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 This study explores the prediction of taxi trip fares using two linear 

regression methods: normal equations (ordinary least squares solution 

(OLS)) and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). 
Utilizing a dataset of New York City yellow taxi trips from 2023, the 

analysis involves data cleaning, feature engineering, and model training. The 

data consists of over 12 million records, managed, and processed that 

involves configuring the Spark driver and executor memory to efficiently 
process the Parquet-format data stored on hadoop distributed file system 

(HDFS). Key features influencing fare amount, such as passenger count, trip 

distance, fare amount, and tip amount, were analyzed for correlation. Models 

were trained on an 80-20 train-test split, and their performance was 
evaluated using root-mean-square error (RMSE) and mean squared error 

(MSE). Results show that both methods provide comparable accuracy, with 

slight differences in coefficients and training time. Additionally, vendor 

performance metrics, including total trips, average trip distance, fare 
amount, and tip amount, were analyzed to reveal trends and inform strategic 

decisions for fleet management. This comprehensive analysis demonstrates 

the efficacy of linear regression techniques in predicting taxi fares and offers 

valuable insights for optimizing taxi operations. 
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1. INTRODUCTION  

Predicting taxi trip fares accurately is a critical task for both fleet operators and passengers in urban 

transportation systems. With the advent of big data and advanced analytical tools, it is now possible to 

leverage extensive datasets to gain insights into fare determinants and improve fare prediction models [1]. 

This study focuses on utilizing linear regression techniques to predict taxi trip fares using data from New 

York City's yellow taxi fleet for the entire year of 2023 [2]. By comparing two prominent regression 

methods, normal equations ordinary least squares (OLS) solution and limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS), we aim to identify the most effective approach for fare prediction. Accurate fare 

predictions can enhance operational efficiency, optimize pricing strategies, and improve customer 

satisfaction by providing transparent and predictable fare estimates [3], [4]. 

New York City’s yellow taxi dataset provides a rich source of information, encompassing millions 

of trip records with diverse attributes such as trip distance, passenger count, fare amount, tip amount, and 

temporal details [5]. The large volume of data allows for a detailed analysis of fare determinants and the 
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development of robust predictive models. However, the presence of null values and outliers necessitates 

rigorous data cleaning and preprocessing. This study systematically addresses these challenges, ensuring the 

integrity and reliability of the dataset. Feature engineering techniques are employed to extract meaningful 

insights from the data, such as temporal patterns in trip frequencies and fare variations across different 

vendors [6], [7]. 

In addition to building predictive models, this study conducts a comprehensive correlation analysis 

to understand the relationships between various trip attributes and the fare amount. By examining these 

correlations, we identify the most significant features influencing fare predictions. The performance of the 

regression models is evaluated using metrics such as root-mean-square error (RMSE) and mean squared error 
(MSE), providing a quantitative measure of their accuracy. Furthermore, the study delves into vendor 

performance analysis, comparing key performance indicators like total trips, average trip distance, fare 

amount, and tip amount across different vendors. This holistic approach not only highlights the effectiveness 

of linear regression techniques in fare prediction but also offers valuable insights into vendor operations, 

contributing to the overall optimization of taxi services in New York City [8]. 

 

 

2. METHOD  

Our approach to analyzing New York City taxi trip data in 2023 combines the Apache spark 

platform and linear regression models for fare prediction. Spark handles large datasets, enabling efficient data 

cleaning, transformation, and analysis. After loading the data from parquet files and filtering invalid records, 

we use linear regression to predict fares based on features like passenger count, trip distance, fare, and tips. 

We implement two methods for linear regression, normal equations for smaller data and L-BFGS for  

high-dimensional data [9]. The data is split into training and test sets to evaluate performance using RMSE 

and MSE. We also assess taxi vendors' performance by analyzing metrics such as trip counts, average 

distance, fare, and tips, visualized through bar charts to highlight performance differences. This integrated 

approach enhances taxi service efficiency and supports strategic decision-making in transportation [10]. 

 

2.1.  Work methodology 

In this section, we will explore the various methodologies and tools employed to handle big data, 

focusing on techniques that enable efficient processing and analysis of large datasets. We will delve into the 

application of linear regression in machine learning, discussing how different approaches, such as ordinary 

least squares (OLS) and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), can be utilized to 

optimize model parameters for predictive accuracy. Additionally, we will examine the metrics used for 

evaluating model performance, shedding light on how they measure the effectiveness of predictive models, 

identify areas for improvement, and ensure that the chosen algorithms align with the goals of data-driven 

decision-making. Through this exploration, we aim to provide a comprehensive understanding of how big 

data processing tools, such as Apache Spark, and linear regression techniques can be leveraged to build, 

optimize, and evaluate predictive models. 

