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 This article introduces a technique for detecting four human movements using 

micro-doppler radar and intelligent algorithms. Micro-doppler radar exhibits 

the capability to detect and measure object movements with intricate detail, 
even capturing complex or non-rigid motions, while accurately identifying 

direction, velocity, and motion patterns. The application of intelligent 

algorithms enhances detection efficiency and reduces false alarms by 

discerning subtle movement patterns, thereby facilitating more accurate 
detection and a deeper understanding of observed object dynamics. A 

continuous wave radar setup was implemented utilizing a spectrum analyzer 

and radio frequency (RF) generator capturing signals in a spectrogram 

centered at 2,395 MHz. Six models were assessed for image classification: 
VGG-16, VGG-19, MobileNet, MobileNet V2, Xception, and Inception V3. A 

dataset comprising 500 images depicting four movements-running, walking, 

arm raising, and jumping-was curated. Our findings reveal that the most 

optimal architecture in terms of training time, accuracy, and loss is VGG-16, 

achieving an accuracy of 96%. Furthermore, precision values of 96%, 100%, 

and 98% were obtained for the movements of walking, running, and arm 

raising, respectively. Notably, VGG-16 exhibited a training loss of 4.191E-04, 

attributed to the utilization of the Adam optimizer with a learning rate of 0.001 
over 15 epochs and a batch size of 32. 
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1. INTRODUCTION 

The detection of human motion has become increasingly relevant over time, especially in 

surveillance mechanisms where the identification of suspicious activities, intrusions, or abnormal behaviors 

can prevent criminal acts such as theft and provide a rapid response. In the medical field, monitoring a 

patient's breathing and detecting abnormal body movements can facilitate immediate attention from medical 

personal. In the realm of traffic control, detecting vehicular movement and classifying the number of 

individuals can regulate traffic flow and enhance efficiency. Micro-doppler radar, in addition to its 

applications in detection and security, unfolds its potential in human-computer interaction. In environments 

like virtual reality and motion control systems, this radar captures users' gestures and subtle movements, 

translating them into digital commands through intelligent algorithms. This article introduces a technique for 

detecting four distinct human movements using micro-doppler radar and intelligent algorithms.  

Micro-doppler radar, in addition to its applications in detection and security, reveals its potential in 

human-computer interaction. In environments such as virtual reality and motion control systems, this radar 

captures users' gestures and subtle movements, translating them into digital commands through intelligent 
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algorithms. This enhances the user experience and enables natural and immersive gesture-based interfaces. 

This improves the user experience and enables natural and immersive gesture-based interfaces. Studies have 

addressed this topic, proposing various scenarios and techniques for detecting human movement [1]–[8]. 

Several research endeavors stand out in this field. In study [3], the power of millimeter wave (mmWave) 

radar for precise motion data capture is combined with deep image processing using convolutional neural 

networks (CNNs). The proposed approach involves mmWave data collection, preprocessing, and training of 

a CNN designed to recognize specific behavior patterns. Evaluated results demonstrate the viability of this 

methodology for real-time detection and classification, with implications for surveillance, security, and 

related fields in human behavior monitoring. In study [6], an ultra-wideband radar technique is employed to 

detect human movement through walls, incorporating a convolutional neural network (CNN) for image 

processing and object classification. Spectrograms taken through walls achieve high accuracy when a subject 

walks behind them. In study [7], an algorithm is developed for the recognition of American sign language 

(ASL) signals, aiding individuals with speech difficulties, achieving a recognition rate of 72.5% for  

20 signals. In study [8], the detection of drones using software defined radio (sdr) radar and radiofrequency 

signals is presented, highlighting the diverse applications of micro-doppler radar in motion detection. Tivive 

et al. [9] proposes a methodology for capturing subtle features of human gait through micro-doppler 

detection, which are small fluctuations in radar return frequency caused by body part movements during 

walking. Using signal processing, the authors extract relevant information from doppler spectrograms and 

develop a classification method that identifies distinctive walking patterns among different individuals. This 

approach demonstrates the feasibility of using radar micro-doppler information to differentiate and classify 

gait patterns, with potential applications in biometrics and health monitoring. These research efforts 

