
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 3, June 2025, pp. 3346~3361

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i3.pp3346-3361 3346

Journal homepage: http://ijece.iaescore.com

EvalBERT: a novel framework for assisted descriptive answers

and C programming evaluation

Prakruthi Sondekere Thippeswamy1, Manjunathswamy Byranahalli Eraiah2, Salma Jabeen1

1Department of Computer Science and Engineering, Don Bosco Institute of Technology Research Centre,

Visvesvaraya Technological University, Belagavi, India
2 Department of Computer Science and Engineering, Guru Ghasidas Vishwavidyalaya, A Central University, Bilaspur, India

Article Info ABSTRACT

Article history:

Received Jun 14, 2024

Revised Jan 20, 2025

Accepted Mar 3, 2025

 Manual assessment of descriptive answers is often time-consuming,

error-prone, and subject to bias. While artificial intelligence (AI) has made

significant strides, current automated evaluation methods typically rely on

simplistic metrics like word counts or predefined terms, which lack a deeper

understanding of the content and are highly dependent on curated datasets.

As demand for automated grading systems increases, there is a growing need

to evaluate not only descriptive answers but also code-based responses. This

study addresses these challenges by applying natural language processing

(NLP) and deep learning (DL) techniques, testing three baseline models:

multinomial Naïve bayes (MNB), bidirectional long short-term memory

(Bi-LSTM), and bidirectional encoder representations from transformers

(BERT). We propose EvalBERT, a BERT-based model fine-tuned with

domain-specific academic corpora using computer processing unit (CPU)

acceleration. EvalBERT automates grading for both descriptive and C

programming exams, offering features like readability statistics and error

detection. Experimental results show that EvalBERT achieves 94.86%

accuracy, outperforming other models by 1.22 percentage points, with

training time reduced by half. Additionally, EvalBERT is the first model

pre-trained with academic corpora for this purpose. An interactive user

interface, E-Pariksha, was also developed for administering and taking

exams online. EvalBERT provides precise assessments, enabling educators to

better evaluate student performance and offer more detailed feedback.

Keywords:

Bidirectional encoder

representations from

transformers

Bi-directional long short-term

memory

Graphical processing unit

Multinomial Naïve bayes

Natural language programming

This is an open access article under the CC BY-SA license.

Corresponding Author:

Prakruthi Sondekere Thippeswamy

Department of Computer Science and Engineering, Don Bosco Institute of Technology Research Centre,

Visvesvaraya Technological University

Machhe, Belagavi, Karnataka 590018, India

Email: st.prakruthi@gmail.com

1. INTRODUCTION

Academic achievements in India are typically gauged through summative assessments such as

standardized tests and examinations. The evaluation of answer scripts plays a crucial role in determining

students' understanding of a subject. However, there is a lack of standardized systems for assessing exam

papers nationwide. The current evaluation process involves multiple stages, including junior and senior

evaluators, grade calculators, and moderators, making it quite time-consuming. Ensuring consistency among

evaluators over several days of assessment can be challenging, leading to discrepancies in grading. Various

factors may hinder evaluators from accurately assessing descriptive answers and determining the students'

intelligence level. Even when presented with similar responses, different evaluators may assign significantly

https://creativecommons.org/licenses/by-sa/4.0/
mailto:h@manipal.edu

Int J Elec & Comp Eng ISSN: 2088-8708

EvalBERT: a novel framework for assisted descriptive answers and … (Prakruthi Sondekere Thippeswamy)

3347

different grades, influenced by their individual assessment approaches and levels of experience. Hence, there

is a need for a more standardized and objective marking methodology [1].

Subjective questions and their answers offer a means to evaluate a student's performance and

understanding in a more open-ended manner. These responses aren't restricted by specific guidelines, allowing

students to express themselves based on their individual perspectives and comprehension of the topic. However,

subjective answers differ significantly from objective ones in several key aspects. Firstly, they tend to be

lengthier compared to objective responses. Secondly, writing subjective answers typically requires more time.

Additionally, evaluating subjective answers demands a greater level of attention, as they often contain more

context and require a teacher's objectivity and concentration. It is simple and useful to use machines to evaluate

objective responses. It is possible to provide a program question and one-word answers so that it can map

student responses effectively. At this point, automated marking technology for objective questions is widely

used and has matured to a high degree. For subjective questions, a few auto assessment systems exist, but none

of them quite live up to expectations. This is mostly because natural language is difficult to understand and has

many ambiguities. To accurately score subjective responses, the evaluator must carefully evaluate each word in

the response. Variables including the evaluator's weariness, mental condition, and objectivity have a big impact

on the outcome. Moreover, individuals often use synonyms and convenient abbreviations, further complicating

the evaluation process. As a result, subjective question marking still has many shortcomings. Various

preprocessing steps, such as data cleaning and tokenization, are necessary before analysis can begin. Post this, a

variety of methods, including idea graphs, ontologies, latent semantic structures, and document similarity, can

be used to compare textual data. The final score can then be calculated by considering elements like language

usage, structure, similarity, and the existence of keywords [2], [3]. Although this issue has been addressed in the

past, there is still need for improvement [4]–[6].

Additionally, C programming-based exams are often perceived as more daunting by both students

and teachers. This is because C programming involves intricate syntax rules and semantics. Automatic

natural language processing (NLP) systems may struggle to accurately interpret and understand the nuances

of C code, especially in cases where context is crucial for determining correctness. C programs can range in

complexity from simple algorithms to advanced data structures and algorithms. Automatically assessing the

correctness and efficiency of such code requires sophisticated analysis beyond basic NLP techniques. Also,

C code may contain ambiguous constructs or multiple valid solutions. NLP models may struggle to handle

such ambiguity and accurately determine the correctness of the code without additional context or

domain-specific knowledge. Moreover, identifying errors in C code, such as logical errors, syntax errors, or

runtime errors, requires more than just linguistic analysis. It involves understanding the logic and behavior of

the code, which may be challenging for NLP models without specialized programming knowledge. Thus,

human intervention and specialized tools designed for code analysis are often necessary to overcome these

challenges effectively.

