
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 2, April 2025, pp. 1990~1999

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i2.pp1990-1999  1990

Journal homepage: http://ijece.iaescore.com

Kafka-machine learning based storage benchmark kit for

estimation of large file storage performance

Sanjay Kumar Naazre Vittal Rao1, Anitha Chikkanayakanahalli Lokesh Kumar1, Subhash Kamble2
1Department of Computer Science and Engineering, Kalpataru Institute of Technology, Tiptur, India

2Department of Information Science and Engineering, Global Academy of Technology, Bengaluru, India

Article Info ABSTRACT

Article history:

Received Jun 13, 2024

Revised Nov 25, 2024

Accepted Dec 2, 2024

 Efficient storage and maintenance of big data is important with respect to

assuring accessibility and cost-friendliness to improve risk management and

achieve an effective comprehension of the user requirements. Managing the

extensive data volumes and optimizing storage performance poses a

significant challenge. To address this challenge, this research proposes the

Kafka-machine learning (ML) based storage benchmark kit (SBK) designed

to evaluate the performance of the file storage system. The proposed

method employs Kafka-ML and a drill-down feature to optimize storage

performance and enhance throughput. Kafka-ML-based SBK has the

capability to optimize storage efficiency and system performance through

space requirements and enhance data handling. The drill-down search

feature precisely contributes through reducing disk space usage, enabling

faster data retrieval and more efficient real-time processing within the

Kafka-ML framework. The SBK aims to provide transparency and ease of

utilization for benchmarking purposes. The proposed method attains

maximum throughput and minimum latency of 20 MBs and 70 ms,

respectively on the number of data bytes is 10, as opposed to the existing

method SBK Kafka.

Keywords:

Benchmarking performance

Big data

Drill down feature

File storage

Payloads and storage benchmark

kit

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sanjay Kumar Naazre Vittal Rao

Department of Computer Science and Engineering, Kalpataru Institute of Technology

Tiptur, Tumkur District, Karnataka - 572201, India

Email: sanjaynv@gmail.com

1. INTRODUCTION

The storing of data and its access is a challenge with the large amount of data in file storage

systems. The evaluation of benchmarking plays a significant role in performance optimization as it supports

in evaluating the storage performance in various systems [1]. The performance benchmarking allows

organizations to assess the system changes during evaluation, as well as authorize for leveraging the data for

further performance optimization [2]. To assess the latency, throughput and speed of the system, the

benchmarking establishes a baseline for evaluating the effects of the system’s changes. The storage

benchmark kit (SBK) is a tool or open-source software framework utilized to estimate the read and write

operations of the storage benchmarks [3]. SBK aids performance benchmarking by different implementation

methods like throughput, rate limiter, and latency [4], [5]. SBK distributes the benchmarking outcomes into

read or write latency and read/write throughput to the Grafana analytics for developing the performance

graphs. This benchmarking allows users to estimate the maximum achievable throughput performance of

their storage devices, alongside providing precise insights into the storage system’s performance [6], [7]. The

SBK offers widespread support for a diverse array of storage systems, encompassing local and distributed file

systems, object storage systems, and key-vale storage systems [8]. This framework contributes with an

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708 

Kafka-machine learning based storage benchmark kit for estimation of … (Sanjay Kumar Naazre Vittal Rao)

1991

efficient performance benchmarking solution through reading and writing data in the storage system [9]. The

SBK accommodates a number of payload types including byte buffer, byte array and string to permit users to

extend their individual payload types [10], [11]. Furthermore, the SBK helps database schemes of MySQL,

SQLite, PostgreSQL, Apache Derby, and Microsoft structured query language (SQL) by Java database

connectivity (JDBC) [12], [13]. The SBK executes periodic logging of the benchmarking outcomes to

Grafana analytics by Prometheus examination approach [14]. During the benchmarking performance, the

data is stored in a local disk of Ext4 file system, RocksDB and a LevelDB key value store. In MinIO

distributed storage system, the objects are sent or receive through remote hosted MinIO server [15], [16].