 

2.1.1. Tools for handling big data 

Our approach to managing big data relies on Apache spark, a distributed computing system known 

for its efficiency and scalability. Apache spark excels in processing large datasets by distributing tasks across 

a cluster of computers, which enables parallel processing. This capability significantly reduces data 

processing time compared to traditional single-machine methods [11]. 

Apache spark uses resilient distributed datasets (RDDs) to ensure fault tolerance and enhance 

performance. RDDs are cached in memory, allowing iterative algorithms to reuse intermediate results across 

multiple computations. This feature greatly speeds up machine learning algorithms and other tasks that 

require multiple data passes [12]. 

Spark's unified analytics engine supports diverse data processing needs, including batch processing, 

real-time stream processing, and machine learning. It includes several specialized libraries, such as Spark 

SQL for SQL queries, spark streaming for real-time data, MLlib for machine learning, and GraphX for graph 

processing. These libraries extend Spark's functionality and make it versatile for various data tasks [13]. 

One of spark’s notable advantages is its in-memory computing capability, which allows for rapid 

data processing by storing data in memory rather than on disk [14]. This feature is particularly beneficial for 

iterative algorithms and interactive data exploration [15]. Additionally, spark’s user-friendly APIs in Java, 

Scala, Python, and R simplify the creation of complex workflows and data pipelines while providing 

advanced controls for experienced users. Spark’s efficient processing and versatile capabilities make it 

essential for modern data analytics and machine learning [16], [17]. 
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2.1.2. Linear regression in machine learning 

Linear regression is one of the most fundamental and widely used techniques in machine learning 

for predicting a continuous target variable based on one or more predictor variables [18]. At its core, linear 

regression aims to model the relationship between the dependent variable (the target) and the independent 

variables (the predictors) by fitting a linear equation to observed data. The primary objective of linear 

regression is to determine the optimal values for these coefficients such that the sum of the squared 

differences between the observed actual values and the values predicted by the linear model (known as the 

residual sum of squares) is minimized. In our study, we utilized two specific methods to perform linear 

regression: the OLS. and the L-BFGS algorithm [19]. 

The ordinary least squares (OLS) method is a fundamental approach in linear regression used to 

estimate the coefficients that minimize the residual sum of squares between the observed values and the 

values predicted by the model. The goal is to find the best-fit line that captures the relationship between the 

independent variables (predictors) and the dependent variable (target) [20]. The OLS solution is derived 

using the normal (1): 

 

𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦  (1) 

 

where 𝛽 represents the vector of coefficients, X is the matrix of input features (including a column of ones 

for the intercept term), y is the vector of observed values, 𝑋𝑇 is the transpose of the matrix. This method 

provides an exact solution by solving the above equation, making it straightforward and computationally 

efficient for smaller datasets. However, for very large datasets, the matrix inversion can become 

computationally expensive, which is a limitation of this approach [21]. 

The L-BFGS algorithm is an iterative optimization technique particularly well-suited for large-scale 

and high-dimensional datasets [22]. It is a variant of the BFGS algorithm that uses limited memory to 

approximate the inverse Hessian matrix, which is essential for determining the direction of the steepest 

descent in optimization problems. The iterative process follows these steps (2): 

 

𝛽𝑘+1 = 𝛽𝑘 − 𝛼𝑘𝐻𝐾
−1∇𝑓(𝛽𝑘)  (2) 

 

where 𝛽𝑘 is the coefficient vector at iteration k, 𝛼𝑘 is the step size (learning rate), 𝐻𝐾
−1 is the inverse hessian 

matrix approximation at iteration k, and ∇𝑓(𝛽𝑘) is the gradient of the cost function at 𝛽𝑘. Unlike the OLS 

method, L-BFGS does not require matrix inversion, making it more scalable and efficient for handling large 

datasets. It iteratively adjusts the coefficients by following the gradient of the cost function, gradually 

converging to the optimal solution. This makes L-BFGS particularly advantageous for scenarios where the 

dataset size or the number of features is large [23]. Despite the simplicity and interpretability of linear 

regression, it is essential to evaluate the underlying assumptions—such as linearity, independence, 

homoscedasticity (constant variance of errors), and normality of error terms—to ensure the validity and 

reliability of the model’s predictions. By carefully selecting the appropriate method and validating the 

assumptions, linear regression remains a powerful tool for understanding and predicting the relationships 

within the data across various domains [24]. 