underscore the use of micro-doppler radar as a promising technique for motion detection, capable of 

detecting unique features of a moving object, such as characteristic human movement patterns like walking 

and running. Unlike other sensors, such as video cameras, micro-doppler radar is minimally affected by 

environmental conditions such as lighting, rain, or fog, providing reliability in im-age processing [10]. In 

study [11], the training of an intelligent algorithm for the classification of each movement is presented. From 

the project, it can be concluded that the proposed model achieves an accuracy of 92.65% for human motion 

detection using micro-doppler radar and intelligent algorithms featuring long short-term memory (LSTM) 

with 36 cells and 82.33% for deep convolutional neural networks (DCNN), surpassing previously studied 

existing methods.  

Previous research, such as references [3], [9], [10] focus on specific applications or employ 

particular approaches for motion detection (e.g., CNNs in [3] and specific gait classification techniques in 

[9]), this article stands out by exhaustively evaluating and comparing six different deep learning models 

(visual geometry group-16 (VGG-16), VGG-19, MobileNet, MobileNet V2, Xception, and Inception V3). 

This provides a broader perspective on which models are most effective for detecting human movements 

using micro-doppler radar. This research distinguishes itself by focusing on the capability of micro-doppler 

radar to detect not only common movements such as walking and running but also more subtle and complex 

movements like jumping or arm-raising. This contrasts with works like [9], which focus on gait 

classification, and significantly expands the scope of the study. This research employs six deep learning 

models for human motion detection using micro-doppler radar. The models utilized include VGG-16,  

VGG-19, MobileNet, MobileNet V2, Xception, and Inception V3. Key metrics such as accuracy, training 

time, loss, and the confusion matrix are assessed. A dataset comprising 500 samples named WARJ 

MAXWELL of the implemented scenario was created, with defined motion categories: walking, running, 

jumping, and arm raising.  

Despite advances in human motion detection, accurately distinguishing subtle and complex 

movements, especially in challenging environments, remains a significant challenge. Existing approaches are 

often affected by environmental conditions or exhibit a high rate of false positives, limiting their 

effectiveness in critical applications such as surveillance and medicine. Micro-doppler radar exhibits the 

exceptional ability to capture and measure precise details of human movements, even those with complex or 

non-rigid patterns. Its integration with intelligent algorithms enhances detection efficiency and reduces false 

positives. For instance, the radar's capability to distinguish between the subtle movements of walking and 

running. This multidisciplinary approach enables more precise detection and a better understanding of human 

movement patterns, with significant implications in applications such as surveillance and medicine. The 

comparison of key metrics such as precision, recall, F1 score, and training and validation loss, a thorough 

assessment of each model's performance in spectrogram classification is provided. Particularly noteworthy is 

the superior performance of the VGG-16 model, positioning it as a standout tool for accurate spectrogram 

classification in this context.  

Furthermore, the article distinguishes its value by recognizing the feasibility of radar techniques for 

detecting slow-speed movements, especially when combined with intelligent algorithms and advanced 
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technologies. This exploration of potential radar applications adds a significant dimension to the study's 

conclusions, broadening its scope beyond the evaluation of deep learning models. In summary, the 

combination of a thorough evaluation of deep learning models with innovative research on radar applications 

in motion detection establishes this article as a valuable and distinctive contribution to the field. Finally, the 

article is organized into sections. Section 1 provides a review of the state of the art. Section 2 introduces the 

proposed setup, equipment used, the methodology applied, and signal processing. Section 3 presents the 

results of training intelligent algorithms using a dataset consisting of 125 images for each motion category, 

followed by the conclusions drawn.  

 

 

2. METHOD 

This research employed a phased methodology, as illustrated in Figure 1. Phase A identify the 

primary hardware and software requirements to define the scenario and conduct motion detection along with 

its specific characteristics, including distance, movements, and hardware configuration parameters. Phase B 

define signal acquisition and processing for dataset creation, utilizing Anritsu's master tools software for 

acquiring spectrograms and measurement data from the spectrum analyzer. Finally, in Phase C is designed 

and trained the 6 selected classification models using metrics such as accuracy, training time, loss, recall, and 

F1 score. Table 1 show the equipment used in this research and the proposed scenario. 