In this paper, we investigate three approaches for evaluating subjective answers and C programming

answers using machine learning (ML), deep learning (DL) and natural language processing (NLP)

techniques. Our approach utilizes various NLP pre-processing methods, including tokenization and

lemmatization, word embeddings like word2Vec. We also employ similarity measurement techniques such as

cosine similarity and word mover distance (WMD), along with classification methods like multinomial

naive Bayes, Bi- LSTM and BERT. Overall, it employs a two-step process to address this challenge. Initially,

the answers are assessed by comparing them to the provided solution and keywords using different

similarity-based techniques as mentioned above. Subsequently, the outcomes from this initial step are utilized

to train the classification models capable of evaluating answers independently, without relying on predefined

solutions and keywords. To assess the effectiveness of different models, we employ accuracy as the main

metrics, comparing their performance and against other models. Therefore, the key contributions from this

paper are:

− EvalBERT: A novel descriptive and C-code evaluation model is proposed by training BERTBASE with

domain-specific corpora. It outperforms the baseline models with an accuracy of 94.86% and is 1.22 pp

higher in accuracy than the next best existing model compared.

− By using new hardware architectures like GPU and fitting its memory with all mini-batch training data,

we reduce the EvalBERT training time by half compared to training it on a CPU-only system.

− An interactive frontend web-interface called E- Pariksha is developed for faculty to administer the exam

and students to take online exams, with EvalBERT assisting evaluation at the backend.

The rest of the paper is structured as follows: next section introduces the background of the problem

and reviews relevant literature. This is followed by proposed methodology. Next, we discuss the

experimental analysis and present the results. Finally, concluding remarks are mentioned for the paper.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3346-3361

3348

2. LITERATURE REVIEW

Raut et al. [1] discussed various similarity measures such as Cosine similarity and word mover

distances between students' answers and model answers. The weight value for each similarity measure is

manually assigned for assessment. However, text summarization is not performed which is a limitation in

their work. Nandini and Maheswari [7] utilize question-answer classification and feature extraction for

automatic answer evaluation. They incorporate matching keywords and similarity measures to determine the

final score, achieving a system performance with a precision, recall and sensitivity value of 95%, 94%, and

94.5% respectively. Bashir et al. [8] discuss the use of WMD and responsibility measures, along with

word2vec for semantic similarity. They also present two score prediction algorithms that achieve up to 88%

accuracy. Patil and Ali [9] discuss various approaches for automating and assisting evaluators in grading

answer scripts. They highlight the requirement for large training datasets and utilize techniques such as LSA,

machine learning, and statistical methods. However, existing systems often lack accuracy when tested on

standard and common datasets, suggesting that assistance to evaluators could enhance accuracy. Dharma

Tetali et al. [10] propose the TADACO ReportLab, tested with a sample of 120 students through tool for

evaluating descriptive answers. They develop a model using Python modules like Pyuic, Platypus, and

semi-automated and manual evaluation. Results show that the semi-automated mode yields better results

compared to the completely automated mode. Vij et al. [11] discuss both auto and manual evaluations, noting

minimal differences in random forest principle and was trained random forest principle and was trained on

530 samples to automatically evaluate descriptive answers. Combéfis [12] reviews and classifies techniques

and tools used for automated code assessment in educational settings, exploring their advantages, limitations,

and potential improvements. The study concludes that while current tools provide valuable support in

evaluating student code, there remains significant room for enhancing feedback quality and adapting

assessments to more complex, real-world programming scenarios. Dubey and Makwana [13] aims to develop

a computer-assisted system for evaluating descriptive answers using Weka's random forest classification

technique. The results demonstrate that the proposed method effectively classifies descriptive responses with

high accuracy, offering a viable automated solution for evaluating open-ended questions in educational

settings. Vinothina and Prathap [14] proposed EVaClassifier designed for the automated assessment of

descriptive answers, employing support vector machines (SVMs). The system's performance is assessed

based on the accuracy of grading provided by the supervised machine learning algorithm it employs. Table 1

compares the performance of various automatic evaluation techniques in literature. It is observed that most of

the techniques use similarity measures and grammatical mistakes for evaluation. We find very few models

based on deep learning and none using latest transformer models to extract decisive evaluation parameters

like text summarization and C code error log generation for programming-based answers.

Table 1. Comparison of various automatic evaluation techniques and their accuracies
Sl.

No.

Topic/model Technique Accuracy Remarks

1 Intelligent essay evaluator [15] Clustering method, latent semantic

analysis technique

60-90% Most of the auto-

evaluation

techniques
techniques have

considered similarity

measures and
grammatical

mistakes for

evaluation. None of
them have used

BERT to extract

decisive parameters
for evaluation like

text summarization,

C code error log
generation for

programming-based

answers.

2 Automated essay scoring using Bayes
theorem [16]

Classification method, Bayes
theorem

76%

3 Descriptive answer assessment in

online examination [7]

Naïve Bayes classification algo. and

relation-based feature extraction
technique

95% Prec, 94%

recall, 94.5%
sensitivity

4 Automatic answer script evaluation

using NLP and OCR [17]

OCR technique, NLP and deep

learning analysis

Average 80%

5 Evaluation of short answers on C-

rater system [18]

NLP technique 80%

6 C-Rater: automatic assessment of
students free-text answers [19]

BLEU and LSA 50%

7 TADACO-A semi-automatic

assessment tool [10]

Matching keywords and phrases Good results vs.

manual evaluation
8 Eklavya-AI proctored online

examination system [20]

Machine learning algorithms 90% accuracy

9 Deep automated text scoring model
Based on memory network [21]

Deep learning LSTM network 83.37%

3. MATERIALS AND METHOD

A high-level system architecture is illustrated in Figure 1. A web interface named ‘E-Pariksha’ is

designed for faculty log-in to add descriptive questions and display them using Django. The faculty must

log-in and upload the descriptive course name and questions, along with the marks for each question into the

Int J Elec & Comp Eng ISSN: 2088-8708

EvalBERT: a novel framework for assisted descriptive answers and … (Prakruthi Sondekere Thippeswamy)

3349

database. Any student taking the examination should log-in through the student login page which redirects to

the page where the questionnaire is displayed. Students must answer the questions for which the answers and

keywords are stored in the database. The answers are available to the faculty for evaluation after they log-in

for assessment. The administrator of the evaluation portal has to login to view courses, for conduction of

exam, oversee faculty and student activities and publish exam results. The ML or transformer-based models

work at the backend in evaluation of both the descriptive and C-coding questions

Figure 1. System architecture of the proposed model

4. PROPOSED METHODOLOGY

The proposed method consists of a web interface. Each component of the interface is briefly

explained below.

a. Registration phase: A web interface frontend is designed where student and faculty must register

themselves to log-in to the webpage. Admin has all the controls of login and database maintenance.

Faculty can frame the question paper which is displayed to the student and the student must answer and

upload their response.

b. Student’s questionnaire uploading and answer retrieval: Faculty must log in and upload question ID,

Question description and marks allotted to each question into the database. The questionnaire is displayed

to the students. Students must answer the questions and answers uploaded are stored in the database. The

same are reflected in the faculty login for assessment.

c. Feedback phase: A feedback module is used to provide performance analysis and feedback to the student.

