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 Plant diseases present a major risk to worldwide food security and the 

sustainability of agriculture, leading to substantial economic losses and 

hindering rural livelihoods. Conventional methods for disease detection, 

including visual inspection and laboratory-based techniques, are limited in 

their scalability, efficiency, and accuracy. This paper addresses the critical 

problem of accurately detecting and diagnosing plant diseases using 

advanced machine learning techniques, specifically vision transformers 

(ViTs), to overcome these limitations. ViTs leverage self-attention 

mechanisms to capture intricate patterns in plant images, enabling accurate 

and efficient disease classification. This paper reviews the literature on deep 

learning techniques in agriculture, emphasizing the growing interest in ViTs 

for plant disease detection. Additionally, it presents a comprehensive 

methodology for training and evaluating ViT models for plant disease 

classification tasks. Experimental results demonstrate the effectiveness of 

ViTs in accurately identifying various plant diseases across a balanced  

55 classes dataset, highlighting their potential to revolutionize precision 

agriculture and promote sustainable farming practices. 
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1. INTRODUCTION 

Agriculture plays a fundamental role in sustaining human life by providing food, feed, fiber, and 

fuel essential for survival [1]. Sustainable agricultural practices are crucial for ensuring food security, 

enhancing environmental quality, and maintaining the economic viability of farms [2]. The importance of 

agriculture in improving the social and economic well-being of individuals and communities has been widely 

recognized [3]. By adopting sustainable practices, agriculture can contribute to the conservation of 

ecosystems, protect soil health, and ensure the availability of resources for future generations. Sustainable 

agriculture also involves balancing economic, social, and environmental aspects to support decision-making 

and long-term agricultural productivity.  

Plant disease detection in agriculture is crucial for maintaining crop yield, food security, and economic 

sustainability. Utilizing advanced technologies such as machine learning, deep learning, and computer vision 

has been emphasized in various studies for efficient disease detection in plants [4]–[6]. Traditional methods for 

plant disease detection have historically relied on visual inspection by experts and laboratory-based techniques. 

Visual inspection involves examining plants for visible symptoms of diseases, such as lesions, discoloration, or 

deformities. This method, while commonly used, has limitations in terms of scalability, efficiency, and accuracy 
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[7]. Visual inspection is subjective and dependent on the expertise of the inspector, leading to variability in 

results [8]. Additionally, visual inspection may only detect diseases once symptoms are visible, potentially 

missing asymptomatic infections [9]. These methods offer higher specificity and can detect diseases even in the 

absence of visible symptoms. However, laboratory-based techniques are time-consuming, expensive, and 

require specialized equipment and trained personnel, making them less scalable and efficient for large-scale 

disease surveillance [7]. The limitations of visual inspection and laboratory-based techniques underscore the 

necessity for more advanced and automated approaches for plant disease detection. Technologies like high-

throughput sequencing and artificial intelligence have demonstrated potential in improving the speed, accuracy, 

and scalability of disease detection [10], [11]. By integrating these advanced technologies with traditional 

methods, it is feasible to overcome the constraints of visual inspection and laboratory-based techniques, leading 

to more effective plant disease management strategies. 

Internet of things (IoT) and artificial intelligence (AI) technologies are significantly enhancing 

agricultural practices, particularly in irrigation management. In Morocco, where agriculture heavily relies on 

rainfall, traditional irrigation methods often lead to water wastage and suboptimal crop hydration. To address 

this, intelligent irrigation systems using Node-MCU 32S boards monitor air temperature, humidity, soil 

moisture, and light. This data is sent via MQTT to a Raspberry Pi, where long short-term memory (LSTM) 

neural networks analyze historical weather data to forecast crop water needs and determine the precise 

irrigation requirements [12]. Another system uses wireless sensor networks (WSN) and IoT to automate 

irrigation, minimizing human intervention and water consumption. Data from soil moisture and weather sensors 

is sent to ThingSpeak for real-time monitoring and control via a mobile app. Fuzzy logic defines rules for 

efficient water distribution [13]. Additionally, an automated greenhouse irrigation system using an Arduino 

MEGA 2560 board demonstrates the effectiveness of IoT in maintaining optimal growing conditions by 

continuously adjusting irrigation based on sensor data [14]. These advancements illustrate the transformative 

potential of IoT and AI in achieving sustainable and efficient agricultural practices. 