 

 

 
 

Figure 1. Research methodology workflow 
 

 

The selected metrics allow for the measurement of accuracy in classification models, with a focus 

on minimizing false positives-cases where the model incorrectly predicts a positive outcome when it is 

actually negative. The accuracy metric is defined as a parameter that evaluates the model's ability to correctly 

classify samples into the desired categories. It is calculated by dividing the number of correct predictions by 

the total number of predictions and is typically expressed as a value between 0 and 1, where 1 signifies 

perfect accuracy and 0 indicates no accuracy. Training time refers to the period required for a machine 

learning model to process and analyze a training dataset in order to learn patterns and relationships. The loss 

parameter serves as an indicator of the model's learning level during training, with the goal of minimizing it 

by adjusting model parameters [12]. The recall metric evaluates the model's ability to correctly identify all 

positive examples in the dataset, focusing on minimizing false negatives. The F1 score combines precision 

and recall metrics into a single value to assess the performance of a classification model, especially in binary 

classification problems. 
 
 

Table 1. Materials 
Equipment Characteristics/installation requirements Objective 

Spectrum analyzer 

Anritsu S332E 

Frequency: 100 kHz to 4 GHz, Average noise level: 152 

dBm to 10 Hz RBW, Phase noise: 100 dBc/Hz max, 

Connections: Ethernet, universal serial bus (USB) 

cable, memory USB, RS-232 [13] 

Measure the power distribution of a signal as a 

function of frequency and time. 

RF generator R&S 

SMB 100 A 

Phase noise SSB: -108 dBc (típ.) at 10 GHz and 

compensation of 20 kHz, Broadband noise:  

-138 dBc at 10 GHz and 30 MHz compensation,  

Max output power +27 dBm [14] 

Generate the continuous RF wave signal that 

functions as the radar signal. It is synchronized 

with the receiver (Spectrum analyzer). 

Can antennas Frequency range antenna 1: 2.2-2.7 GHz; Frequency 

range antenna 2: 2.16-2.5 GHz. Approximate 

bandwidth: Antenna 1: 500 MHz; Antenna 2: 340 MHz 

Self-implemented antennas tuned to the radar's 

operating frequency. 

Coaxial cable Insulation resistance: 5.000 MΩ min, Impedance  
50 Ω, VSWR: 1,3 max, Range frequency: 0-4 GHz [15] 

Cable to synchronize the clock of the RF 
generator and the spectrum analyzer. 

SMA to SMA 

cables 

Frequency range: max 18 GHz. Impedance: 50 Ω [16] Transmit high-frequency signals with low signal 

loss between equipment and antennas. 

Software master 

tools Anritsu 

Software proprietary of Anritsu [17] Acquisition, handling, storage, and interpretation 

of the data obtained during the tests. 
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2.1.  Phase A: scenario definition 

The selected movements for the detect and evaluate of neural network models were: running, 

jumping, arm raising, and walking. These common movements that can enable non-verbal communication 

and are used in everyday life. Humans run to catch a bus, jump to avoid obstacles in their path, raise their 

arms for active breaks or stretching after sitting for an extended period, and walk to move from one place to 

another. These movements can also characterize specific activities, facilitating the identification and 

understanding of behaviors. Once the movements were defined, the number of repetitions for data collection 

and subsequent dataset creation was specified. Table 2 describes the movements and the repetition 

frequencies at which measurements were taken. 

 

 
Table 2. Movements with their frequencies and distances 

Movements # of repetitions Distance (m) Number of tests 

Walk 1 9.4 3 
Jump 6 - 3 
Run 1 9.4 3 

Raise Arms 6 - 3 

 

 

The scenario was implemented using the equipment and materials listed in Table 1, and its diagram 

is depicted in Figure 2. The continuous-wave radar was implemented by employing a radio frequency 

generator as the transmitting equipment configured to transmit a sine wave at a specific frequency and power 

level. The receiver is a spectrum analyzer with spectrogram functionality and ethernet communication with a 

personal computer (PC). Synchronization between the transmitter and receiver is achieved using a coaxial 

cable connected to the Bayonet Neill-Concelman (BNC) connectors designated for this purpose on each 

equipment. The custom-made controller area network (CAN-type) antennas were tuned using a vector 

network analyzer. The master tools software on the PC was used for spectrogram acquisition. 