4.1. Evaluation metrics

Answer evaluation metrics module is used for generating answer length, grammatical errors,

similarity measure between model and student’s answer, summary of descriptive answer, finding similarity

with model answer and syntactic error log for C-code based answers which are briefly explained below.

a. Answer length (evaluation parameter 1): In many descriptive exams, the length of the answer is expected

to be limited to 150 words, 200 words and so on. So, it is very important to know the length of the answer

for evaluation including other statistics like line and word count. Answer length statistics includes

number of letters, words and lines present in the student’s answer. This score (S1) contributes 10% to the

overall score.

b. English and grammatical errors (evaluation parameter 2): Functions of NLTK library are used for

language modeling to find out English and grammatical errors which need to be avoided in descriptive

answers, for better assessment [22]. This score (S2) contributes 10% to the total score.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3346-3361

3350

c. Similarity measure (evaluation parameter 3): Efficient similarity techniques are implemented for

comparing model answers and student’s answers. Similarity techniques like WMD, cosine, Jaccard and

bigram similarity can be used. The percentage of similarity shall be displayed for the evaluator’s reference.

WMD and cosine similarity measure are used in this research [23], [24] which are explained below.

Word mover's distance (WMD) is a measure of similarity between two text documents. It leverages

the word embeddings of words in the documents to compute the minimal "cost" of transforming one

document into the other. Word embeddings represent words as vectors in a continuous vector space. Let 𝑣𝑖

denote the embedding of the i-th word in the vocabulary.

Consider the two documents, model answers as D1 and students answer as D2, represented as

weighted bags of words. Let 𝑥𝑖 and 𝑦𝑗 denote the words in D1 and D2, respectively. The distance between

words 𝑥𝑖 and 𝑦𝑗 is typically measured using the Euclidean distance between their embeddings as (1):

𝑑(𝑥𝑖 , 𝑦𝑗) = ‖𝑣𝑥𝑖
− 𝑣𝑦𝑗

‖
2
 (1)

WMD frames the similarity measure as an optimal transportation problem. It finds the minimum cumulative

cost required to move the distribution of word embeddings of one document to match the other. Let 𝑇𝑖𝑗 be the

flow between word 𝑥𝑖 in D1 and word 𝑦𝑗 in D2. The optimization problem can be formulated as (2):

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑𝑖, 𝑗 𝑇𝑖𝑗 ⋅ 𝑑(𝑥𝑖, 𝑦𝑗) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑗 𝑇𝑖𝑗 = 𝑤𝑖, ∀𝐼 ; ∑𝑖 𝑇𝑖𝑗 = 𝑤𝑗, ∀𝑗 ; 𝑇𝑖𝑗 ≥ 0, ∀𝑖, 𝑗 (2)

where 𝑤𝑖 and 𝑤𝑗 are the weights of word 𝑥𝑖 in D1 and word 𝑦𝑗 in D2, respectively. Typically, these weights

can be the term frequencies or normalized term frequencies (so that they sum to 1). In the above equation,

Flow Matrix T represents how much of the word 𝑥𝑖 from D1 is transported to word yj in D2. And Cost

𝑑(𝑥𝑖 , 𝑦𝑗) represents the "cost" or "effort" required to transform 𝑥𝑖 into 𝑦𝑗.

The objective is to find the transportation plan T that minimizes the total cost, which directly

corresponds to the dissimilarity between the two documents. The score (S3_WMD) from this evaluation

contributes 80% to the total score. Cosine similarity is a measure of similarity between two non- zero vectors

of an inner product space that measures the cosine of the angle between them. This measure is particularly

used in high-dimensional positive spaces, such as in text analysis, where each term or word is a dimension.

Given two vectors 𝐴 and 𝐵, the cosine similarity sim (𝐴, 𝐵) is defined as (3):

𝑠𝑖𝑚(𝐴, 𝐵) =
𝐴.𝐵

‖𝐴‖‖𝐵‖
 (3)

where, (𝐴. 𝐵) is the sum of the products of the corresponding entries of the two sequences of numbers. norm

(or length) of the vector, calculated as the square root of the sum of the squares of its components.

The cosine similarity ranges from -1 to 1. 1 indicates that the vectors are identical. 0 indicates that the

vectors are orthogonal (no similarity) and -1 indicates that the vectors are diametrically opposed. In this study,

considering model answers as D1 and students answer as D2 represented by TF-IDF vectors 𝐴 and 𝐵:

𝐴 = [𝑎1, 𝑎2, 𝑎3, … . , 𝑎𝑛] ; 𝐵 = [𝑏1, 𝑏2, 𝑏3, … . , 𝑏𝑛]

The cosine similarity is computed as (4):

𝑠𝑖𝑚 (𝑎. 𝑏) =
∑ 𝑎𝑖𝑏𝑖

𝑛
𝑖=1

√∑ 𝑎𝑖
2𝑛

𝑖=1 .√∑ 𝑏𝑖
2𝑛

𝑖=1

 (4)

This measure helps in determining how similar two documents are based on their term distributions,

providing faculty a simple and intuitive metric for text similarity. The score (S3_cosine) from this evaluation

contributes 80% to the total score.

d. Summary of student’s answer (Evaluation parameter 4): The purpose is to create a cogent and fluent

summary having only the important points outlined in the document. The summarized text of every answer

of student is displayed for the evaluator’s assistance in assessment. Extractive summarization, an efficient

summarization technique is used for generating a summary of student’s answers. The extractive

summarization technique uses the same text as in the original. It is less complex than the abstractive

method. It tends to be more accurate than the abstractive method, as it simply picks out the sentences from

the original text itself. This method is suitable for domains where there is less variation in the language.

Int J Elec & Comp Eng ISSN: 2088-8708

EvalBERT: a novel framework for assisted descriptive answers and … (Prakruthi Sondekere Thippeswamy)

3351

e. Syntactic error log for C code-based answers (evaluation parameter 5): The error log is manually

generated for the student’s C code. Parameters like missed semicolons, matching brackets and

parentheses, wrongly spelled keywords, undefined variables, improper data types, incorrect function

arguments and preprocessor directives are considered for checking errors in C code-based answers. This

score (S5) contributes 100% to the total score for this metrics. St is the actual total score by adding S1 to

S4 metrics as shown in Table 2. And the proposed algorithm for evaluation is mentioned in

Algorithm 1.