Artificial intelligence techniques, particularly computer vision, have shown significant potential in 

automating plant disease detection, enabling early and accurate identification of diseases. Deep learning-based 

computer vision methods, such as convolutional neural networks (CNNs), are increasingly used for the 

detection and classification of plant [15], [16]. These technologies allow for disease identification through the 

analysis of plant images, providing a more efficient and less labor-intensive alternative to manual monitoring 

[17]. Recent diseases advancements in computer vision and deep learning have facilitated the autonomous 

detection of plant diseases through the analysis of images captured by optical sensors, allowing for timely 

diagnosis of crop diseases [18]. Furthermore, the use of computer vision techniques in combination with AI has 

facilitated the early detection of plant diseases, allowing for timely interventions to mitigate the adverse effects 

of diseases [19]. 

Vision transformers (ViTs) have emerged as a significant advancement in the field of computer vision, 

building on the success of transformer models from natural language processing (NLP) [20]. These 

transformers, such ViTs, have demonstrated impressive performance across various machine vision tasks [21]. 

ViTs showcased their ability to achieve excellent results compared to state-of-the-art convolutional networks 

while requiring fewer computational resources for training [22]. Furthermore, ViTs have been applied to a wide 

range of computer vision applications, highlighting their versatility and potential [23]. Vision transformers 

represent a significant development in computer vision, providing a promising alternative to traditional 

convolutional neural networks. Researchers are continuously exploring and enhancing the capabilities of ViTs 

through studies focused on robustness, generalization, efficiency, and diverse applications, paving the way for 

further advancements in the field of computer vision. 

With the advancements in deep learning, particularly the emergence of ViTs, there has been a 

significant shift towards automating this process. We explored recent articles applying ViTs in plant disease 

detection. A smartphone-based solution employing ViT models is proposed for identifying healthy and 

diseased tomato plants. The ViT model, trained on a dataset of tomato leaf images, outperforms traditional 

CNN-based approaches, demonstrating its potential for widespread adoption in smart agriculture systems 

[24]. Borhani et al. [25] explores ViTs for real-time automated plant disease classification. The study 

compares ViT with traditional CNN methods, highlighting the trade-offs between accuracy and prediction 

speed. It suggests potential enhancements through the combination of attention blocks with CNN blocks. In a 

different approach, authors introduce a fine-tuned technique called GreenViT for detecting plant infections 

and diseases. By leveraging ViTs, GreenViT overcomes the limitations associated with CNN-based models, 

demonstrating superior performance in detecting plant diseases [26]. Addressing the need for enhanced 

feature extraction, researchers proposes an edge-feature guidance module (EFG) to improve the feature 

extraction capabilities of ViT-based methods, leading to improved performance across multiple datasets [27]. 

For cassava leaf disease detection, ViT was used with techniques such as least important attention pruning 

(LeIAP) and sparse matrix-matrix multiplication (SPMM), resulting in significant improvements in accuracy 

and efficiency [28]. The study on plant disease classification presents a novel approach that integrates 
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transfer learning with ViTs. This hybrid model achieves impressive validation accuracy, surpassing 

traditional transfer learning-based models. The efficiency of ViTs in extracting deep features from plant 

leaves is highlighted as a key factor in the model's superior performance [29]. In summary, the reviewed 

literature highlights the growing interest in leveraging ViTs for plant disease detection and classification. 

These studies contribute to advancing precision agriculture by providing efficient and accurate solutions for 

automated disease identification. Further research in this area could explore optimization techniques, model 

interpretability, and real-world deployment scenarios to enhance the practical applicability of ViTs in 

agricultural systems. 