The fast development of data volumes poses significant challenges in managing and optimizing the

storage performance. As the data becomes enhancing uneven and distributed over different storage levels,

effective location and retrieval of data is complex. Ensuring scalability, minimizing latency, and maintaining

data integrity under dynamic workloads further obscures the storage management. These challenges require a

complete SBK to effectively estimate and solve these complexities. To address this challenge, this research

proposes the Kafka-machine learning (ML) based SBK for estimating the performance of the file storage

system. In this section, some of the existing works related to storage benchmarking performance are

discussed. Furthermore, this section represents the advantages and limitations of each work based on its

operation functions. Munegowda and Kumar [17] introduced the SBK framework for the estimation of

performance of hardware devices. This framework described the most appropriate data structures like various

concurrent queues to evaluate the throughput and low latency for storage devices. The SBK framework

exported the standard storage interface application programming interfaces (APIs) which then appended the

storage driver to evaluate the benchmarking performance for conventional storage device. While the

utilization of hardware, the benchmarking supported decision making, but the benchmarks were often

personalized to particular hardware configurations, and so, the outcomes varied when utilized with various

hardware setups. Gómez-Luna et al. [18] developed a comprehensive analysis of an open-source real-word

processing-in-memory (PIM) architecture. For this comprehensive analysis, two significant aspects were

considered: Initially, the experimental characterization of unified processing in memory (UPMEM) based

PIM system was conducted by the utilization of microbenchmarks to perform different architecture

constraints. Then, processing-in-memory benchmarks (PrIM) was presented for the estimation of 16

workloads from various application domains. The PIM minimized the latency integrated with fetched data

from traditional storage devices. However, the developed PIM approach had limited memory capacity as

compared to the traditional methods.

Munegowda and Kumar [19] implemented the sliding latency coverage (SLC) factors to

comprehend the range and the effectiveness of percentile variation latencies in storage performance

benchmarking. The SLC depicted the range of latency, median, quartiles and percentiles in an individual unit

factor. The experiments were performed on Ext4 file system, LevelDB, RocksDB and MinIO storage

systems. The SLC approaches facilitated a parallel access to the data and permitted various parts of a system

to access the data. Nonetheless, the implemented SLC approach created overhead, leading to a poor

performance. Gotz et al. [20] introduced deep characterization approach of the microcontrollers for the

selection of appropriate device in the central pillar of smart energy policy. The introduced approach

investigated the potential of different low-power microcontrollers with the benchmark with the utilization of

periodic duty cycle model of the typical wireless sensor networks (WSN). But the prolonged read operations

deteriorated the system’s performance when the connector was located arbitrarily from the cloud storage.

Ragavan and Rubavathi [21] developed big data storage minimization of binary file system approach for

category-based drill down search engine which offered the rapid multi-level filtering competence. The

developed approach stored the search engine data with 5 million data in a file system. Furthermore, the

binary files were introduced in crawling procedure for the drill down search, while binary file loading into

significant memory took a minimum time when compared to the added file format. Still, the approach was

resistant when being dealt with new data types due to the lack of effective fitness of the existing categories.

From this literature survey, the few limitations that are identified that can be noted are: benchmarking

outcomes were varied when utilized with various hardware setups, limited memory capacity, creation of

overhead, extended read operations that caused the system performance, and a resisted approach when dealt

with new data types due to the lack of effective fitness of the existing categories. To overcome these

limitations, this research proposes the Kafka-ML based SBK for the effective estimation of the storage

performance for a large number of data files. This ensures the storage systems meet the constraints of

advanced data environments, providing significant performance and reliability. The significant contributions

of this research are as follows: i) this research proposes the Kafka-ML based SBK for streaming data and

estimating the storage performance for large data files. Kafka-ML has the capability to distribute workloads

efficiently, further leading to maximized throughput and minimized latency. Additionally, SBK allows users

to measure and analyze the throughput of storage systems under different workloads; and ii) the drill down

search is developed by using the binary file system to minimize storage requirements in the data. The drill

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 1990-1999

1992

down feature minimizes the disc space that facilitates in enhancing the search performance in the stored data,

as opposed to the conventional file systems.

The rest of the research paper is organized as follows: Section 2 provides the proposed

methodology. Section 3 presents the data stream management and file storage performance using Kafka-ML.

Section 4 shows the results and discussion. Finally, Section 5 demonstrates the conclusion.

2. PROPOSED METHOD

This research proposes the Kafka-ML based SBK for evaluating the performance of the large data

file storage in hardware devices. The Kafka-ML is used for streaming data in the storage data, while SBK is

used to benchmark the performance of the large file storage data. The drill down feature supports in

minimizing the requirements of the storage system [21]. Figure 1 depicts the design of SBK.

