0.00139 

CNN 0.00244 5.99046 0.00189 0.00193 
Battery B0036 

Standard deep learning 0.01118 0.00012 0.00387 0.00556 

BiLSTM 0.00273 7.47552 0.00176 0.00252 

LSTM 0.00652 4.25574 0.00455 0.00661 

SimpleRNN 0.00328 1.07758 0.00213 0.00298 

CNN 0.01065 0.00011 0.00843 0.01216 

 

 

Evaluation of a single deep learning model yields a BiLSTM model that is superior to other models. 

BiLSTM is a recurrence model capable of capturing temporal relationships in data. BiLSTM enables the model 

to see the context before and after a given time, which is crucial for identifying trends and patterns for li-ion 

battery SoH estimation. BiLSTM is capable of identifying Li-ion battery characteristics such as degradation 

over time and variations in response during charge and discharge cycles. BiLSTM is well-suited to this type of 

task due to its capacity to recall past information and use it to make predictions about the future. 
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4. CONCLUSION 

The study successfully estimated the SoH of lithium-ion batteries using hybrid deep learning 

methods. The hybrid deep learning methods used in this study are standard deep learning-LSTM, standard 

deep learning-BiLSTM, standard deep learning-SimpleRNN, CNN-LSTM, CNN-BiLSTM, and CNN-

SimpleRNN. This research compares hybrid deep learning methods with single deep learning models such as 

standard deep learning, LSTM, BiLSTM, SimpleRNN, and CNN. CNN-BiLSTM has the best results 

compared to other methods. The CNN-BiLSTM method obtains RMSE, MSE, MAE, and MAPE in sequence 

of 0.00916, 0.000084, 0.0048, and 0.00603. The model that received the next best evaluation for a single 

deep learning model was BiLSTM with RMSE, MSE, MAE, and MAPE values respectively as follows 

0.01075, 0.00011, 0.00649, and 0.00756. This suggests that the CNN-BiLSTM has the ability to estimate the 

best Li-ion battery SoH compared to other methods. 

Future research can combine CNN transfer learning models such as Resnet50, VGG19, InceptionV3 

to predict State-of-Health on li-ion batteries. Ensemble transfer learning CNN can be combined with other 

models such as BiLSTM or LSTM to produce better performance because it combines the advantages of 

these methods. Future research can also estimate the RUL of li-ion batteries so that the results obtained are 

more comprehensive than only estimating SoH. 

 

 

APPENDIX 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Curve of comparison between SoH and predicted SoH (a) standard deep learning-LSTM and 

(b) standard deep learning-BiLSTM 
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(c) 

 

 
(d) 

 

 
(e) 

 

Figure 2. Curve of comparison between SoH and predicted SoH (c) standard deep learning-SimpleRNN, 

(d) CNN-LSTM, and (e) CNN-BiLSTM 
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(f) 

 

 
(g) 

 

 
(h) 

 

Figure 2. Curve of comparison between SoH and predicted SoH: (f) CNN-SimpleRNN,  

(g) standard deep learning, and (h) LSTM 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 995-1006 

1004 

 
(i) 

 

 
(j) 

 

 
(k) 

 

Figure 2. Curve of comparison between SoH and predicted SoH: (i) BiLSTM, (j) SimpleRNN, and (k) CNN 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Hybrid deep learning for estimation of state-of-health in lithium-ion batteries (Denis Eka Cahyani) 

1005 

ACKNOWLEDGEMENTS 

Thank you to the Institute for Research and Community Service (LPPM) of Universitas Negeri 

Malang for supplying the 2023 research grant funds. This paper serves as both a required output of the 2023 

research grant and a form of accountability for the grant. Thanks are also extended to co-researchers who 

contributed to this study's fruitful outcomes. 

 

 

REFERENCES 
[1] N. Imanishi and O. Yamamoto, “Perspectives and challenges of rechargeable lithium–air batteries,” Materials Today Advances, 

vol. 4, Dec. 2019, doi: 10.1016/j.mtadv.2019.100031. 

[2] M. Laxmi Deepak Bhatlu, M. Bhaumik, K. Sukanya, Neethujayan, and S. Karthikeyan, “Energy management by using lithium-
ion batteries, piezo materials, sensors and renewal energy system in the daily life: A review,” Journal of Critical Reviews, vol. 7, 

no. 7, pp. 798–801, 2020, doi: 10.31838/jcr.07.07.146. 

[3] S. Gifford and Z. Brown, “Solid-state batteries: the technology of the 2030s but the research challenge of the 2020s,”  
The Faraday Institution, 2020. 

[4] X. Cui and T. Hu, “State of health diagnosis and remaining useful life prediction for lithium-ion battery based on data model 

fusion method,” IEEE Access, vol. 8, pp. 207298–207307, 2020, doi: 10.1109/ACCESS.2020.3038182. 
[5] L. Morris and M. H. Weatherspoon, “Prediction prognosis for state of charge, state of health, and remaining useful life for a  LFP 

battery management system (BMS),” ECS Meeting Abstracts, vol. MA2018-01, no. 1, pp. 127–127, 2018, doi: 10.1149/ma2018-

01/1/127. 
[6] W. Zhang, X. Li, and X. Li, “Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series 

prediction and on-line validation,” Measurement, vol. 164, Nov. 2020, doi: 10.1016/j.measurement.2020.108052. 