The aim of this paper is to explore ViTs in plant disease detection using a dataset containing different 

types of plants, in order to a further implementation in a smart agricultural system. The paper is structured into 

several main sections: a detailed methodology section, the presentation and discussion of results, and a 

conclusive summary. The methodology section outlines the experimental approach employed in this study, 

including dataset, data preprocessing and proposed model. Subsequently, the results and discussion section 

present the outcomes of the experiments, analyzing the performance of ViTs in plant disease detection tasks and 

discussing their implications for agricultural practices. Finally, the conclusion synthesizes the main findings, 

discusses their broader implications, and suggests avenues for future research. Through this structured approach, 

the paper aims to contribute to the advancement of plant disease detection methods and the promotion of 

sustainable agricultural practices. 

 

 

2. METHOD  

In this methodological section, we present the approaches and tools utilized to conduct our study. 

We begin by introducing the central dataset that forms the basis of our analyses, detailing its composition and 

preprocessing methods. Subsequently, we delve into an in-depth exploration of the innovative ViT 

architecture, a significant advancement in computer vision. The ViT distinguishes itself through its ability to 

effectively capture long-range dependencies in image data using self-attention mechanisms, thereby offering 

promising avenues for feature extraction and pattern recognition. This methodological introduction sets the 

stage for understanding the analyses and findings presented in this paper. 

 

2.1.  Proposed solution 

To overcome the limitations of traditional plant disease detection methods, this study proposes the 

use of ViTs. ViTs leverage self-attention mechanisms to capture intricate patterns and long-range 

dependencies in plant images, offering a robust alternative to convolutional neural networks (CNNs). The 

methodology involves training a ViT model on a dataset of diverse plant images categorized by disease type. 

By partitioning images into patches and applying self-attention mechanisms, ViTs can effectively learn 

complex features and improve classification accuracy. The proposed solution integrates ViTs with advanced 

data preprocessing and augmentation techniques to enhance model performance and generalization across 

different plant species and disease conditions. 

 

2.2.  Dataset 

The dataset from Kaggle consists of images of plant leaves categorized into 88 classes [30], 

representing various plant species and their health conditions. The dataset used in this study covers an 

extensive array of 55 classes from the original dataset, representing a substantial number of 14 plant species 

with 83.603 images. Figure 1 presents a snapshot of random samples from the dataset. The dataset utilized in 

this paper was extracted from the original database, and the images were augmented to achieve a balanced 

distribution across all categories. The new dataset encompasses a wide range of plants: apple, cassava, 

cherry, chili, corn, cucumber, grape, pomegranate, potato, soybean, strawberry, sugarcane and tomato. 

Within each plant category, different classes denote specific diseases or health conditions Table 1, resulting 

in a diverse collection of comprehensive machine learning model training. 

 

2.3.  Data preprocessing 

As image preprocessing is a crucial step in preparing data for machine learning models, particularly 

in computer vision tasks. The process often involves augmenting the dataset to enhance the diversity and 

quantity of training samples, which helps improve the robustness and performance of the models. The 

augmenter defined here employs several techniques using the image library. It includes horizontal flipping 

(𝑖𝑎𝑎. 𝐹𝑙𝑖𝑝𝑙𝑟(0.5)), which reverses images horizontally with a probability of 50%, and cropping 

(𝑖𝑎𝑎. 𝐶𝑟𝑜𝑝(𝑝𝑒𝑟𝑐𝑒𝑛𝑡 = (0, 0.1))), which randomly removes up to 10% of the image’s borders. Contrast 

adjustments (𝑖𝑎𝑎. 𝐿𝑖𝑛𝑒𝑎𝑟𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡(0.75, 1.5)) dynamically alter the image contrast, while additive Gaussian 

noise (𝑖𝑎𝑎. 𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑁𝑜𝑖𝑠𝑒(𝑠𝑐𝑎𝑙𝑒 = (0, 0.05 ∗ 255))) introduces slight randomness to pixel 
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values to simulate real-world variations. Brightness changes (𝑖𝑎𝑎. 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦(0.8, 1.2)) adjust the image’s 

brightness, making the model resilient to lighting conditions. Finally, affine transformations 

