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 Hybrid active power filter (HAPF) is considered an effective solution for 

filtering harmonics and compensating reactive power in power systems. It is 

a combination of passive power filters and an active power filter to form 

many different structures depending on the system voltage and load 

characteristics. This paper aims to introduce an overall picture of the results 

of research on three-phase HAPF systems, such as: HAPF models, 

advantages, disadvantages, and scope of application of each model; methods 

for determining parameters of passive power filters; structure, response time, 

resonance, power loss and cost of types of output filters; inverter structure 

and commonly used pulse width modulation methods in HAPF; control 

strategies and used controllers are also listed and compared; the DC Link 

voltage stabilization is also summarized and analyzed. Finally, the existing 

problems and the development trends of HAPF. 
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1. INTRODUCTION 

Currently, the majority of industrial loads are electric motors. The speed of those electric motors is 

controlled by power electronics. To ensure the desired speed, power electronic devices are required to turn 

ON and OFF at very high frequencies, resulting in the generation of harmonics in the electrical system. The 

existence of harmonic components in the electrical system will cause very serious consequences, such as: 

reducing the life of electrical equipment, causing the protection system to operate incorrectly, overheating 

electrical equipment, and causing interference in the information systems. Therefore, the issue of handling 

harmonics in the power system is of urgent significance, contributing to improving the power quality in the 

power system. 

To eliminate harmonics generated from loads, hybrid active power filter (HAPF) is one of the most 

effective solutions. HAPF is constructed from a hybrid of passive power filters (PPFs) and active power filter 

(APF) [1]–[30]. Therefore, it has all the advantages of both PPF and APF. HAPF has two forms: parallel  

[1]–[13] and series [14]–[16]. PPFs are typically designed to suppress the high harmonics of the load and 

compensate for reactive power, while APF is designed to suppress the remaining low harmonics. The 

advantage of PPF is that it has a simple structure and is easy to use. However, it also has disadvantages, such 

as: being sensitive to the environment, susceptible to resonance with the system impedance, and less flexible 

when the load changes. To overcome the disadvantages of PPFs, the APF is added. The structure of APF is a 

power electronic system. The working principle of APF is that it compensates into the grid at the point of 

common coupling with a harmonic current equal to the load harmonic current, resulting in the supply current 

having no harmonic components of the load. Because PPFs are designed to suppress high order harmonics. 

Therefore, the APF only has to compensate for the lower harmonics. This means reducing the switching 

https://creativecommons.org/licenses/by-sa/4.0/
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frequency of the inverter because it only has to switch with low-order harmonics. The result is a reduction of 

unwanted harmonics generated by the switching of the inverter's semiconductor switches.  

Research on HAPF has focused on the following contents: harmonic detection method, passive 

power filter design, inverter structure, output filter, pulse width modulation method, APF control and DC link 

voltage stabilization. However, because HAPF has many different structures, the above research contents are 

also different. Passive power filters are sometimes designed with resonance components of order 11 th, 13th, 

and sometimes with harmonics of order 2nd, 3rd, 5th, and 7th. The inverter structure usually uses a two-level 

voltage source inverter or three-level neutral point clamped (NPC) inverter. The output filter uses many 

forms such as L, L-C, L-C-L and L-C-L-C. Pulse width modulation methods include sinusoidal pulse width 

modulation, space vector, hysteresis. Control for HAPF is very rich and diverse from the method to the 

controller used. Finally, the DC link voltage stabilization. Depending on each model, the DC link 

stabilization method is also different such as the method with and without power supply from the system 

through a three-phase bridge rectifier connected to the DC link. Therefore, to provide readers with an 

overview of HAPF, this paper presents a comprehensive analysis of the structure, design, and control of 

HAPF in three-phase three-wire system. 
The structure of the paper includes five sections: section 1 presents the urgency of harmonic 

filtering, the inevitability of the birth of HAPF and researches on HAPF. Models of HAPF are presented in 

section 2. The design and control of HAPF are given in section 3. Results and discussion are introduced in 

section 4 and section 5 is the conclusion. 

 

 

2. HAPF MODELS 

Because HAPF is a hybrid between APF and PPFs as shown in Figure 1. Therefore, it has the 

following typical model types, the first model is shown in Figure 1(a). The structure of this model includes 

PPFs and an APF connected in parallel with the load, so this model is also called a shunt hybrid active power 

filter [1]–[3]. PPFs are designed to suppress high-order harmonics generated from nonlinear loads. 