Figure 1. Components of storage benchmark kit

2.1. Drill down search

The drill-down feature improves the effectiveness through allowing a detailed analysis of data at

different levels, which further supports in determing and solving particular effectiveness bottlenecks. It

minimizes the storage necessities through optimizing the data storage and retrieval processes. Generally,

one-to-one relationship of the keywords are identified in big data, and when the user searches any keyword, it

is considered the search result. In this research, the keywords are stored in the page, in relation to a range of

binary files, while the data is organized as a categorization of the bytes. The two keyword binary files of

keyword header and data file are written in the crawling process. In this process, a crawler program [22], [23]

transfers the web page content and analyses keywords in the search process. The keywords identified in the

title of the page contain maximum rank values, while the keywords identified in the meta tag, body and

uniform resource locator (URL) contain minimum rank values.

Int J Elec & Comp Eng ISSN: 2088-8708 

Kafka-machine learning based storage benchmark kit for estimation of … (Sanjay Kumar Naazre Vittal Rao)

1993

2.1.1. Keyword header file

The header file involves a meta data which is trivial in size and involves an offset information of the

data file. Table 1 displays the format of keyword header file. In Table 1, the size of 32-bit data is depicted as

the total number of keywords identified for the category search process. The n* 32-bit depicts the number of

keyword identifier (ID) in the first column and n* 32-bit depicts the page’s offset information about the

keyword. The page’s keywords represent the page ID in a data file that are quickly loaded into significant

memory when the size of the header file is small.

Table 1. Format of the keyword header file
Counting of keywords Keyword ID data Keyword offset data

32-bit 32-bit * number of keywords 32-bit * number of keywords

2.1.2. Keyword data file

The keyword data file is reached to the gigabyte size because of a circumstance where the data is

jobless. It is majorly based on the count of the header file keywords. If the data file is large, it is loaded into

memory and the data offsets are obtained from the significant memory. Subsequently, in-memory data access

is speedy when related to the disk-based access, and the offset of the keyword in a header file is utilized as

the catalogue. Through the utilization of this offset keyword, the needed page outcomes are obtained from the

data. With respect to enhancing the access speed of the data file disc, the solid-state drive (SSD) drives are

chosen to accumulate the data file rather than the hard disk drive (HDD) drives.

2.2. Storage benchmark kit

Benchmarking [17] is the significant process for estimating the performance of the storage systems.

The benchmarking permits users to compare the different stage solutions and understand how efficiently it

performs over particular workloads. Benchmarking is important for estimating the effectiveness of storage

systems for enabling users compare various solutions and assess their efficiency under different workloads. It

provides a systematic way to measure performance, determing bottlenecks, alongside making informed

decisions about system improvements. In this research, the necessities of the benchmarking design for SBK

are discovered and investigation into the three stages of the process of benchmark engineering are carried

out.

2.2.1. Understanding the consideration of SBK-design

The design consideration of SBK understanding is significant to be performed before splitting the

data file for benchmarking. The significant target of the SBK is to deliver a flexible and robust framework,

which effectively estimates various storage systems’ performances. Few primary design considerations are

mentioned below:

− Diversity of the workload: the SBK helps different workloads replicate real-world applications. It is

applicable for the development of different read and write operations with arbitrary and random access for

pretense in accordance to per the requirements for various applications.

− Scalability: the benchmarking framework has the capability to be scaled with the storage system over the

test. It maintains large datasets for flexibility in the distributed storage setups.

− Configurability: the SBK permits users to arrange benchmark parameters for ensembling their particular

use cases. This involves adjusting the sizes of the data, number of synchronized operations, and input or

output (I/O) patterns.

2.2.2. Methods and techniques to run SBK benchmark

In this section, the methods and techniques necessary for running SBK benchmarking are discussed.

The benchmark manufacturing process involves three significant stages of training, execution and post-

processing. The detailed information of these stages is described below:

− Training stage: this is the primary step where the benchmark environment is set up. It consists of the

selection of a suitable storage system by arranging hardware and installing the significant software.

Furthermore, the benchmark parameters of the workload types, size of the data, and concurrency are

described.

− Execution stage: after the completion of training, the benchmark is run with the selected configuration.

The SBK produces workload on the storage system and estimates the complex performance metrices of

latency and throughput.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 1990-1999

1994

− Post-processing stage: after the benchmark execution, the collected data is analyzed and processed. This

stage consists of removing outliers with an average estimation and the development of comprehensive

reports to outcome interpretation.