(𝑖𝑎𝑎. 𝐴𝑓𝑓𝑖𝑛𝑒(𝑟𝑜𝑡𝑎𝑡𝑒 = (−5, 5), 𝑠ℎ𝑒𝑎𝑟 = (−16, 16))) involve rotating the image within a range of -5 to  

5 degrees and shearing it between -16 and 16 degrees, effectively distorting the image while preserving its 

essential features. These augmentations collectively ensure that the dataset is varied and comprehensive, 

which is vital for training effective and generalized models. The distribution of images in each class of the 

new dataset is shown in Figure 2. 

 

 

 
 

Figure 1. Sample of the dataset 

 

 

 
 

Figure 2. Distribution of images in each class 

 

 

2.4.  Vision transformers 

The ViT architecture represents a significant advancement in the field of computer vision, 

leveraging the success of the transformer model in natural language processing tasks [22]. ViT has 

demonstrated remarkable performance in image classification, even surpassing traditional architectures like 
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ResNets [31]. Inspired by ViT, researchers have developed variations such as the swin transformer, which 

adapts the ResNet-50 architecture to create a hierarchical ViT [32]. These adaptations aim to enhance the 

original ViT design by integrating more recent training techniques without introducing additional attention-

based modules. ViTs have gained popularity due to their success in various vision tasks, leading to the 

emergence of novel architectures like convolutional vision transformers (CvT) [33]. CvT combines the 

strengths of convolutions and Transformers to enhance performance and efficiency. Additionally, ViT has 

been explored in different domains beyond image classification, such as dense prediction tasks [34]. Overall, 

the ViT architecture signifies a pivotal shift in computer vision, showcasing its versatility and effectiveness 

across a wide range of applications. 

 

 

Table 1. Descriptive of the plant and diseases included in the dataset 
Plant Diseases 

Apple Black rot, rust, scab, healthy 

Cassava Bacterial blight, brown streak disease, green mottle, healthy, mosaic disease 

Cherry Healthy, powdery mildew 

Chili Healthy, leaf curl, leaf spot, whitefly, yellowish 

Corn Common rust, gray leaf spot, healthy, northern leaf blight 
Cucumber Diseased, healthy 

Grape Black measles, black rot, healthy, leaf blight (isariopsis leaf spot) 

Pomegranate Diseased, healthy 
Potato Early blight, healthy, late blight 

Soybean Caterpillar, diabrotica speciosa, healthy 
Strawberry Healthy, leaf scorch 

Sugarcane Bacterial blight, healthy, red rot, red stripe, rust 

Tomato Bacterial spot, early blight, healthy, late blight, leaf mold, mosaic virus, septoria leaf spot, spider mites  
(two spotted spider mite), target spot, yellow leaf curl virus 

Wheat Brown rust, healthy, septoria, yellow rust 

 

 

The ViT model is tailored for visual tasks like image classification, diverges from traditional CNNs 

by dividing input images into fixed-size patches, each transformed into a lower-dimensional vector space. 

These patch embeddings then feed into a stack of Transformer encoder layers. Within each encoder layer, 

two main sub-modules operate: a multi-head self-attention mechanism to capture long-range dependencies 

and a position-wise fully connected feedforward neural networks for context-aware representations. To 

address the lack of inherent sequence order to understand in Transformers, positional encodings are added to 

convey spatial information. Finally, a classification head, often a linear layer with SoftMax activation, is 

appended to the output for generating class predictions. This architecture's key hyperparameter is the 

dimensionality of patch embeddings, crucial for balancing model capacity and computational efficiency. 