Table 2. Weightage of individual evaluation metric for descriptive answers
Evaluation metric Weightage

For descriptive answers

Answer length (S1)

5%
English and Grammatical errors (S2) 5%

Similarity index (S3_cosine or S3_WMD) 80%

Summary of student’s answer (S4) 10%
Total score (St)

For C Programming answers
Syntactic error log (S5)

100%

100%

4.2. Corpus details

Since there are no publicly available labeled descriptive and C code question answers, we curate a

labeled corpus by crawling previous ten years examination question papers from various university websites,

their solutions, student answers and data belonging to computer science and general knowledge from various

websites. The corpus contains necessary keywords in questions which were extracted from the solution.

Keywords are terms that are unique to a question and are necessary to provide an answer. These keywords,

which just need to have the most important terms in lower case, have a big impact on how well the similarity

assessment module in the model scores. Students' answers are mapped using the solution, which is a

subjective response including synonym words to descriptive questions or parameters like semicolons,

matching brackets and parentheses, correctly spelled keywords, defined variables, proper data types, correct

function arguments and preprocessor directives in C code-based answers. Every term and context covered in

the answers must be included in this solution in different lines or paragraphs. The solution to a question is

prepared by the faculty/evaluator.

For training and testing the model, we need a large corpus. The crawled data is annotated as it is

unlabeled. Both the descriptive and C code question answers are annotated, and a best score based on the

answers given by students is given. The annotated corpus consists of over 655 descriptive and 345 C code

related questions, each with a correct answer (solution) and annotated 10 student answers to each of the

questions. The corpus thus contains a total of 10,002 answers, keywords for descriptive questions and C code

parameters extracted from the solutions and data from various computer science knowledge-based websites.

Table 3 shows the distribution of scores in answers sheets used in the corpus.

Table 3. Score distribution in answer sheets
Questions Score

100 90 80 70 60 50 40 30 20 10 0 sum

Descriptive 111 251 478 830 1076 1296 1086 836 380 167 40 6551

C-code 144 468 656 487 657 356 287 114 102 156 24 3451

4.3. Models used

The proposed research uses three machine learning or deep learning models to measure semantic

similarity in text, namely multinomial Naïve bayes, Bi-LSTM and BERTBASE and BERT pretrained on

domain specific corpora proposed as EvalBERT. The models are discussed briefly in the section below.

a. Multinomial naïve Bayes

Multinomial naive bayes (MNB) model, a probabilistic classifier is commonly employed in text

classification tasks in NLP, with applications ranging from information retrieval to question answering

systems. The MNB model assumes that features are generated from a multinomial distribution, making it

suitable for text classification tasks where the features represent word frequencies. To adapt MNB for

measuring semantic similarity, we treat documents or sentences as bags of words, ignoring word order and

considering only the frequency of each word. Mathematically, given two text samples X and Y, represented

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3346-3361

3352

by their word frequency vectors x and y respectively, the semantic similarity S between them can be

estimated using MNB as (5):

𝑆(𝑋, 𝑌) =
∑ min(𝑥𝑖,𝑦𝑖)𝑛

𝑖=1

∑ max(𝑥𝑖,𝑦𝑖)𝑛
𝑖=1

 (5)

where xi and yi represent the frequency of word i in samples X and Y respectively, and n is the total number of

unique words in both samples. By comparing the word frequencies of two text samples using MNB, we

obtain a similarity score ranging from 0 to 1, where 0 indicates no similarity and 1 indicates identical text.

This approach provides a simple yet effective method for measuring semantic similarity in answers.

b. Bi-directional long-short term memory network

Bi-LSTM networks, as shown in Figure 2 is a variant of recurrent neural networks (RNNs) used for

capturing contextual information and semantic relationships within text sequences in answers. It can be

employed to encode input text sequences into fixed-dimensional vectors, capturing both forward and

backward contextual information. These vector representations can then be compared to determine the

similarity between two text inputs. Mathematically, given two input text sequences X and Y, represented as

sequences of word embeddings x = (x1, x2, ..., xn) and y = (y1, y2, ..., ym) respectively, the semantic

similarity S between them can be computed using Bi-LSTM as (6):

(𝑋, 𝑌) = 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐵𝑖 − 𝐿𝑆𝑇𝑀(𝑥), 𝐵𝑖 − 𝐿𝑆𝑇𝑀(𝑦)) (6)

where 𝐵𝑖 − 𝐿𝑆𝑇𝑀(𝑥) represents the output vector representation of input sequence x obtained from the

Bi-LSTM network, and 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 computes the similarity between the two output vectors.

c. Bidirectional encoder representations from transformers

As shown in Figure 3, BERTBASE (12 layers, 110M parameters) and BERTLARGE (24 layers,

330M parameters) versions exhibit different levels of architectural complexity. An encoder stack built on the

Transformer architecture is the standard component of BERT. It has an embedding layer that, like the typical

encoder in the Transformer model, receives a string of words as input and passes it on to the next encoder

unit. Every encoder layer self-attenuates, and the results are distributed via a feed-forward network [24].

Figure 2. Proposed Bi-LSTM for semantic similarity in answers

Figure 3. BERT model architecture

Int J Elec & Comp Eng ISSN: 2088-8708

EvalBERT: a novel framework for assisted descriptive answers and … (Prakruthi Sondekere Thippeswamy)

3353

The following encoder layer receives the feedforward network's output. For different tasks, BERT

uses a fine-tuning strategy without requiring particular changes. A pre-trained BERT model can reach

state-of-the-art performance by adding an extra layer. Using training set data, the BERT architecture is

optimized while maintaining the necessary format for data organization. BERT layers receive three input

arrays:

− input_ids: These are integers corresponding to each word

− In the input sequence.

− attention_mask: It is shown as either 1 or 0. It indicates which elements of the input_ids array should be

attended to.

− token_type_ids: Used to distinguish responses, it requires special tokens like [CLS] and [SEP] to

separate distinct responses within the input_ids.

The encode_plus function from the tokenizer class tokenizes the raw input. A [CLS] indicator was

affixed at the start of the text token, followed by the addition of a [SEP] token at the end. Subsequently, each

token was sequentially assigned an index, and the length of each sentence was assessed against the maximum

length, with padding applied to those falling short of it. To ensure proper formatting of raw data for input into

the BERT model, a helper function is utilized. Following this, an attention mask was created to enhance

learning efficiency. In this study, a maximum length of 364 was set for descriptive answers. EvalBERT: As

shown in Figure 4, BERTBASE is extended and pre-trained with additional corpora consisting of descriptive

and C programming questions, answer keys, and answer scripts from various websites, university portals,

class exams and fine-tuned.