 

2.1.3. Scoring metrics  

To fit the linear regression model using these methods, we first prepare the data by consolidating the 

selected features into a single vector using a VectorAssembler. The dataset is then divided into training and 

test sets, which allows us to evaluate the model's performance. Evaluation metrics such as RMSE and MSE 

are used to assess how well the model generalizes to unseen data. These metrics are essential for determining 

the accuracy of our predictions, offering insights into the model’s effectiveness and its ability to handle new 

data [25]. 

MSE is a widely used metric for evaluating the accuracy of predictive models. It quantifies the mean 

of the squared differences between predicted and observed values. MSE essentially measures the average 

magnitude of the squared deviations across all data points, providing a detailed assessment of model 

performance. This metric is valuable for understanding the overall quality of the model's predictions, as it 

captures the extent of prediction errors in a continuous manner [26]. 

RMSE is another key metric that offers a straightforward measure of prediction error. By taking the 

square root of the MSE, RMSE presents an error metric that maintains the same units as the target variable, 

making it more intuitive. RMSE places a higher emphasis on larger errors due to the squaring of differences, 

which means it penalizes significant deviations more. This characteristic makes RMSE particularly useful for 

understanding the model's performance with respect to outlier predictions [27]. 
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2.2.  Application method 

In this analysis, a combination of machine learning techniques, including linear regression and 

Spark's distributed computing capabilities, were employed to predict taxi trip revenues in New York City for 

the year 2023. Leveraging Spark's powerful data processing platform, the analysis aimed to provide accurate 

revenue predictions by incorporating key features such as passenger count, trip distance, fare amount, and tip 

amount. The utilization of linear regression, a well-established and interpretable modeling technique, ensured 

a comprehensive and effective approach to revenue prediction. Furthermore, Spark's distributed computing 

capabilities enabled the efficient handling of large-scale datasets, allowing for timely and accurate 

predictions even with massive amounts of data. 

 

2.2.1. Data used 

The dataset utilized in this analysis consisted of New York City taxi trip data for the year 2023, 

sourced from Parquet files. These files contain detailed information about taxi trips, including attributes such 

as pickup datetime, passenger count, trip distance, fare amount, tip amount, and total amount. The dataset 

was meticulously cleaned and preprocessed to ensure data quality and reliability for subsequent analysis. 

Invalid records and missing values were filtered out, and the pickup datetime column was cast to a date type 

for temporal analysis. This refined dataset served as the foundation for building and training the linear 

regression model for revenue prediction [28]. 

Through exploratory data analysis and feature engineering, insights were extracted from the dataset 

to enhance the predictive model's performance. Key features such as passenger count, trip distance, fare 

amount, and tip amount were identified based on their potential impact on trip revenues. These features were 

then used to train the linear regression model, which served as the predictive engine for estimating taxi trip 

revenues. By leveraging Spark's distributed computing capabilities, the model was able to efficiently process 

and analyze large-scale datasets, providing stakeholders with accurate and timely revenue predictions. 

 

2.2.2. Process  

This process outlines a data-driven approach for predicting taxi trip revenues in New York City for 

2023. It begins with data loading and initial processing, where Spark is configured for efficient handling of 

large datasets. The data, stored in parquet format on Hadoop distributed file system (HDFS), is verified, 

loaded, and combined into a single data frame for the entire year. Following this, data cleaning and 

preprocessing ensure the dataset's integrity by removing rows with null or invalid values, reducing the data to 

37,000,870 rows. Feature selection and engineering identify key insights, including peak operational periods 

and feature correlations, setting the stage for model training. 

Model training and evaluation involves splitting the data into training and testing sets and applying 

two linear regression methods—normal equations and L-BFGS. The models are evaluated using RMSE and 

MSE metrics for accuracy. Performance evaluation and visualization examine feature impacts and vendor 

metrics, such as trip counts, average fares, and tips, while insights and decision-making leverage these results 

to optimize taxi operations and enhance customer satisfaction. This structured analysis offers actionable 

insights to improve service efficiency and profitability. 

 

 

3. RESULTS AND DISCUSSION  

The analysis focuses on evaluating the performance of two major taxi vendors in New York City. 

Using comprehensive trip data, key metrics such as the total number of trips, average trip distance, average 

fare amount, and average tip amount are analyzed to assess each vendor's operational efficiency and market 

positioning. The following sections provide a detailed examination of these metrics, highlighting the 

strengths and weaknesses of vendor 1 and vendor 2. 