We present the proposed system in Figure 3. The system was developed using the database of plant 

disease images. The dataset was systematically divided into training, validation, and test subsets, with 

proportions of 80%, 10%, and 10%, respectively. A model was then created, trained, and validated using the 

training and validation subsets. Following this, the model's performance was rigorously tested using the test 

subset. The ultimate goal of this work was to develop a model capable of accurately predicting the class of 

plant diseases from images, thereby providing a valuable tool for agricultural diagnostics and management.  

 

 

 
 

Figure 3. Proposed ViT system for plant disease detection 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Plant disease detection using vision transformers (Mhaned Ali) 

2339 

2.5.  Evaluation metrics 

The primary evaluation metric of our model is the F1-score, which is the harmonic mean of 

precision and recall. The F1-score is calculated as follows: 

 

F1 score = 
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙)
 [35] 

 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 [36] 

 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 [37] 

 

The terms TP, FP, and FN stand for: true positive (TP): The number of correct positive predictions. It refers 

to instances where the model correctly predicts the positive class. False positive (FP): The number of 

incorrect positive predictions. It refers to instances where the model incorrectly predicts the positive class, 

when the actual class is negative. False negative (FN): The number of incorrect negative predictions. It refers 

to instances where the model incorrectly predicts the negative class, when the actual class is positive. 

 

 

3. RESULTS AND DISCUSSION 

The ViT model presented in Table 2 implements a pioneering architecture for image-based plant 

diseases classification tasks, leveraging both patch-based encoding and transformer layers. Beginning with 

the PatchEncoder layer, input images are partitioned into patches, typically in size 16×16 pixels, extracted 

using a sliding window approach. Each patch undergoes a linear projection followed by positional 

embeddings, embedding spatial information into the data. This process creates a sequence of patch 

embeddings. The model architecture then integrates multiple layers of TransformerEncoder, each comprising 

multi-head self-attention mechanisms and position-wise feedforward networks. These transformer layers are 

pivotal in capturing both local and global dependencies within the image, facilitated by techniques like layer 

normalization and residual connections. Furthermore, the model incorporates configurable parameters such 

as the number of transformer heads, hidden size, and the number of patches, enabling flexibility and 

scalability. During training, the model's parameters are optimized using the Adam optimizer with a learning 

rate of 0.0001, ensuring efficient convergence. The encoded features are then flattened and processed through 

several dense layers, enhancing the model's capacity for learning intricate patterns. Finally, the output layer 

employs SoftMax activation to produce predictions for a predefined number of output classes, enabling the 

model to classify input images accurately. Through meticulous training with labeled image data and 

parameter tuning, the ViT model demonstrates exceptional performance in image classification tasks, 

showcasing its adaptability and efficacy across diverse visual recognition domains. 

 

 

Table 2. Vision transformer model summary 
Layer (type) Output Shape Param # 

Input (None, 256, 256, 3) 0 

PatchEncoder (None, 256, 512) 524,800 

TransformerEncoder (None, 256, 512) 8,665,088 
TransformerEncoder (None, 256, 512) 8,665,088 

TransformerEncoder (None, 256, 512) 8,665,088 

TransformerEncoder (None, 256, 512) 8,665,088 
Dense (None, 256, 256) 33,554,688 

Dense (None, 256, 2048) 526,336 

Dense (None, 256, 1024) 2,098,176 
Dense (None, 256, 512) 524,800 

Dense (None, 256, 128) 131,328 

Dense (None, 256, 64) 32,896 
Dense (None, 256, 32) 8,256 

Dense (None, 256, 55) 2,080 

Output (None, 55) 1,815 

 

 

The model presented is a ViT architecture designed for image classification tasks. It consists of a 

PatchEncoder module that extracts image patches and encodes them using linear projections and positional 

embedding. These patches are then sequentially processed by a TransformerEncoder module, which applies 

multi-head self-attention and feedforward neural networks. The architecture is encapsulated within the ViT 

model, which includes additional dense layers before the final SoftMax output. Hyperparameters include 
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eight heads, a hidden size of 512, 256 patches, four transformer layers, and 256 dense units. Trained with 