Figure 4. Pre-training and fine-tuning in proposed EVaLBERT model

Pre-training: Though plain BERTBASE is good for general corpora, its performance drops on

task-specific data. Therefore, we use large amount of annotated data for unsupervised pre-training. The data

was divided into 70% training and 20% for testing. We used 10% data at validation stage. To feed the

training data as per input format of BERT, we used sentence splitter library to separate the content into

sentence units, followed by separating the score labels. To tokenize the content, we used BERT base-cased

which converts sentences into numeric indices, calculates the maximum sequence length of the input token,

and fills any missing data with padded zeroes. The attention mask is next initialized and separated into

training and validation. The batch size is set and to avoid overfitting and longer training time, we limited the

epochs to 20, using Nvidia GPU which accelerates the training. The various model layers are

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3346-3361

3354

− Input layers (input_ids and attention_mask): input_ids layer is responsible for receiving the tokenized

input sequence. Each word or subword is represented as an integer from the tokenizer. The

attention_mask layer specifies which tokens are meaningful and which are padding tokens. It helps the

model focus only on the actual input sequence and ignore the padded portions.

− BERT model layer (tf_bert_model): This is the pre-trained BERT model. In this case, it's using the

TFBaseModelOutput architecture from TensorFlow (TF) which includes last_hidden_state, the output

embedding representation for each token in the sequence, and pooler_output, a vector representation for

the entire sequence (for classification). The output size is (None, 768), where 768 is the hidden layer size.

This layer has over 108 million parameters, making it the core of the model.

− Global max pooling layer (global_max_pooling1d_7): This layer applies a max pooling operation over

the output from the BERT model. It reduces the dimensionality by taking the maximum value across the

tokens for each feature, resulting in a single vector of size (768) per input sequence.

− Dense layer 1 (dense_21): This fully connected layer further processes the pooled output by passing it

through 768 neurons. It adds more capacity to the model for better feature extraction. This layer has

590,592 parameters.

− Dropout layer 1 (dropout_47): A dropout layer is applied to prevent overfitting by randomly setting a

fraction of the input units to zero at each update during training. No trainable parameters here.

− Dense layer 2 (dense_22): The output from the previous layer is passed through a smaller fully connected

layer with 128 neurons. This step allows the model to compress the feature representation further and

reduce the dimensionality. This layer has 98,432 parameters.

− Dropout layer 2 (dropout_48): Another dropout layer is applied to further prevent overfitting before

passing the data to the next dense layer.

− Dense layer 3 (dense_23): Another dense layer with 32 neurons is applied. This layer focuses on learning

more compressed representations of the input data. It has 4,128 parameters.

− Output layer (dense_24): The final output layer consists of 2 neurons, likely for a binary classification

task. It outputs the prediction probabilities. The layer has 66 parameters.

Fine-tuning: An extra fully connected classification layer with Adam optimizer is added that

fine-tunes the learning and leverages the pre-trained backbone weights as shown in Figure 5. Even for this

task, a single GPU was used. Assessment of various models is carried out using standard relative

performance parameter like accuracy.

Figure 5. Fine tuning EVaLBERT model

Algorithm 1. Proposed algorithm for evaluation
1: Input student’s answers digitally through the web interface and store them in the

database.

Int J Elec & Comp Eng ISSN: 2088-8708

EvalBERT: a novel framework for assisted descriptive answers and … (Prakruthi Sondekere Thippeswamy)

3355

2: Preprocess the answer removing stop words, tokenize each sentence and use

CountVectorizer to represent them in TF-IDF form

3: Exercise decisive evaluation metrics for evaluation of answers viz. Answer length (S1),

English and Grammatical errors (S2), Similarity measure (S3), summary of student’s

answer (S4) and Syntactic error log for C code-based answers (S5)

4: Calculate score prediction using similarity measure viz. Word distance mover (S3_WDM)

and Cosine similarity (S3_cosine)

5: Word movers distance method:

6: Calculate distance between words using Euclidean distance 𝑑(𝑥𝑖 , 𝑦𝑗) = ‖𝑣𝑥𝑖
− 𝑣𝑦𝑗

‖
2

7: Frame the similarity measure as an optimal transportation problem to minimize ∑i,j

Tij⋅d(xi,yj) subject to ∑j Tij=wi,∀I, ∑i Tij=wj, ∀j and Tij≥0, then ∀i,j
8: Cosine similarity method:

9: Calculate cosine similarity 𝑠𝑖𝑚(𝐴, 𝐵) =
𝐴.𝐵

‖𝐴‖‖𝐵‖
 where 𝐴. 𝐵 = ∑ 𝐴𝑖𝐵𝑖

𝑛
𝑖=1 ; and

 norm ‖𝐴‖ = √∑ 𝐴𝑖
2𝑛

𝑖=1 ; ‖𝐵‖=√∑ 𝐵𝑖
2𝑛

𝑖=1 .

10: if sim (A,B) = 1,

 then S3= 80% (the vectors are identical)

 else if sim (A,B)~ 0,

 then S3<10% (the vectors are orthogonal with less or no similarity)

11: Calculate overall score by combining S1,S2,S3 for descriptive answers and S4 for C

programming answers

12: Assess, award marks, and accomplish performance analysis and feedback to students.

13: End

5. RESULTS AND DISCUSSION

The results are tabulated with and without using the MNB model and the two similarity measures,

WMD and Cosine similarity. The assessment was carried out by a faculty (evaluator score) which is

compared with the score predicted using one of the similarity measures. Table 4 shows the score predictions

for five answer scripts and the error using cosine similarity and without MNB model support. Table 5 shows

the scores comparison for the first five answers used for training purposes using cosine similarity and with

model support. It is seen that average error decreases from 7.2 marks to 4.2 marks when using model

suggestions. Table 6 shows the scores comparison for the first five answers used for training purposes using

WDM similarity and without MNB model support. Table 7 shows the score predictions of five answer scripts

with the error using WDM similarity with MNB model support.