[7] N. Yang, Z. Song, H. Hofmann, and J. Sun, “Robust state of health estimation of lithium-ion batteries using convolutional neural 
network and random forest,” Journal of Energy Storage, vol. 48, Apr. 2022, doi: 10.1016/j.est.2021.103857. 

[8] Y. Zhang, P. Hutchinson, N. A. J. Lieven, and J. Nunez-Yanez, “Remaining useful life estimation using long short-term memory 

neural networks and deep fusion,” IEEE Access, vol. 8, pp. 19033–19045, 2020, doi: 10.1109/ACCESS.2020.2966827. 
[9] C. Chen, N. Lu, B. Jiang, Y. Xing, and Z. H. Zhu, “Prediction interval estimation of aeroengine remaining useful life based on 

bidirectional long short-term memory network,” IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021,  

doi: 10.1109/TIM.2021.3126006. 
[10] G. Niu, S. Tang, Z. Liu, G. Zhao, and B. Zhang, “Fault diagnosis and prognosis based on deep belief network and particle 

filtering,” in Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM, 2018, pp. 1–10, 

doi: 10.36001/phmconf.2018.v10i1.540. 
[11] A. Z. Woldaregay et al., “Data-driven modeling and prediction of blood glucose dynamics: machine learning applications in type 

1 diabetes,” Artificial Intelligence in Medicine, vol. 98, pp. 109–134, 2019, doi: 10.1016/j.artmed.2019.07.007. 

[12] X. Zhou et al., “Partial discharge pattern recognition of transformer based on deep learning,” Gaoya Dianqi/High Voltage 
Apparatus, vol. 55, no. 12, pp. 98–105, 2019, doi: 10.13296/j.1001-1609.hva.2019.12.014. 

[13] K. Zhao, L. Huang, R. Song, Q. Shen, and H. Xu, “A sequential graph neural network for short text classification,” Algorithms, 

vol. 14, no. 12, 2021, doi: 10.3390/a14120352. 
[14] B. Duan, Q. Zhang, F. Geng, and C. Zhang, “Remaining useful life prediction of lithium-ion battery based on extended Kalman 

particle filter,” International Journal of Energy Research, vol. 44, no. 3, pp. 1724–1734, 2020, doi: 10.1002/er.5002. 

[15] S. Jo, S. Jung, and T. Roh, “Battery state-of-health estimation using machine learning and preprocessing with relative state-of-
charge,” Energies, vol. 14, no. 21, 2021, doi: 10.3390/en14217206. 

[16] J. Jia, J. Liang, Y. Shi, J. Wen, X. Pang, and J. Zeng, “SOH and RUL prediction of lithium-ion batteries based on Gaussian 

process regression with indirect health indicators,” Energies, vol. 13, no. 2, 2020, doi: 10.3390/en13020375. 
[17] N. Khan, F. U. M. Ullah, Afnan, A. Ullah, M. Y. Lee, and S. W. Baik, “Batteries state of health estimation via efficient neural 

networks with multiple channel charging profiles,” IEEE Access, vol. 9, pp. 7797–7813, 2021,  
doi: 10.1109/ACCESS.2020.3047732. 

[18] Y. Fan, F. Xiao, C. Li, G. Yang, and X. Tang, “A novel deep learning framework for state of health estimation of lithium-ion 

battery,” Journal of Energy Storage, vol. 32, 2020, doi: 10.1016/j.est.2020.101741. 
[19] Y. Ma, C. Shan, J. Gao, and H. Chen, “Multiple health indicators fusion-based health prognostic for lithium-ion battery using 

transfer learning and hybrid deep learning method,” Reliability Engineering and System Safety, vol. 229, 2023,  

doi: 10.1016/j.ress.2022.108818. 

[20] T. Xia, Y. Song, Y. Zheng, E. Pan, and L. Xi, “An ensemble framework based on convolutional bi-directional LSTM with 

multiple time windows for remaining useful life estimation,” Computers in Industry, vol. 115, 2020,  

doi: 10.1016/j.compind.2019.103182. 
[21] J. Lee, H. Qiu, G. Yu, J. Lin, and Rexnord Technical Services, “‘Bearing data set’, NASA Ames Prognostics Data Repository,” 

IMS, University of Cincinnati, 2007. 

[22] F. Cadini, C. Sbarufatti, F. Cancelliere, and M. Giglio, “State-of-life prognosis and diagnosis of lithium-ion batteries by data-
driven particle filters,” Applied Energy, vol. 235, pp. 661–672, 2019, doi: 10.1016/j.apenergy.2018.10.095. 