Adam optimizer (learning rate of 0.0001) and sparse categorical cross entropy loss, the model undergoes  

20 epochs with a batch size of 32, achieving accuracy evaluation on test data. This model architecture 

demonstrates the effectiveness of transformer-based approaches in image classification tasks. The training 

process of the model exhibited a consistent improvement in accuracy, Figure 4 shows that the training 

process exhibited a consistent improvement in accuracy over 20 epochs, with accuracy steadily rising from 

approximately 24% to nearly 94.5%. In contrast, the validation accuracy generally lagged behind the training 

accuracy, with values ranging from approximately 44.7% to 91.6%. Figure 5 illustrates that the training loss 

decreased steadily from over 3.2 to around 0.13, indicating a progressive refinement in the model’s 

performance. Similarly, the validation loss followed a decreasing trend, decreasing from over 1.78 to around 

0.32, indicating that the model’s generalization to unseen data improved over the training epochs. Results of 

Training accuracy and loss, validation accuracy and loss, and test accuracy and test are summarized in 

Table 3. 

 

 

  
 

Figure 4. Training and validation accuracy 

 

Figure 5. Training and validation loss 

 

 

Table 3. Training accuracy and loss, validation accuracy and loss, and test 

accuracy and test 
 Training Validation Test 

Accuracy 94.5% 91.6% 89.3% 

Loss 0.13 0.32 0.28 

 

 

Table 4 presents the model evaluation metrics including precision, recall, and F1-score for various 

classes of plant diseases across different crops. Each class represents a specific disease or health condition, 

along with its corresponding evaluation metrics and support count. The table concludes with overall 

accuracy metrics for the model, along with macro and weighted averages across all classes. The ViT plant 

disease detection model demonstrates a strong overall performance with an accuracy of 90%, supported by 

macro and weighted average metrics around 90% for precision, recall, and F1-score, indicating consistent 

effectiveness across various plant classes and conditions. For specific classes, the model excels in 

detecting apple diseases such as black rot, rust, and scab, with F1-scores ranging from 0.88 to 0.93, and 

identifies healthy apple conditions with a 0.90 F1-score. In cassava, it shows perfect detection for mosaic 

disease and high precision for bacterial blight and brown streak disease, though it struggles slightly with 

green mottle, which has a lower recall (0.79) and an F1-score of 0.88. For cherry, the model achieves high 

F1-scores for both healthy (0.91) and powdery mildew (0.92) conditions. Chili diseases are well -detected, 

particularly leaf curl and healthy conditions, with F1-scores of 0.90-0.92, although whitefly detection has a 

lower precision (0.76) but a high recall (0.94), resulting in an F1-score of 0.84. Corn disease detection 

varies, with common rust having the lowest F1-score (0.81) due to lower precision, while gray leaf spot 

and northern leaf blight show very high F1-scores of 0.90 and 0.96, respectively. The model also performs 

well for cucumber, grape, and pomegranate diseases, achieving perfect or near-perfect scores for several 

conditions. In potato, early blight is detected with a lower recall (0.77) but maintains a reasonable  

F1-score (0.85). These results highlight the model's robustness and effectiveness in identifying a wide 

range of plant diseases. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Plant disease detection using vision transformers (Mhaned Ali) 

2341 

Table 4. Model evaluation metrics (Precision, Recall, F1-Score) 
 Class Precision Recall F1-Score Support 