Table 4. Score prediction using cosine similarity

measure without MNB support
Evaluator score Actual score (St) Cosine Error

56 61 5
43 52 9

0 07 7

78 84 6
49 58 9

Average error 7.2

Table 5. Score prediction using cosine similarity

measure with MNB support
Evaluator score Actual score (St) Cosine Error

56 59 3
43 48 5

0 03 3

78 83 5
49 54 5

Average error 4.2

Table 6. Score prediction using WDM similarity

measure without MNB support
Evaluator score Actual score (St) Cosine Error

56 60 4

43 49 6

0 06 6
78 83 5

49 56 7

Average error 5.6

Table 7. Score prediction using WDM similarity

measure with MNB support
Evaluator score Actual score (St) Cosine Error

56 59 3

43 47 4

0 04 4
78 81 3

49 55 6

Average error 4.0

It is seen that average error decreases from 5.6 marks to 4.0 marks when using MNB model

suggestions. Figure 6 shows the accuracy of both the approaches with and without the machine learning

model support. It is seen that accuracy is 84.71% and 87.39% for WMD and cosine similarity respectively

without using the ML model suggestion. The accuracy decreased to 82.54% and 80.08% for WMD and

cosine similarity along with the classification model used. It is because the results of cosine similarity

measure are semantically weaker which prevents the model from getting trained on the right data as in the

case of WDM. Figure 7 shows the weights and other hyperparameters of EvalBERT model.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3346-3361

3356

Table 8 shows the accuracy comparison of all models implemented. Machine learning models along

with similarity measure could maximum attain an accuracy of 82.54%. Deep learning provides a good option

for NLP tasks and both Bi-LSTM and BERT perform better than ML models with an accuracy of 87.89%

and 88.74% respectively. However, EvalBERT pre-trained on domain-specific academic corpora outperforms

all models with an accuracy of 94.86%.

Table 9 shows the accuracy comparison of EvalBERT with existing state-of-the-art models.

Bashir et al. [8] use MNB along with WMD and cosine similarity and attain a maximum accuracy of 87%.

Lee et al. [25] use a fine-tunes BERT model for Korean test database. They attain a maximum accuracy of

93.64% with 20 epochs, similar to the no. of epochs used in this study. However, EvalBERT outperforms it

with an accuracy of 94.86%. Figure 8 shows the training and validation accuracy charts of the Bi-LSTM

model. Figure 8(a) shows a good training and validation accuracy for the model. The model fits both new

data and training data well, as seen by the validation loss plot and the training loss plot in Figure 8(b),

respectively.

Figure 6. Accuracy of both approaches with and without using ML model

Figure 7. Weights and other hyper-parameters in EvalBERT model

Table 8. Comparison of accuracy results of various models implemented
Model Word Embedding/ Similarity measure Acc (%)

Multinomial Naïve

Bayes

Cosine similarity 80.08

Word mover distance 82.54
Bi-directional LSTM Cosine similarity 87.89

BERTBASE General corpora 88.74

Proposed EvalBERT General+academic corpora 94.86

76

78

80

82

84

86

88

Without MNB support With MNB support

A
cc

u
ra

cy

Model performance

WMD similarity
measure

Cosine similarity
measure

Int J Elec & Comp Eng ISSN: 2088-8708

EvalBERT: a novel framework for assisted descriptive answers and … (Prakruthi Sondekere Thippeswamy)

3357

Table 9. Comparison with existing models
Reference Model Acc (%)

Bashir et al. [8] MNB+WMD 87.00
Jung et al. [25] BERT 93.64

Proposed EvalBERT 94.86

(a) (b)

Figure 8. Learning curves of the proposed model (a) accuracy and (b) loss

E-Pariksha: A web interface named ‘E-Pariksha’ is designed using Django for faculty and student

login as shown in Figure 9. The faculty must log-in and upload descriptive course name and descriptive

questions as shown in Figure 9(a) along with marks for each question into the database. Any student taking

an examination needs to log-in through the student login page which redirects to the page where the

questionnaire is displayed as shown in Figure 9(b). Students must answer the questions and answers are

stored in the database. The same is reflected in the faculty login for assessment. Table 10 displays the results

of evaluation metrics for the question “What is a compiler?” and a C program-based question “Write a

program to read and print the value of variable” to assist the evaluator and provide feedback. Similarly, the

administrator of the evaluation portal must log-in to view courses, faculty, and student activities.

The study's findings demonstrate that EvalBERT, when trained on domain-specific academic corpora,

significantly improves the accuracy of automated grading for descriptive answers and C programming

responses, achieving 94.86% accuracy. This result is supported by the fact that EvalBERT outperforms baseline

models, including MNB and Bi-LSTM, with a 1.22 percentage point improvement over the nearest

competitor. The integration of GPU for training also halved the model’s training time, demonstrating its

efficiency for large-scale academic evaluation tasks.

(a) (b)

Figure 9. E-Pariksha frontend (a) adding descriptive questions to a specific course and (b) student answering

a question in the ‘C Programming’ course

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3346-3361

3358

Compared to previous studies that primarily relied on simpler models or keyword-based approaches,

this research demonstrates the clear advantage of transformer-based models like BERT for more nuanced and

accurate assessments. Previous studies struggled with limitations in dataset quality, scalability, and

performance accuracy, which our study addresses with specialized training on academic data. A strength of

our study lies in its ability to evaluate both descriptive and code-based responses, but its limitations include

the focus on English and C programming, leaving room for broader language and programming support.

Unexpectedly, GPU acceleration not only reduced training time but also enhanced the overall performance,

suggesting the importance of computational resources in model refinement.

Table 10. Display instance of evaluation metrics to assist the evaluator
Sl.

No

Questions (marks allotted)

and student answers

Evaluation metrics Evaluators

marks

Performance

and feedback

1 What is compiler? (10)
A Compiler is a software

that typically takes a high-

level language code as
input and converts the

input to a lower-level

language at once.
compiler translates the

program written in the

source language to the
machine language.

A compiler is a translating

program that translates the
instructions of high-level

language to machine level

language.
The compiling process

contains an essential

translation operation and
error detection.

The C programming

language is what is
referred to as a compiled

language.

GCC is a compiler in C.

a. Model Answer: The C programming language is what is
referred to as a compiled language. Basically, it translates the

program written in the source language to the machine

language. The compiling process contains an essential
translation operation and error detection.

The GNU Compiler Collection (GCC) is one such compiler for

the C language.
A compiler is a translating program that translates the

instructions of high-level language to machine-level language.

A program which is input to the compiler is called a Source
program.