 

3.1.  Performance analysis for each vendor 

In this analysis, we examine the performance of two major taxi vendors in New York City using key 

metrics derived from comprehensive trip data. By evaluating the total number of trips, average trip distance, 

average fare amount, and average tip amount, we aim to understand the operational efficiency and market 

positioning of each vendor. The data spans a significant period and provides a robust foundation for 

comparing these vendors' effectiveness in meeting passenger demand and generating revenue. The following 

paragraphs delve into each metric, offering insights into the strengths and weaknesses of vendor 1 and  

vendor 2. 

As shown in Figure 1, vendor 2 demonstrates a significantly higher volume of total trips compared 

to vendor 1. Specifically, vendor 2 recorded 27,471,887 trips, whereas vendor 1 recorded 9,528,983 trips. 

This disparity indicates that vendor 2 has a larger share of the market, which could be due to a variety of 
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factors such as a more extensive fleet, more efficient dispatch and routing systems, or stronger brand 

recognition. The higher trip volume also suggests that vendor 2 is better at meeting passenger demand and 

potentially has wider operational coverage across New York City. This large volume of trips provides vendor 

2 with a robust revenue base and enhances its ability to generate significant income from a high number of 

service transactions. 

In Figure 2 we can see that the average trip distance for vendor 2 is slightly longer than that for 

vendor 1, with vendor 2 averaging 3.64 miles per trip and vendor 1 averaging 3.42 miles. While the 

difference may seem minimal, it has important implications for revenue. Longer trips typically result in 

higher fares, contributing more significantly to total revenue. Vendor 2’s slightly longer average trip distance 

could indicate that they serve areas with greater distances between common pick-up and drop-off points or 

that they attract trips that tend to cover more distance. This could be a result of strategic operational decisions 

or a focus on areas with higher fare potential. The longer trip distances might also suggest that vendor 2 has a 

higher proportion of trips to and from major hubs like airports or business districts, which typically involve 

greater distances. 

Vendor 2 also outperforms vendor 1 in terms of average fare amount, with an average fare of $19.67 

compared to vendor 1’s $18.71. This difference in fare amounts is likely linked to the longer average trip 

distances mentioned earlier. Higher average fares not only boost per-trip revenue but also suggest that vendor 

2 may be operating more in premium segments of the market where passengers are willing to pay more for 

better service or convenience. Additionally, the higher fares could be a result of effective dynamic pricing 

strategies, where vendor 2 adjusts prices based on demand and supply conditions to maximize revenue. This 

ability to command higher fares strengthens vendor 2’s overall financial performance and competitive 

advantage in the market. 

The average tip amount is another area where vendor 2 leads, with an average tip of $3.65 compared 

to vendor 1’s $3.26. Tips are often indicative of customer satisfaction and service quality. The higher average 

tips for vendor 2 suggest that passengers perceive the service quality to be better or feel more satisfied with 

their rides. This could be due to various factors such as cleaner vehicles, more courteous drivers, better ride 

experiences, or more reliable service. Higher tips contribute directly to the drivers' earnings and can also 

boost overall driver morale and retention. From a business perspective, higher tips indicate a positive 

customer experience, which is crucial for customer loyalty and repeat business. 

Vendor 2’s higher trip volume, longer average trip distance, higher average fare amount, and greater 

average tip amount collectively paint a picture of a more dominant and financially successful operator. The 

higher trip volume indicates a larger operational scale and better market penetration, while the longer trip 

distances and higher fare amounts suggest a focus on higher-value segments of the market. The greater 

average tips reflect superior service quality, leading to higher customer satisfaction and loyalty. These factors 

combined position Vendor 2 as a more robust and competitive player in New York City's taxi industry, with a 

stronger ability to generate revenue and sustain long-term growth compared to vendor 1. 

 

 

 
 

 
 

Figure 1. Total trips per vendor ID Figure 2. Average trip distance per vendor ID 

 

 

3.2.  Analysis of the regression performances 

In analyzing yellow taxi trip fare prediction, linear regression models were employed to understand 

the impact of various factors on the total fare. Two methods, OLS and L-BFGS, were used to build these 
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models. Both methods offer distinct advantages in terms of computational efficiency and scalability, making 

them suitable for different contexts depending on the size and complexity of the dataset. This section delves 

into the results obtained from both regression methods, providing a detailed comparison of their performance 

metrics, computational requirements, and the significance of the derived coefficients. By examining the 

coefficients and their implications, we gain insights into the primary drivers of taxi fares, enhancing our 

understanding of fare structures and customer behaviors. 