3. DATA STREAM MANAGEMENT AND FILE STORAGE PERFORMANCE USING KAFKA-

ML

Kafka-ML for a SBK allows the real-time data streaming and ML-driven analysis, enabling for

dynamic workload adaptation and optimized performance. This combination improves the continuous

monitoring and predictive maintenance. This further makes the benchmark kit more receptive and efficient in

controlling compound storage environments. The distributed log in Kafka allows users to move the log and

read data streams based on their requirements. It is helpful when the system has to process data once

destroyed, requiring to improve an entire data stream. In the conventional message queue systems, every

message has the chance to be removed after consumption, and the datastore is required to assure the data,

even in loss conditions.

In continuation to this, the data streams are instead arranged to be kept in a log and are reused to

train the other deployed arrangements. The ML approaches are developed to direct the whole data stream.

The necessity of the data provides the respective control message to an anticipated deployment arrangement

in Kafka with the recognized retention policy. Figure 2 depicts the data stream management in Kafka-ML. In

Figure 2, the initial data stream is directed through control message (C1) to an arranged configuration, and

C1 is resent to permit the configuration C2 to utilize a similar data stream. In the existing distributed log sate,

the data stream is destroyed and is not reused longer for other deployed arrangement. A data stream

integrated with C2 is directed to the deployed configuration D3 and D5 for reutilization. Eventually, a

streaming of the data is utilized for training and evaluation processes, while the control messages are sent

only when the data stream is completed.

Figure 2. Data stream management by Kafka-ML

To permit training and evaluation tasks with the data stream, the control message specifies both data

streams and their positions in the distributed log. The Kafka-ML utilizes control messages to communicate

the accurate position of the data streams to the deployed configurations. In a Kafka-ML web user interface, it

is applicable where the user realizes the data stream which is then sent and reused for other system

configurations. As mentioned prior, the retention policy of the Kafka determines this behavior. The Kafka

removal retention policy is discussed below:

− Retention for bytes: maintains the largest size to which the partition expands before the Kafka begins to

remove the old segments to free up space.

− Retention for ms: maintains maximum time for which the log is considered, prior the older segments

being removed to free up the space.

Int J Elec & Comp Eng ISSN: 2088-8708 

Kafka-machine learning based storage benchmark kit for estimation of … (Sanjay Kumar Naazre Vittal Rao)

1995

3.1. Big data storage system

Big data storage systems are developed to manage large amounts of data. They scale horizontally

through adding more nodes to the system, accepting the enhanced data volumes without a substantial drop in

performance. The cloud-based Hadoop environment supports for large traffic from the users and data owners

by the help of MapReduce [24], [25] context. The clustering, indexing and compression elements play an

important part in big data storage systems. This research utilizes these elements to enhance the storage

systems. Preceding to storing the data into a cloud server, the data is clustered to minimize the storage space

and determine the time for users and data owners. The access control scheme for data user is controlled in the

cloud server that updates the data once the ciphertext is exchanged through the data owner. The clustering is

executed by the utilization of density-based spatial clustering of applications with noise (DBSCAN) [26],

[27] approach. Based on the data points, it groups similar data points into an individual group by the

utilization of Euclidean Distance. There are two parameters examined in a DBSCAN approach which are

midpoints and ‘𝑒𝑝𝑠’. A significant aim of this approach is to identify the structures and integration data

efficiently. This approach is helpful and appropriate for identifying patterns and to predict the data points.

The cluster system (CS) involves n number of domain servers and the number of clustered data partitions are

applied into domain server. Every domain server handles the tree for obtainable data partitions, which is

developed through the Fractal Tree Index, hence needing the minimum individual searching time and

appropriate insertions for the removal of data.

4. RESULTS AND DISCUSSION

In this research, the proposed method is implemented using SBK with certain system requirements.

Table 2 represents the experimental setup of the software and hardware requirements of the proposed

method. The effectiveness of the proposed method is validated on the basis of two different performance

metrices, throughput and latency.