Apple Black rot 0.83 0.94 0.88 200 
Rust 0.93 0.93 0.93 200 

Scab 0.90 0.86 0.88 200 

Healthy 0.86 0.95 0.90 200 
Cassava Bacterial blight 0.96 0.92 0.94 200 

Brown streak disease 0.90 0.95 0.93 200 

Green mottle 1.00 0.79 0.88 200 
Healthy 0.90 0.86 0.88 200 

Mosaic disease 1.00 1.00 1.00 200 

Cherry Healthy 0.95 0.87 0.91 200 
Powdery mildew 0.89 0.94 0.92 200 

Chili Healthy 0.81 1.00 0.90 200 

Leaf curl 0.86 1.00 0.92 200 
Leaf spot 0.92 0.96 0.94 200 

Whitefly 0.76 0.94 0.84 200 

Yellowish 0.91 0.95 0.93 200 

Corn Common rust 0.73 0.92 0.81 200 

Gray leaf spot 0.83 1.00 0.90 200 

Healthy 0.93 0.88 0.90 200 
Northern leaf blight 0.96 0.96 0.96 200 

Cucumber Diseased 0.83 0.90 0.86 200 
Healthy 0.94 0.89 0.92 200 

Grape Black measles 0.86 0.92 0.89 200 

Black rot 0.90 1.00 0.95 200 
Healthy 1.00 0.93 0.97 200 

Leaf blight (isariopsis leaf spot) 0.93 0.93 0.93 200 

Pomegranate Diseased 1.00 0.88 0.93 200 
Healthy 0.96 0.92 0.94 200 

Potato Early blight 0.94 0.77 0.85 200 

Healthy 0.94 0.89 0.91 200 
Late blight 0.89 0.89 0.89 200 

Soybean Caterpillar 0.89 0.94 0.91 200 

 Diabrotica speciosa 0.95 0.83 0.89 200 
 Healthy 0.94 0.88 0.91 200 

Strawberry  Healthy 0.92 0.85 0.88 200 

 Leaf scorch 0.81 0.94 0.87 200 
Sugarcane  Bacterial blight 0.89 0.89 0.89 200 

 Healthy 1.00 1.00 1.00 200 

 Red rot 0.86 0.86 0.86 200 
 Red stripe 0.86 0.92 0.89 200 

 Rust 1.00 0.88 0.93 200 

Tomato  Bacterial spot 0.95 0.90 0.92 200 
 Early blight 0.92 0.92 0.92 200 

 Healthy 0.88 0.82 0.85 200 

 Late blight 0.85 0.96 0.90 200 
 Leaf mold 0.92 0.86 0.89 200 

 Mosaic virus 0.85 1.00 0.92 200 

 Septoria leaf spot 0.94 0.83 0.88 200 
 Spider mites (two spotted spider mite) 0.86 0.86 0.86 200 

 Target spot 1.00 0.87 0.93 200 

 Yellow leaf curl virus  1.00 0.94 0.97 200 
Wheat  Brown rust 0.94 0.89 0.92 200 

 Healthy 0.95 0.95 0.95 200 

 Septoria 0.67 0.71 0.69 200 
 Yellow rust 0.81 0.76 0.79 200 

Accuracy 0.90 0.90 0.90 11000 

macro avg 0.90 0.91 0.90 11000 
weighted avg 0.91 0.90 0.90 11000 

 

 

4. CONCLUSION 

Plant diseases continue to pose significant challenges to global agriculture, threatening food security 

and economic stability. Traditional methods for disease detection are often labor-intensive, subjective, and 

limited in scalability, prompting the need for more efficient and accurate approaches. This paper has 

reviewed the growing interest in ViTs for automated plant disease detection, showcasing their potential to 

revolutionize agricultural practices. Through a comprehensive methodology and experimental evaluation, 

ViTs have demonstrated exceptional performance in classifying diverse plant diseases across multiple 

datasets. These results underscore the effectiveness of ViTs in capturing complex patterns in plant images, 

enabling accurate and timely disease identification. The dataset preprocessing has shown a significant role in 
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model accuracy as the classes were balanced to improve the model. The adoption of ViTs in precision 

agriculture holds promise for enhancing crop productivity, minimizing losses, and promoting sustainable 

farming practices. Future research directions may focus on optimizing ViT architectures, improving 

interpretability, and exploring real-world deployment scenarios to facilitate the widespread adoption of these 

technologies in agricultural systems. Overall, ViTs represent a significant advancement in computer vision 

for agriculture, offering transformative solutions to mitigate the impact of plant diseases and promote global 

food security. 
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