As shown in Table 1, both the OLS and L-BFGS linear regression models yielded nearly identical 

coefficients, demonstrating the robustness of the findings. The coefficient for passenger count is 

approximately 0.0702, indicating that each additional passenger has a small but positive impact on the total 

fare. This suggests that while having more passengers slightly increases the fare, their influence is relatively 

minimal compared to other factors. The trip distance coefficient, around 0.0010, also shows a very small 

impact on the total fare, indicating that trip distance contributes marginally to fare calculations. This small 

impact might reflect a fare structure where fixed costs or time-based charges are more significant than 

distance, potentially due to minimum fare policies or the inclusion of initial service fees that overshadow the 

distance-based component. 

 

 

Table 1. The results of each method 
Metric OLS L-BFGS 

Training time (seconds) 37.96 122.69 

RMSE 4.691598018 4.6915980186 

MSE 22.01109196 22.01109197 

Passenger count coefficient 0.070184284 0.070184285 

Trip distance coefficient 0.0009725934876 0.00097259340671 

Fare amount coefficient 1.0036740054 1.0036740051 

Tip amount coefficient 1.35752071718 1.357520719 

Intercept 4.008011703 4.008011700 

 

 

The fare amount, with a coefficient of about 1.0037, shows a near one-to-one relationship with the 

total fare, confirming that base fare calculations are the primary determinant of the total fare. In contrast, the 

tip amount, with a coefficient of approximately 1.3575, indicates that tips significantly boost the total fare. 

This higher coefficient suggests that tipping not only adds directly to the fare but also correlates with 

scenarios involving higher service quality or more expensive rides. The intercept, around 4.0080, represents 

the baseline total fare, ensuring a minimum charge regardless of other factors. This baseline underscores the 

importance of initial fees in the fare structure. Collectively, these coefficients reveal that while passenger 

count and trip distance play secondary roles, the fare amount and tips are crucial drivers of the total fare, 

reflecting a fare structure heavily influenced by base charges and customer tipping behavior. 

The fare amount, with a coefficient of 1.0037, shows a near one-to-one relationship with the total 

fare, confirming that base fare calculations are the primary factor. Meanwhile, the tip amount, with a 

coefficient of 1.3575, has a more significant influence, indicating that tips not only increase the fare directly 

but also correlate with scenarios involving higher service quality or more expensive rides. The intercept, 

around 4.0080, ensures a minimum fare, emphasizing the importance of base charges. Overall, fare amount 

and tips are the main drivers of the total fare, with passenger count and trip distance playing smaller roles. 

The OLS and L-BFGS linear regression models were used to predict taxi fares, with both showing 

nearly identical performance metrics. The OLS model, using the normal equations method, had an RMSE of 

4.6916 and an MSE of 22.0111, and completed in 37.96 seconds, making it efficient for datasets that fit 

within memory limits. This efficiency comes from the closed-form solution of the Normal Equations, which 

allows for quick calculations when data size is manageable. 

The L-BFGS model, an iterative optimization method for larger datasets, achieved the same RMSE 

and MSE as the OLS model. However, its computational time was significantly longer, at 122.69 seconds, 

reflecting its iterative nature. Despite this, the L-BFGS method is more flexible and scalable, making it 

suitable for large datasets that exceed memory limits. Its performance and coefficient alignment with the 

OLS model confirm its effectiveness in capturing the dataset’s linear relationships. 

Comparing the two models, both showed similar predictive accuracy, but the OLS method was 

faster and more efficient for smaller datasets, while the L-BFGS method excelled in handling larger, more 

complex datasets. The choice between the two depends on the dataset size and computational needs, with 

OLS favored for speed and L-BFGS for scalability. Understanding these trade-offs ensures the appropriate 

model is used for efficient and accurate analysis. 
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4. CONCLUSION  

The growing interest in big data and machine learning has revolutionized numerous industries, 

including urban transportation. Leveraging these advanced technologies allows for more informed  

decision-making, operational efficiency, and enhanced customer experiences. In this context, analyzing 

extensive datasets, such as those generated by New York City's yellow taxi services, provides valuable 

insights into the performance and market dynamics of competing vendors. This study harnesses the power of 

big data and machine learning to evaluate the operational metrics of two major taxi vendors, offering a 

detailed comparison of their effectiveness in meeting passenger demand and generating revenue. 

In conclusion, the integration of big data and machine learning in analyzing New York City's yellow 

taxi industry reveals vendor 2 as the more dominant and financially successful operator. Higher trip volumes, 

longer average trip distances, higher fare amounts, and greater tips position vendor 2 as a stronger competitor 

with a better ability to meet passenger demands and generate revenue. These insights are instrumental for 

both vendors in optimizing their operations, improving service quality, and making data-driven decisions that 

enhance customer satisfaction and operational efficiency. This study exemplifies the transformative potential 

of big data and machine learning in urban transportation, paving the way for more effective and competitive 

service delivery. 
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