Table 2. Experimental setup of the software and hardware requirements
Components Remarks

No. of computing nodes 4 nodes
Central processing unit (CPU) 4 CPU each of 64-bit 2.6 GHz

Random access memory (RAM) 16 GB

Hard disk per node HDD Size 3 TB
Operating system Windows 10 OS

4.1. Performance analysis

In this section, the proposed method’s performance benchmarking is evaluated based on two

performance metrices of the read and write operations. In Section 4.1.1 and 4.1.2, the performance

benchmarking of read and write operations is presented. The individual frameworks like Kafka and SBK are

compared with the Kafka-ML based SBK to validate the outcomes for both read and write operations.

4.1.1. Read operation

Table 3 and Figure 3 represent the read operation Kafka and SBK’s throughput performance on the

benchmarking task. Table 4 and Figure 4 display the read operation of Kafka and SBK latency performance

benchmarking task. The different data bytes such as 10, 100, 1,000, 10,000, 100,000 and 1,000,000 are used

to validate the effectiveness of the proposed method.

4.1.2. Write operation

Table 5 and Figure 5 display the write operation of Kafka and SBK throughput performance

benchmarking task. Table 6 and Figure 6 exhibit the write operation of Kafka and SBK’s latency performance

benchmarking task. The different data bytes of 10, 100, 1,000, 10,000, 100,000 and 1,000,000 are used to

validate the effectiveness of the proposed method.

Table 3. Read operation for throughput performance
Methods Data bytes

10 100 1,000 10,000 100,000 1,000,000

Kafka 15 110 180 130 360 310

SBK 18 116 187 145 376 323

Kafka-ML based SBK 20 120 200 150 380 330

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 1990-1999

1996

Figure 3. Graphical representation of read operation for throughput performance Kafka and SBK

Table 4. Read operation for latency performance
Methods Data bytes

10 100 1,000 10,000 100,000 1,000,000

Kafka 80 90 1750 950 600 80

SBK 78 87 1578 810 580 76

Kafka-ML based SBK 70 80 1560 800 550 70

Figure 4. Read operation for latency performance

Table 5. Write operation for throughput performance Kafka and SBK
Methods Data bytes

10 100 1,000 10,000 100,000 1,000,000

Kafka 10 105 174 125 350 306

SBK 13 109 185 135 360 348
Kafka-ML based SBK 15 110 191 146 366 345

Figure 5. Graphical representation of write operation for throughput performance

Int J Elec & Comp Eng ISSN: 2088-8708 

Kafka-machine learning based storage benchmark kit for estimation of … (Sanjay Kumar Naazre Vittal Rao)

1997

Table 6. Write operation for latency performance

Methods
Data bytes

10 100 1,000 10,000 100,000 1,000,000

Kafka 70 82 1600 928 590 75

SBK 68 80 1580 918 567 74

Kafka-ML based SBK 65 76 1550 900 570 73

Figure 6. Write operation for latency performance

4.2. Comparative analysis

Table 7 exhibits the comparative analysis of the proposed method with the existing storage

performance methods such as SBK_Kafka [16] and drill down [20]. This section discusses the analysis of the

proposed method based on the writing operation on different number of data bytes from 10 to 100,000. The

effectiveness of the proposed method is validated on two performance metrics of throughput and latency with

different number of bytes. Table 8 represents the comparative analysis of the proposed method based on a

search time with different data levels.

Table 7. Comparative analysis of the proposed method using throughput and latency
Performance metric Methods Data bytes

10 100 1,000 10,000 100,000

Throughput (MBs) SBK_Kafka [16] 15 110 180 130 360
Proposed Kafka-ML based SBK 20 120 200 150 380

Latency (ms) SBK_Kafka [16] 80 90 1750 950 600

Proposed Kafka-ML based SBK 70 80 1560 800 550

Table 8. Comparative analysis of the proposed method using search time with different data levels
Performance metric Method Data level

Main 1 2 3

Search time (ms) Drill down approach [20] 55 60 65 82

Proposed Kafka-ML based SBK 50 53 62 79

4.3. Discussion

In this section, the achievement of the proposed Kafka-ML based SBK framework is discussed

along with the limitations of the existing methods. The existing works have the limitations of varied

benchmarking outcomes when utilized with various hardware setups, limited memory capacity, creation of

overhead, extended read operations that hampered the system performance, and resisted approach when dealt

with new data types due to the lack of effective fitness of the existing categories. In order to overcome these

limitations, this research proposes the Kafka-ML based SBK for estimating the storage performance for a

large number of data files effectively. Through influencing the Kafka's robust streaming capabilities

combined with ML, the SBK dynamically adjusts to the mutable workloads, making sure effective data

processing and storage management. The drill down approach is used to minimize the storage requirements

by the utilization of two binary streams, keyword header file and keyword data file. The proposed method

attains a maximum throughput and minimum latency of 20 MBs and 70 ms, respectively. The combination of

Kafka-ML into SBK effectively improves real-time data processing and performance optimization. The

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 1990-1999

1998

Kafka-ML has the capability to maintain the continuous data streams which enables for dynamic workload

adaptation, resulting in the most effective storage management.