 
 

 
 

Figure 2. Proposed scenario for data collection 
 

 

2.2.  Phase B: sample acquisition and signal processing 

In this phase, sample acquisition and signal processing were conducted for analysis. A continuous-

wave signal frequency of 2,395 MHz was selected with a transmission power of -10 dBm. Spectrograms 

were configured to be received with a reference level of -4 dBm, a span of 201 Hz, a resolution bandwidth 

(RBW) of 10 Hz, and an acquisition time of 45 seconds. The received power is approximately -49 dBm. It is 

important to consider the proximity between the transmitting and receiving antennas and the absence of 

isolation between them, apart from the distance. Figure 3 allows us to observe one of the obtained 

spectrograms. This spectrogram is a visual representation that illustrates the energy variation of different 

frequencies in a radio signal over time [18].  
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The use of colors represents this frequency of energy or intensity at a given moment. The darker 

colors typically indicate lower power, while warmer colors such as green or yellow indicate higher power. 

The frequency shifts to the right of the central frequency in the spectrogram frequency increase represents the 

movement of a person approaching the radar. The greater the shift, the higher the person's velocity. The 

frequency shifts to the left frequency decrease represents a person moving away from the radar. These shifts 

are caused by the doppler effect, which occurs when there is relative motion between the signal source, in 

this case, the person, and the signal receiver that is recording the movement [19]. The Doppler effect 

manifests as a change in signal frequencies as a person moves. When a person is closer to the antennas, the 

signal will have more power and tend towards warmer colors, as observed in the previous figure. Conversely, 

if the person moves away from the antennas, the signal will exhibit cooler colors.  

Figure 4 depicts the implemented scenario, where the antennas are spaced 30 cm apart. With this 

configuration, we conducted the acquisition of 500 sample images capturing various movements. The 

spectrogram images provided by the software were resized to 700×274 pixels with a depth of 8 bits, resulting 

in a file size of 11 kB. 

 

 

 
 

Figure 3. Spectrogram characteristics 

 

 

 
 

Figure 4. Proposed scenario with 30 cm spacing between antennas 
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To mitigate overfitting and ensure robust model evaluation, the dataset was divided into 80% of 

images for training and 20% for validation. This approach reserves a portion of the data for validation, 

enabling assessment of the model's performance with data not utilized during training. By dividing the data 

into training and validation sets, this strategy ensures improved generalization of the model and better 

adaptation to new data, thus enhancing its ability to address diverse scenarios in the future. The dataset of 

500 images was labeled as WARJ MAXWELL sample collection took place in the laboratories of 

Universidad Militar Nueva Granada, involving a total of 60 individuals aged between 18 and 50 years.  

Figure 5 shows the scenario with the equipment used and the way samples are captured for two of 

the four selected movements. Figure 5(a) shows the equipment used in the implemented scenario. Figure 5(b) 

demonstrates how samples are acquired while the target person raises their arms, and Figure 5(c) shows the 

acquisition process when the person is walking. The person must stand directly in front of the prototype to 

perform the movement because the antennas are directional and have a narrow beamwidth. Figure 6 shows 

the four spectrograms for each of the four movements to be classified: running Figure 6(a), walking  

Figure 6(b), jumping Figure 6(c), and raising arms Figure 6(d). The central part of the spectrogram blue color 

corresponds to the carrier signal, which is visualized with higher power. The lateral components yellow and 

red colors correspond to the doppler shift in frequencies due to the movement. 