This program is now converted to a machine-level language by

a compiler is known as the Object code.
b. Answer Length statistics

Output: Word count: 86; Letter count: 439; Line count: 5

c. Number of grammatical mistakes
No grammatical errors found in text2.txt.

d. Percentage of similarity with the original answer

The similarity between the two texts: 89.34805233826893 %
e. Summary of students' answer

A Compiler is a software that typically takes a high-level

language code as input and converts the input to a lower-level
language at once. The C programming language is what is

referred to as a compiled language. The process contains an

essential translation operation and error detection.
f. Syntactic error assistance for C programming-based answers

NA

8 Satisfactory

Elaborate on

compiler’s
functionality

2 Write a program to read
and print the value of

variable (4)

#include <stdio.h>

int main(){

 int a
 printf("Enter value: ");

 scanf("%d",&a);
 printf("%d",a);

}

a. Model Answer
#include <stdio.h>

int main(){

 int a;
 printf("Enter: ");

 scanf("%d",&var);

 printf("%d",var);
}

b. Answer Length statistics- NA; c. Number of grammatical
mistakes- NA; d. Percentage of similarity with the model

answer-NA; e. Summary of students' answer-NA

f. Syntactic error assistance for C programming-based answers

Error Log: /content/code.c: In function ‘main’:;

/content/code.c:5:5: error: expected ‘=’, ‘,’, ‘;’, ‘asm’ or

‘__attribute__’ before ‘printf’; 5 | printf("Enter: "); | ^;
/content/code.c:6:17: error: ‘a’ undeclared (first use in this

function; 6 | scanf("%d",&a); | ^ /content/code.c:6:17: note:

each undeclared identifier is reported only once for each
function it appears in.

3 Good

Avoid Syntax

errors

This study aims to create an automated evaluation framework that can assist educators by improving

the accuracy and efficiency of grading. The significance of this research lies in its potential to reshape

automated academic assessments, reducing manual grading time while providing consistent, detailed

feedback. However, unanswered questions remain, such as how EvalBERT could handle non-English

languages, handwritten scripts, or complex responses like mathematical equations. Future research could

explore expanding EvalBERT’s capabilities to cover these areas and further enhance its practical applications

in diverse educational settings.

Int J Elec & Comp Eng ISSN: 2088-8708

EvalBERT: a novel framework for assisted descriptive answers and … (Prakruthi Sondekere Thippeswamy)

3359

The study's limitations include its current focus on evaluating only English-language descriptive

answers and C programming responses, which restricts its applicability to other languages and programming

languages. Additionally, while EvalBERT shows high accuracy, it depends heavily on the quality and relevance

of the domain-specific academic corpora used for training. The system also requires significant

computational resources, particularly for GPU-based training. Another limitation is its inability to handle

handwritten answer scripts from offline exams, as the current framework is tailored for online exams.

Expanding EvalBERT to recognize complex mathematical formulas, diagrams, or voice inputs for handicapped

students is also a challenge that remains unaddressed in the current version.

6. CONCLUSION

In this research, we introduced EvalBERT, a cutting-edge framework designed to assist evaluators in

assessing descriptive answers and C programming responses. The framework leverages state-of-the-art

models such as MNB, Bi-LSTM, and BERT, utilizing advanced techniques like WMD and cosine similarity

for measuring response similarity. Through additional training of BERTBASE on domain-specific academic

corpora using GPU acceleration, EvalBERT achieved a significant accuracy rate of 94.86%, outperforming the

nearest competing model by 1.22 percentage points. Furthermore, GPU integration helped reduce training

time by half, making the system more efficient for real-world applications. The development of the E-

Pariksha interface further enhances the practical utility of EvalBERT by providing a seamless platform for

administering and taking exams online. Faculty can now efficiently evaluate both descriptive and code-based

responses, reducing manual intervention while offering prompt, detailed feedback to students.

Our findings have important implications for the research field and the academic community.

EvalBERT represents a key advancement in the automation of complex assessment tasks, particularly in

contexts where qualitative feedback is essential. By providing a precise, scalable, and fast solution, it

addresses the growing demand for automated evaluation systems in education. The system not only reduces

evaluation time but also ensures consistency and reduces the potential for human bias in grading. Looking

forward, EvalBERT has the potential to be extended in several ways. Future work could expand its language

support to handle non-English responses and extend its capabilities to other programming languages beyond

C. Additionally, integrating tools for evaluating handwritten answer scripts from offline exams, voice

recognition for handicapped students, and handling mathematical formulas and diagrams would greatly

broaden its applicability. These enhancements would further solidify EvalBERT’s role as a comprehensive tool

for modern academic evaluation.

FUNDING INFORMATION

Authors state no funding involved.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author

contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu

Prakruthi Sondekere

Thippeswamy

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Manjunathswamy

Byranahalli Eraiah

 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Salma Jabeen ✓ ✓ ✓ ✓ ✓

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 3, June 2025: 3346-3361

3360

INFORMED CONSENT

We have obtained informed consent from all individuals included in this study.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author, P S T,

upon reasonable request.

REFERENCES
[1] S. P. Raut, S. D. Chaudhari, V. B. Waghole, P. U. Jadhav, and A. B. Saste, “Automatic evaluation of descriptive answers using

NLP and machine learning,” International Journal of Advanced Research in Science, Communication and Technology, pp. 735–

745, Mar. 2022, doi: 10.48175/IJARSCT-3030.
[2] J. Wang and Y. Dong, “Measurement of text similarity: a survey,” Information, vol. 11, no. 9, p. 421, Aug. 2020, doi:

10.3390/info11090421.

[3] M. Han, X. Zhang, X. Yuan, J. Jiang, W. Yun, and C. Gao, “A survey on the techniques, applications, and performance of short
text semantic similarity,” Concurrency and Computation: Practice and Experience, vol. 33, no. 5, 2021, doi: 10.1002/cpe.5971.

[4] S. Patil and S. Patil, “Evaluating student descriptive answers using natural language processing,” International Journal of

Engineering Research & Technology, vol. 3, no. 3, pp. 1716–1718, 2014.
[5] P. Patil, S. Patil, V. Miniyar, and A. Bandal, “Subjective answer evaluation using machine learning,” International Journal of

Pure and Applied Mathematics, vol. 118, no. 24, pp. 1–13, 2018.
[6] J. Muangprathub, S. Kajornkasirat, and A. Wanichsombat, “Document plagiarism detection using a new concept similarity in

formal concept analysis,” Journal of Applied Mathematics, vol. 2021, 2021, doi: 10.1155/2021/6662984.

[7] V. Nandini and P. U. Maheswari, “Automatic assessment of descriptive answers in online examination system using semantic
relational features,” The Journal of Supercomputing, vol. 76, no. 6, pp. 4430–4448, 2018.

[8] M. F. Bashir, H. Arshad, A. R. Javed, N. Kryvinska, and S. S. Band, “Subjective answers evaluation using machine learning and

natural language processing,” IEEE Access, vol. 9, pp. 158972–158983, 2021, doi: 10.1109/ACCESS.2021.3130902.
[9] R. G. Patil and S. Z. Ali, “Approaches for automation in assisting evaluator for grading of answer scripts: a survey,” in 2018 4th

International Conference on Computing Communication and Automation, ICCCA 2018, 2018, pp. 1–6. doi:

10.1109/CCAA.2018.8777664.
[10] D. R. Tetali, G. Kiran Kumar, and L. Ramana, “A python tool for evaluation of subjective answers (aptesa),” International

Journal of Mechanical Engineering and Technology, vol. 8, no. 7, pp. 247–255, 2017.