As compared with SBK_Kafka [16], the Kafka-ML-based SBK performs effectively and exhibits

superior outcomes better due to its real-time flexibility and scalability. The proposed Kafka-ML-based SBK

approach enables for effective analysis, making it appropriate for advanced and data-intensive environments.

However, the Kafka-ML-based SBK introduces challenges such as the requirement for expertise in data

streaming and ML, which constraints its availability for some users. This research aims to estimate the

integration of Kafka-ML into a SBK to improve real-time data processing and performance optimization.

Kafka-ML-based SBK demonstrates an effective tool for optimizing storage performance in real-time,

providing significant advantages over the existing approaches. The proposed method solves the

disadvantages of existing methods through integrating the strength of Kafka-ML and SBK. The significance

of the research lies in its latent to enhance the reliability and throughput of the SBK.

5. CONCLUSION

The Kafka-ML-based SBK represents significant advantages in attaining maximum throughput and

minimum latency over different configurations. Through using the drill-down feature with a binary file

system, the framework effectively minimizes the disk space necessities and improves the search effectiveness

compared to conventional file systems. This approach not only improves the efficiency of data retrieval but

also optimizes storage management, making it a valuable tool for fine-tuning storage systems and managing

anticipated workloads. The SBK and Drill down feature is important in fine-tuning the storage system

outcomes for guaranteeing the maintenance of the anticipated workloads efficiently. Because of this,

obtaining data from the binary file system is faster as it performs as an effective storage minimization model

in the drill down search. The proposed Kafka-ML-based SBK attains the maximum throughput of 20 MBs,

120 MBs, 200 MBs, 150 MBs and 380 MBs at the data bytes of 10, 100, 1,000, 10,000 and 100,000

respectively, as compared to the existing method, SBK_Kafka. The future work will focus on expanding the

Kafka-ML based SBK to further enhance its data storage capabilities, aiming to address emerging challenges

and contribute to a more efficient storage solutions in the field.

REFERENCES
[1] M. Bin Saif, S. Migliorini, and F. Spoto, “Efficient and secure distributed data storage and retrieval using interplanetary file

system and blockchain,” Future Internet, vol. 16, no. 3, pp. 1–13, Mar. 2024, doi: 10.3390/fi16030098.

[2] D. Blum et al., “Building optimization testing framework (BOPTEST) for simulation-based benchmarking of control strategies in

buildings,” Journal of Building Performance Simulation, vol. 14, no. 5, pp. 586–610, 2021, doi: 10.1080/19401493.2021.1986574.
[3] R. Hui and Y. Kang, “Design of high performance distributed storage system,” in International Conference on Computer Network

Security and Software Engineering (CNSSE 2023), Jun. 2023, vol. 12714, pp. 291–296, doi: 10.1117/12.2683549.

[4] S. Ahmad and S. Mehfuz, “Efficient time-oriented latency-based secure data encryption for cloud storage,” Cyber Security and
Applications, vol. 2, pp. 1–10, 2024, doi: 10.1016/j.csa.2023.100027.

[5] A. Manni, A. Caroppo, G. Rescio, P. Siciliano, and A. Leone, “Benchmarking of contactless heart rate measurement systems in

ARM-based embedded platforms,” Sensors, vol. 23, no. 7, pp. 1–15, Mar. 2023, doi: 10.3390/s23073507.
[6] V. Kjorveziroski and S. Filiposka, “Kubernetes distributions for the edge: serverless performance evaluation,” The Journal of

Supercomputing, vol. 78, no. 11, pp. 13728–13755, Jul. 2022, doi: 10.1007/s11227-022-04430-6.
[7] E. Gamess and S. Hernandez, “Performance evaluation of different raspberry Pi models for a broad spectrum of interests,”

International Journal of Advanced Computer Science and Applications, vol. 13, no. 2, pp. 819–829, 2022, doi:

10.14569/IJACSA.2022.0130295.
[8] I. U. Akgun, A. S. Aydin, A. Shaikh, L. Velikov, and E. Zadok, “A machine learning framework to improve storage system

performance,” in Proceedings of the 13th ACM Workshop on Hot Topics in Storage and File Systems, Jul. 2021, pp. 94–102, doi:

10.1145/3465332.3470875.
[9] A. Lazidis, K. Tsakos, and E. G. M. Petrakis, “Publish–subscribe approaches for the IoT and the cloud: functional and performance

evaluation of open-source systems,” Internet of Things, vol. 19, pp. 1–47, Aug. 2022, doi: 10.1016/j.iot.2022.100538.