 
 

 
(a) 

 

  
(b) (c) 

 
Figure 5. Proposed scenario with equipment used for detecting arm-raising and walking movements  

(a) scenario proposed with used equipment, (b) spectrogram acquisition of raised arms, and (c) spectrogram 
acquisition while walking 
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(a) (b) 

  

  
(c) (d) 

 
Figure 6. Spectrogram (a) running, (b) walking, (c) jumping, and (d) raising arms 

 
 

2.3.  Phase C: network architecture selection and training 

For the classification of movements, 6 neural network models were selected: VGG-16, VGG-19, 

MobileNet, MobileNet V2, Xception, and Inception V3. Some of the characteristics of these models are 

shown in Table 3. In this case, “Size (MB)” represents the size in megabytes (MB) of the model after being 

trained, “parameters” indicates the number of parameters or coefficients the model has learned during the 

training process, and “depth” represents the depth or number of layers the model has. The more layers a 

model has, the deeper it is. 
 
 

Table 3. Technical specifications of the used models 
Model Size (MB) Parameters Description Depth 

VGG-16 528 138.4 M The VGG-16 architecture consists of 16 layers, including 13 convolutional 
layers with 3×3 filters and zero padding, followed by 2×2 Max pooling layers 

to reduce dimensionality. Afterward, there are 3 fully connected layers 
responsible for classification tasks. This structure enables VGG-16 to 

progressively learn from simple features like edges to more complex features 
in images, making it an effective deep network for computer vision [20], [21]. 

16 

VGG-19 549 143.7 M VGG-19 is an extended version of the VGG-16 architecture, characterized by 
its depth and uniformity in the arrangement of 19 layers, including both 

convolutional and fully connected layers. Like VGG-16, it employs small 
filters and Max-pooling layers to extract features from images. Used in tasks 

such as classification, object detection, and more, VGG-19 has been 
significant in computer vision, demonstrating solid performance, although 
accuracy may vary depending on the dataset and specific task [22], [23]. 

19 

MobileNet 16 4.3 M The exact number of layers in a MobileNet can vary depending on the specific 
version and modifications made. However, in general, MobileNet architectures 
typically consist of multiple convolutional and pooling layers, as well as fully 
connected layers at the end for classification or a specific task. For example, 

MobileNetV1 consists of approximately 55 layers. These networks are 
designed for applications on mobile devices and embedded systems, striking a 

balance between complexity and computational efficiency [24]. 

55 

MobileNet 
V2 

14 3.5 M It utilizes building blocks called “inverted residuals” that optimize feature 
representation in deep networks while having a reduced number of parameters. 
This allows for a balance between accuracy and speed. In this project, it can be 
used in tasks such as object detection, image classification, and other vision-

related tasks, making it suitable for classifying movements [25]. 

105 

Xception 88 22.9 M It utilizes building blocks called “inverted residuals” that optimize feature 
representation in deep networks while having a reduced number of parameters. 
This allows for a balance between accuracy and speed. In this project, it can be 
used in tasks such as object detection, image classification, and other vision-

related tasks, making it suitable for classifying movements [25]. 

81 

Inception 
V3 

92 23.9 M It stands out for the implementation of factorized convolutions, in which 
standard 3×3 convolutions are separated into two smaller convolutions (1×3 
and 3×1), with a total of 189 hidden layers. This allows for capturing spatial 

patterns and reducing computational load. Additionally, Inception-v3 employs 
smaller-sized filters to improve efficiency and reduce the number of 

parameters. Its distinctive feature is the “Inception” modules, which perform 
parallel convolutions with different filter sizes and then concatenate their 

results, enabling the network to capture information at multiple scales [23]. 

189 
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The experimentation with the selected models was conducted using TensorFlow Keras, alongside 

the requisite Python libraries and modules for image processing and deep learning model construction. To 

optimize the processing speed of training and validation data, cache and prefetch methods were employed. In 

order to prevent overfitting of the model to the original data, a data augmentation model was implemented to 

generate new images from the training set through random transformations. A flexible function was 

developed to accept various input parameters, defining a convolutional neural network model and training it 

on both training and validation datasets. These input parameters encompass critical configurations pivotal in 

constructing and training a deep neural network. 