[11] S. Vij, D. Tayal, and A. Jain, “A machine learning approach for automated evaluation of short answers using text similarity based
on WordNet graphs,” Wireless Personal Communications, vol. 111, no. 2, pp. 1271–1282, 2020, doi: 10.1007/s11277-019-06913-

x.

[12] S. Combéfis, “Automated code assessment for education: review, classification and perspectives on techniques and tools,”
Software, vol. 1, no. 1, pp. 3–30, Feb. 2022, doi: 10.3390/software1010002.

[13] R. Dubey and R. R. S. Makwana, “Computer-assisted valuation of descriptive answers using weka with randomforest

classification,” Lecture Notes in Electrical Engineering, vol. 476, pp. 359–366, 2019, doi: 10.1007/978-981-10-8234-4_31.
[14] V. Vinothina and G. Prathap, “EVaClassifier using linear SVM machine learning algorithm,” Advances in Intelligent Systems and

Computing, vol. 1034, pp. 503–509, 2020, doi: 10.1007/978-981-15-1084-7_48.

[15] T. K. Landauer, D. Laham, and P. Folt, “Automatic essay assessment,” Assessment in Education: Principles, Policy and Practice,
vol. 10, no. 3, pp. 295–308, 2003, doi: 10.1080/0969594032000148154.

[16] L. M. Rudner and T. Liang, “Automated essay scoring using Bayes’ theorem,” Journal of Technology, Learning, and Assessment,

vol. 1, no. 2, pp. 1–22, 2002.
[17] P. Deepak, R. Rohan, R. Rohith, and R. R., “NLP and OCR based automatic answer script evaluation system,” International

Journal of Computer Applications, vol. 186, no. 42, pp. 22–27, Sep. 2024, doi: 10.5120/ijca2024924038.

[18] J. Z. Sukkarieh and S. Stoyanchev, “Automating model building in c-rater,” in TextInfer 2009 - 2009 Workshop on Applied
Textual Inference at the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP, ACL-IJCNLP 2009 - Proceedings, 2009, pp. 61–69. doi: 10.3115/1708141.1708153.

[19] D. Pérez, A. Gliozzo, C. Strapparava, E. Alfonseca, P. Rodríguez, and B. Magnini, “Automatic assessment of students’ free-text
answers underpinned by the combination of a BLEU-inspired algorithm and latent semantic analysis,” in Proceedings of the

Eighteenth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2005 - Recent Advances in Artifical

Intelligence, 2005, pp. 358–362.
[20] “Artificial intelligence proctoring for secure assessment,” Ekalavya, 2023. https://www.eklavvya.com/remote-proctoring/

(accessed Mar. 20, 2024).

[21] S. Yang, “Deep automated text scoring model based on memory network,” in Proceedings - 2020 International Conference on
Computer Vision, Image and Deep Learning, CVIDL 2020, 2020, pp. 480–484. doi: 10.1109/CVIDL51233.2020.00-46.

[22] M. Agarwal, R. Kalia, V. Bahel, and A. Thomas, “AutoEval: a NLP approach for automatic test evaluation system,” in 2021 IEEE

4th International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2021, pp. 1–6. doi:
10.1109/GUCON50781.2021.9573769.

[23] M. F. Bashir, H. Arshad, A. R. Javed, N. Kryvinska, and S. S. Band, “Subjective answers evaluation using machine learning and

natural language processing,” IEEE Access, vol. 9, pp. 158972–158983, 2021, doi: 10.1109/ACCESS.2021.3130902.
[24] M. Bali and A. S. Pichandi, “NeRBERT- a biomedical named entity recognition tagger,” Revue d’Intelligence Artificielle, vol. 37,

no. 1, pp. 239–247, 2023, doi: 10.18280/ria.370130.

[25] J. H. Lee, J. S. Park, and J. G. Shon, “A BERT- based automatic scoring model of Korean language learners’ essay,” Journal of
Information Processing Systems, vol. 18, no. 2, pp. 282–291, 2022, doi: 10.3745/JIPS.04.0239.

Int J Elec & Comp Eng ISSN: 2088-8708

EvalBERT: a novel framework for assisted descriptive answers and … (Prakruthi Sondekere Thippeswamy)

3361

BIOGRAPHIES OF AUTHORS

Prakruthi Sondekere Thippeswamy received the B.E. degree in computer

science and engineering from VTU, Belgaum, Karnataka in 2009, and master’s degree in

computer science from Sri Siddhartha Academy of Higher Education in 2011. She has 12 years

of teaching experience at various engineering colleges in Bangalore. She is currently a research

scholar, pursuing Ph.D. at DBIT research Center, Bangalore. She has published 6 papers in

various national and international conferences and journals. Her current research interests

include machine learning, natural language processing and emerging technologies. She can be

contacted at email: st.prakruthi@gmail.com.

Manjunathswamy Byranahalli Eraiah received B.E. degree in

Telecommunication Engineering from VTU, Belgaum, Karnataka in 2005, M.E. (information

technology) from Bangalore University in 2008. He is awarded with Ph.D. degree in CSE from

Bangalore University, Karnataka in 2016. He has 16+ Years of teaching experience and 5+

years of research experience. His areas of interest include cognitive networks, image

processing and data science and machine learning. He published 30+ papers in various national

and international journals. He has filed 5+ patents. He is a member of ISTE, CSI, IAENG and

WAIRCO. He can be contacted at email: manjube2412@gmail.com.

Salma Jabeen received the B.E. degree in CSE, M.Tech. degree in software

engineering and Ph.D. in CSE from VTU Belgaum, Karnataka. She has published 10 research

papers in referred international journals, 17 research papers in the proceedings of various

international/national conferences and 1 patent. She has published book on advance artificial

intelligence. Her areas of research include artificial intelligence, machine learning, data

science, database, system software, unix system programing. She has membership in IEI,

IAENG. She can be contacted at email: salmakhayum@gmail.com.

mailto:st.prakruthi@gmail.com
mailto:manjube2412@gmail.com
mailto:salmakhayum@gmail.com
https://orcid.org/0000-0001-5159-6842
https://scholar.google.com/citations?hl=en&user=TWft9zEAAAAJ
https://orcid.org/0000-0002-3991-0031
https://scholar.google.com/citations?user=oY25wrwAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=55657511300
https://orcid.org/0009-0007-1421-923X
https://scholar.google.com/citations?hl=en&user=jjoz7WIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55560398100