[10] L. M. Lim, J.-W. Park, and K. Hadinoto, “Benchmarking the solubility enhancement and storage stability of amorphous drug–
polyelectrolyte nanoplex against co-amorphous formulation of the same drug,” Pharmaceutics, vol. 14, no. 5, pp. 1–24, May

2022, doi: 10.3390/pharmaceutics14050979.

[11] C. Martín, P. Langendoerfer, P. S. Zarrin, M. Díaz, and B. Rubio, “Kafka-ML: connecting the data stream with ML/AI
frameworks,” Future Generation Computer Systems, vol. 126, pp. 15–33, Jan. 2022, doi: 10.1016/j.future.2021.07.037.

[12] H. B. S. Reddy, R. R. S. Reddy, R. Jonnalagadda, P. Singh, and A. Gogineni, “Analysis of the unexplored security issues common

to all types of NoSQL databases,” Asian Journal of Research in Computer Science, vol. 14, no. 1, pp. 1–12, May 2022, doi:
10.9734/ajrcos/2022/v14i130323.

[13] M. A. Mhana, A. Khalifeh, and S. Alouneh, “Performance comparison of big data processing utilizing SciDB and Apache

Accumulo databases,” in 2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC), Dec. 2022,
pp. 1–5, doi: 10.1109/FMEC57183.2022.10062513.

[14] N. V. Patil, C. R. Krishna, and K. Kumar, “KS-DDoS: Kafka streams-based classification approach for DDoS attacks,” The

Journal of Supercomputing, vol. 78, no. 6, pp. 8946–8976, Apr. 2022, doi: 10.1007/s11227-021-04241-1.
[15] H. Jin, W. G. Choi, J. Choi, H. Sung, and S. Park, “Improvement of RocksDB performance via large-scale parameter analysis and

optimization,” Journal of Information Processing Systems, vol. 18, no. 3, pp. 374–388, Jun. 2022.

Int J Elec & Comp Eng ISSN: 2088-8708 

Kafka-machine learning based storage benchmark kit for estimation of … (Sanjay Kumar Naazre Vittal Rao)

1999

[16] K. D. Hartomo, A. F. Daru, and H. D. Purnomo, “A new approach of scalable traffic capture model with Pi cluster,” International
Journal of Electrical and Computer Engineering, vol. 13, no. 2, pp. 2186–2196, Apr. 2023, doi: 10.11591/ijece.v13i2.pp2186-2196.

[17] K. Munegowda and N. V. Sanjay Kumar, “Design and implementation of storage benchmark kit,” in Emerging Research in

Computing, Information, Communication and Applications: ERCICA 2020, vol. 2, Springer Singapore, 2022, pp. 45–62, doi:
10.1007/978-981-16-1342-5_5.

[18] J. Gomez-Luna, I. El Hajj, I. Fernandez, C. Giannoula, G. F. Oliveira, and O. Mutlu, “Benchmarking a new paradigm:

Experimental analysis and characterization of a real processing-in-memory system,” IEEE Access, vol. 10, pp. 52565–52608, May
2022, doi: 10.1109/ACCESS.2022.3174101.

[19] K. Munegowda and N. V. Sanjay Kumar, “SLC: sliding latency coverage factors for optimal performance benchmarking of

storage systems,” in 2022 3rd International Conference for Emerging Technology (INCET), May 2022, pp. 1–8, doi:
10.1109/INCET54531.2022.9825170.

[20] M. Gotz, S. Khriji, R. Cheour, W. Arief, and O. Kanoun, “Benchmarking-based investigation on energy efficiency of low-power

microcontrollers,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 10, pp. 7505–7512, Oct. 2020, doi:
10.1109/TIM.2020.2982810.