The choice of model architecture, be it VGG16, VGG19, or MobileNet, determines the organization 

of layers within the network. The decision of whether the layers should be trainable conditions their 

adaptability to new data or retention of static properties. During this process, the optimizer such as Adam or 

stochastic gradient descent (SGD) facilitates parameter adjustments, utilizing the learning rate to regulate the 

magnitude of these adjustments in each iteration. In addition to the last convolutional block, the inclusion of 

extra layers and techniques like dropout influence the depth and robustness of the network. Fully-connected 

layers refine finer details, and the number of layers and neurons can vary accordingly. Preserving the model 

and its weights retains the knowledge acquired during the process, while the number of epochs specifies the 

frequency at which the training data will be traversed. Proper calibration of these parameters is crucial for 

achieving optimal performance in the desired task by the neural network. The input parameters encompass 

the model architecture, and the function returns a history object that records training and validation accuracy 

and loss throughout the training process. Figure 7 elucidates this description, while Table 4 delineates the 

selection of hyperparameters utilized for all models. 

 

 

 
 

Figure 7. VGG-16 architecture 
 

 
Table 4. Hyperparameters used 

Metric Value 

Learning rate 0.01 
Drop rate 0.01 
Epochs 10 

Max pooling 2 

 

 

3. RESULTS AND DISCUSSION 

Table 5 summarizes the results obtained from training the models. The VGG-16 model with the 

Adam optimizer achieves a training accuracy of around 100% and a validation accuracy of approximately 

96%. Additionally, both training and validation losses are lower compared to other models. This suggests that 

the VGG-16 model is capable of successfully classifying images into the two target classes. VGG-16 is a 

robust and widely used model, especially in image classification tasks. It is known for its deep and uniform 

architecture, making it effective at extracting features from images of different scales and complexities. 

However, due to its depth, it has a relatively large number of parameters, which can result in a larger model 

size and require more computational resources for training and execution. Thanks to the -10 dB 

configuration, the dataset effectively captures human motion without reflections or interference from the 

environment. Regarding the time required to train the model, there is a notable similarity in the results. These 
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times were obtained using a graphics processing unit (GPU) runtime, with a total time of 2 minutes. The 

average training time for the 6 models was approximately 1.16 minutes. All models are capable of correctly 

classifying the 4 types of movements with high accuracy in a short training time, as shown in Table 5.  

Table 6 resume accuracy, recall, and F1 score metrics results. The best train accuracy results were obtained 

by the VGG-16, VGG-19, MobileNet, and MobileNetV2 models. However, according to validation accuracy, 

the model that best generalizes the validation data is VGG-19, considering that the other validation accuracy 

results are above 0.900. Despite VGG-19 showing the lowest train loss, it is evident that the model is not 

overfitting because it generalizes the validation data correctly with a validation accuracy of 0.970 and a train 

accuracy of 1. 

 

 

Table 5. Results obtained; learning rate: 0.01; dense layers: 1024; number of epochs: 10 
Model Optimizer Val accuracy Train accuracy Train loss Val loss Time (M) 

VGG-16 SGD 0.849 0.943 0.232 0.421 2 

Adam 0.961 1.000 4.191E-04 0.430 2 

VGG-19 Adam 0.970 1.000 1.608E-04 0.099 3 

SGD 0.207 0.7037 14.606 112.455 3 

MobileNet Adam 0.934 0.997 0.022 0.251 0 

SGD 0.910 1000 0.015 0.261 0 

MobileNet V2 Adam 0.930 0.990 0.029 0.363 0 

SGD 0.920 1.000 0.021 0.256 0 

Xception Adam 0.860 0.820 0.383 0.703 1 

SGD 0.840 0.972 0.184 0.382 1 

Inception V3 Adam 0.640 0.815 0.516 1.152 1 

SGD 0.880 0.905 0.331 0.347 1 

 
 