[23] R. Yang, R. Xiong, H. He, H. Mu, and C. Wang, “A novel method on estimating the degradation and state of charge of lithium-

ion batteries used for electrical vehicles,” Applied Energy, vol. 207, pp. 336–345, 2017, doi: 10.1016/j.apenergy.2017.05.183. 
[24] A. Khalid, A. Sundararajan, and A. Sarwat, “A statistical out-of-sample forecast to estimate lithium-ion parameters that determine 

state of charge,” ECS Meeting Abstracts, vol. MA2019-04, no. 4, pp. 208–208, Jun. 2019, doi: 10.1149/MA2019-04/4/208. 

[25] C. J. Willmott and K.Matsuura, “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in 
assessing average model performance,” Climate Research, vol. 30, pp. 79–82, 2005. 

 

 

 

 

 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 995-1006 

1006 

BIOGRAPHIES OF AUTHORS  

 

 

Denis Eka Cahyani     holds a Bachelor of Computer Science (S.Kom.) in computer 

science, Master of Computer Science (M.Kom.) in computer science, Universitas Indonesia in 

2015 besides several professional certificates and skills. holds a Bachelor of Informatics 

degree from Universitas Sebelas Maret, Indonesia in 2013. She is currently lecturing with the 

Department of Mathematics at Universitas Negeri Malang, Malang, Indonesia. She is a  

member of the Engineers and the Institute of Electrical and Electronics Engineers (IEEE) 

Indonesia Section. Her research areas of interest include data science, natural language 

processing, and artificial intelligence. She can be contacted at email: 

denis.eka.cahyani.fmipa@um.ac.id. 

  

 

Langlang Gumilar     received the Bachelor of Applied Science (S.ST.) degree in 

Electromechanic from STTN-BATAN, Indonesia, in 2013 and the Master of Engineering 

(M.T.) degree in Electrical Engeering from Universitas Indonesia, Indonesia in 2015. 

Currently, he is a lecturer at Universitas Negeri Malang, Department of Electrical Engineering, 

Indonesia. His interest research is electrical power system, power quality, renewable energy, 

and energy management. He can be contacted at email: langlang.gumilar.ft@um.ac.id. 

  

 

Arif Nur Afandi      is a full professor at Universitas Negeri Malang (Indonesia) and 

also a Liaison Professor at Kumamoto University (Japan), who is a senior member 

internationally of the IEEE serving as the Chair of the Power and Energy Society (PES) 

Chapter for IEEE IS (IEEE IS). He graduated with Electrical Engineering and Computer 

Science at GSST Kumamoto University, Engineering Science Postgraduate at JTETI Gajah 

Mada University, Electrical Engineering at JTE Brawijaya University, and Electrical Engineer 

Program at PSPPI Brawijaya University. He teaches at the Department of Electrical 

Engineering and Informatics (DEEI), Universitas Negeri Malang, Indonesia. He is interested in 

energy and power systems, smart grid and hybrid systems, and intelligent and engineering 

computations. He can be contacted at email: an.afandi@um.ac.id. 

  

 

Aji Prasetya Wibawa     received the Bachelor of Engineering (S.T.) degree in 

electrical engineering from Universitas Brawijaya, Indonesia, in 2004 and the master’s in 

Management of Technology (M.MT.) degree in information management technology from 

Institut Teknologi 10 November, Indonesia in 2007 and Ph.D. degrees in elektrical and 

information engineering from University of South Australia, Australia in 2014. Currently, he is 

a lecturer at Universitas Negeri Malang, Department of Electrical Engineering, Indonesia. His 

interest research is natural language processing (NLP), machine translation, data science–

analytics. He can be contacted at email: aji.prasetya.ft@um.ac.id. 

  

 

Ahmad Kadri Junoh     received the Bachelor of Mechanical Engineering degree in 

Akita University, Japan in 2002 and the master in science degree in mathematics from 

Universiti Kebangsaan Malaysia, Malaysia in 2008 and Ph.D degrees in noise and vibration 

from  Universiti Kebangsaan Malaysia, Malaysia in 2014. Currently, he is an associate 

professor and lecturer at Institute of Engineering Mathematics, Universiti Malaysia Perlis, 

Malaysia. His interest research is artificial intelligence and machine learning, noise and 

vibration, image processing, and operational research. He can be contacted at email: 

kadri@unimap.edu.my. 

 

mailto:azean@utm.my
https://orcid.org/0000-0001-9979-715X
https://scholar.google.co.id/citations?user=JPbdKkkAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=56905465300
https://www.webofscience.com/wos/author/record/3964628
https://orcid.org/0000-0001-8772-2046
https://scholar.google.com/citations?hl=en&user=MnHEBp4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57203803755
https://www.webofscience.com/wos/author/record/2200679
https://orcid.org/0000-0001-9019-810X
https://scholar.google.com/citations?user=TtuUp2UAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=56107604800
https://www.webofscience.com/wos/author/record/2469732
https://orcid.org/0000-0002-6653-2697
https://scholar.google.com/citations?user=v41YxlcAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=56012410400
https://www.webofscience.com/wos/author/record/2236522
https://orcid.org/0000-0002-7705-4707
https://scholar.google.com/citations?user=GFPFm7IAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=38561331300
https://www.webofscience.com/wos/author/record/800231