[21] N. Ragavan and C. Y. Rubavathi, “A novel big data storage reduction model for drill down search,” Computer Systems Science

and Engineering, vol. 41, no. 1, pp. 373–387, 2022, doi: 10.32604/csse.2022.020452.
[22] J. Chou and S. Hsu, “Automated prediction system of household energy consumption in cities using web crawler and optimized

artificial intelligence,” International Journal of Energy Research, vol. 46, no. 1, pp. 319–339, Jan. 2022, doi: 10.1002/er.6742.

[23] S.-H. Chae, S.-M. Baek, J. Lee, and K.-J. Cho, “Agile and energy-efficient jumping–crawling robot through rapid transition of
locomotion and enhanced jumping height adjustment,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 5890–5901,

Dec. 2022, doi: 10.1109/TMECH.2022.3190673.

[24] J. Mary Arockiam and A. C. Seraphim Pushpanathan, “MapReduce-iterative support vector machine classifier: novel fraud
detection systems in healthcare insurance industry,” International Journal of Electrical and Computer Engineering, vol. 13, no. 1,

pp. 756–769, Feb. 2023, doi: 10.11591/ijece.v13i1.pp756-769.

[25] M. B. Al-Masadeh, M. S. Azmi, and S. S. Syed Ahmad, “Tiny datablock in saving Hadoop distributed file system wasted
memory,” International Journal of Electrical and Computer Engineering, vol. 13, no. 2, pp. 1757–1772, Apr. 2023, doi:

10.11591/ijece.v13i2.pp1757-1772.

[26] V. D. Babu and K. Malathi, “Large dataset partitioning using ensemble partition-based clustering with majority voting technique,”
Indonesian Journal of Electrical Engineering and Computer Science, vol. 29, no. 2, pp. 838–844, Feb. 2023, doi:

10.11591/ijeecs.v29.i2.pp838-844.

[27] N. M. Mahfuz, M. Yusoff, and Z. Idrus, “Clustering heterogeneous categorical data using enhanced mini batch K-means with
entropy distance measure,” International Journal of Electrical and Computer Engineering, vol. 13, no. 1, pp. 1048–1059, Feb.

2023, doi: 10.11591/ijece.v13i1.pp1048-1059.

BIOGRAPHIES OF AUTHORS

Sanjay Kumar Naazre Vittal Rao is professor in the Department of Computer

Science and Engineering, Kalpataru Institute of Technology, Tiptur. He Pursued his Ph.D.

degree in computer science and engineering at Visvesvaraya Technological University,

Belagavi, Karnataka, India. He Holds a M.Tech. and B.E. degree in computer science and

engineering at VTU, Belagavi. His research areas are: big data and storage system

benchmarking. His research interests include storage systems, performance analysis, analytics,

and distributed systems. He can be contacted at email: sanjaynv@gmail.com.

Anitha Chikkanayakanahalli Lokesh Kumar is professor in the Department of

Computer Science and Engineering, Kalpataru Institute of Technology, Tiptur. She pursued

her Ph.D. degree in computer science and engineering at Visvesvaraya Technological

University, Belagavi, Karnataka, India. She has published several research papers,

international conference papers since 2011, She is an active member of ISTE. She can be

contacted at email: clanitha@gmail.com or kitanitha1@gmail.com.

Subhash Kamble received the B.E. degree in computer science and engineering

from Visvesvaraya Technological University, Karnataka, India, in 2006 and the M.E. degree in

computer science and engineering from UVCE, Bengaluru, Bangalore University, Bengaluru,

Karnataka, in 2009. He is currently pursuing a Ph.D. degree in computer science and

engineering at Bangalore University, Bengaluru, India. He has published 5 articles in refereed

international journals and conferences. His research interest includes data mining, machine

learning, and big data analytics. He can be contacted at email: subhashkamble@gat.ac.in.

https://orcid.org/0009-0007-6235-9261
https://scholar.google.com/citations?user=S7SFWzQAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57385538600
https://publons.com/researcher/KPB-2465-2024
https://orcid.org/0000-0003-3090-6519
https://www.scopus.com/authid/detail.uri?authorId=58781859000
https://www.webofscience.com/wos/author/record/KPY-6813-2024
https://orcid.org/0009-0007-3108-535X
https://www.scopus.com/authid/detail.uri?authorId=58142127100
https://www.webofscience.com/wos/author/record/KQU-5688-2024