Table 6. Results of evaluated metrics for the 6 models used 
Model Movements 

Run Jump Raise arms walk 

VGG-16 Precision=1 

Recall=0.98 

F1 Score=0.98 

Precision=0.92 

Recall=0.98 

F1 Score=0.96 

Precision=0.98 

Recall=0.94 

F1 Score=0.96 

Precision=0.96 

Recall=1.00 

F1 Score=0.98 

VGG-19 Precision=0.92 

Recall=0.94 

F1 Score=0.95 

Precision=0.94 

Recall=1 

F1 Score=0.96 

Precision=0.96 

Recall=0.94 

F1 Score=0.94 

Precision=0.94 

Recall=0.96 

F1 Score=0.98 

MobileNet Precision=0.95 

Recall=0.94 

F1 Score=0.94 

Precision=0.94 

Recall=0.92 

F1 Score=0.94 

Precision=0.96 

Recall=0.94 

F1 Score=0.98 

Precision=0.94 

Recall=0.92 

F1 Score=0.92 

MobileNet V2 Precision=0.96 

Recall=0.94 

F1 Score=0.94 

Precision=0.86 

Recall=0.90 

F1 Score=0.90 

Precision=0.92 

Recall=0.94 

F1 Score=0.91 

Precision=0.92 

Recall=0.92 

F1 Score=0.96 

Xception Precision=0.90 

Recall=0.92 

F1 Score=0.90 

Precision=0.86 

Recall=0.88 

F1 Score=0.92 

Precision=0.90 

Recall=0.84 

F1 Score=0.88 

Precision=0.90 

Recall=0.94 

F1 Score=0.96 

Inception Precision=0.90 

Recall=0.94 

F1 Score=0.86 

Precision=0.86 

Recall=0.86 

F1 Score=0.84 

Precision=0.90 

Recall=0.84 

F1 Score=0.92 

Precision=0.90 

Recall=0.86 

F1 Score=0.84 

 

 

The model faced challenges in accurately classifying the “jumping” movement, exhibiting the 

lowest precision among all categorized movements. Conversely, the movement classified with the highest 

precision by the models is “running.” This distinction can be attributed to the spectrogram's typically more 

pronounced presence, facilitating its differentiation from other movements. Figure 8 showcases the 

performance results of the VGG-16 model through a confusion matrix. With an accuracy exceeding 92% in 

recognizing arm movements, the model demonstrates commendable overall architectural proficiency. 

Nonetheless, it is noteworthy that “arm movement” occasionally incurs confusion with “jumping,” given 

their shared characteristics. Despite this, “jumping” maintains a precision of 100%, underscoring the 

algorithm's adeptness in image classification and the VGG-16 architecture's successful performance. 

In Figure 9, the prediction of an image classification model with input dimensions of 150×150 pixels 

and 3 color channels are presented. The main objective is to recognize human actions, and specifically, in this 

instance, the action of raise arms. The model's prediction yielded a highly accurate result, where the class Raise 

Arms has a probability of approximately 68%, confirming the robustness and effectiveness of the model in 

identifying this specific action with certainty. This precision supports the suitability of the proposed approach, 

highlighting its applicability in environments where accurate identification of human actions is essential, such as 

in security monitoring systems or medical applications for the analysis of specific movements. 
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Figure 8. Confusion matrix in percentage 

 

 

 
 

Figure 9. Prediction 

 

 

4. CONCLUSION 

The VGG-16 model achieves outstanding precision results for movement identification, with values 

as follows: walking 96%, running 100%, and arm raising 98%. For the “jumping” movement, both VGG-19 

and MobileNet surpassed the VGG-16 model, achieving a precision of 94%. However, Xception and 

Inception models delivered the least favorable precision values for identifying the “jumping” movement, with 

both models scoring 86%. In terms of recall, VGG-16 stands out with an average value of 0.975. Notably, the 

VGG-19 model achieved a perfect recall score of 1 for the “jumping” movement, the highest among all 

models evaluated. 

Regarding the F1 score metric, an average value of 0.97 was obtained for identifying the four 

movements. The Inception model obtained the lowest score in this metric, with a value of 0.865. In terms of 

training loss, VGG-16 achieved the lowest value at 4.191E-04. Conversely, for validation loss, the 

MobileNet model yielded the most favorable result, with a score of 0.251. The Inception model recorded the 

least favorable results for both training and validation loss, with a value of 1.152. Overall, the VGG-16 

model emerges as one of the most effective tools for spectrogram classification. Furthermore, our 

implemented scenario underscores the viability of radar techniques for detecting slow-speed movements of 

people or objects when combined with intelligent algorithms and technologies. 
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