Meanwhile, APF is used to eliminate the remaining low-order harmonic components, such as the 3rd, 5th, and 

7th. The advantage of this model is that it overcomes the resonance phenomenon between the impedance of 

the PPF and the system impedance, reducing switching losses because the inverter circuit only operates to 

compensate for low-order harmonics. However, it also has the disadvantage that the system voltage is applied 

directly to the APF inverter, leading to an increase in initial investment costs. It is only capable of eliminating 

current harmonics generated by the load. From the above characteristics, this model can only be applied to 

filter current harmonics for nonlinear loads in low voltage grids and the source is ideal. 

The second model has the structure shown in Figure 1(b). In which the APF is connected in series 

with the PPF and all are connected in parallel with the load [4], [5]. PPFs are designed to eliminate harmonic 

components that account for a large proportion (5th, 7th) of the load. Meanwhile, APF only plays the role of 

improving the efficiency of PPF and overcoming the resonance problem between the impedance of the 

source and the impedance of the PPF. The advantage of this model is that it reduces the voltage applied to the 

inverter, the APF's capacity can be reduced many times compared to the capacity of load. From there, this 

model can be used for high power loads. The disadvantage is that it can only eliminate a few selected 

harmonic components of the load, and it is unable to eliminate harmonics generated from the source. 

The third model is structured as shown in Figure 1(c). This model uses a fundamental frequency 

resonant circuit. 𝐿1 and 𝐶1 resonate at the fundamental frequency and couple to 𝐶𝐹. The APF is connected in 

parallel with the resonant circuit 𝐿1-𝐶1 and is connected directly to the transformer. 𝐶𝐹 is directly connected 

to grid voltage and has the ability to compensate for reactive power [6]–[8]. Meanwhile, the fundamental 

frequency resonant circuit only stands for harmonic voltage. This significantly reduces the capacity of the 

APF and minimizes the rated voltage applied to the power electronic switches of the inverter. Therefore, this 

model can be used effectively in medium voltage power grids of 6 kV, 15 kV, and 35 kV. Harmonics 

generated from the source cannot be handled. 

The fourth model has the structure shown in Figure 1(d). Similar to the model in Figure 1(c). PPFs 

are designed to suppress higher harmonics (11th, 13th) [9]–[13]. This model also cannot handle voltage 

harmonics from the source. Because it uses a fundamental frequency resonant circuit, it receives fundamental 

frequency power from the grid. Therefore, the models in Figures 1(c) and 1(d) are difficult to stabilize the 

DC link voltage, whenever the source voltage sags or distorts, the DC link voltage will increase or decrease 

suddenly. Therefore, this model at the DC link is usually supplied by a three-phase uncontrolled bridge 

rectifier. 

The fifth model has the structure shown in Figure 1(e). This model includes PPFs connected in 

parallel with the load. The APF is connected in series with the load through a transformer [14]–[16]. The 

PPFs are designed to resonate at current harmonic frequencies. APF has the function of eliminating voltage 
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harmonics from the source, it acts like a large impedance to block harmonic components from the source but 

pass through the fundamental components. As a result, the voltage applied to the load is an ideal sinusoidal. 

Thus, this model is capable of handling current harmonics from nonlinear loads and voltage harmonics 

emitted from the source. The disadvantage of this model is the iron loss due to the use of a transformer. 

When the source has many harmonic components, the inverter must switch at high frequency, leading to 

switching losses. Therefore, this circuit is rarely used in practice. 

The sixth model has the structure shown in Figure 1(f). This model is a combination of the first 

model and the fifth model. This model uses two voltage source inverters sharing the same DC link. 

Therefore, it is capable of eliminating the current harmonics generated from the load and the voltage 

harmonics generated from the source. In addition, it also has all the advantages and disadvantages of the first 

model and the fifth model. 
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Figure 1. HAPF models: (a) PPFs and an APF connected in parallel with the load (b) APF is connected in 

series with the PPF and all are connected in parallel with the load (c) APF is connected in parallel with the 

resonant circuit 𝐿1-𝐶1 (d) APF is connected in parallel with the resonant circuit and PPFs (e) PPFs are 

connected in parallel with the load, APF is connected in series with the load and (f) PPFs are connected  

in parallel with load and APF to compensate both voltage and current harmonics 
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3. DESIGN AND CONTROL FOR HAPF 

3.1.   Calculate the parameters of PPF 

PPFs are designed to cancel high-order harmonics generated by nonlinear loads and to compensate 

for reactive power. The types of PPFs are listed in Figure 2. Among them, the PPF in Figure 2(a) is the most 

used [9]–[13] because of its simplicity. Types of passive filter circuits in Figures 2(b) to 2(f) are rarely used. 

There are two ways to calculate PPFs parameters: based on load characteristics and using multi-objective 

optimization algorithms. 
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Figure 2. Types of passive filter circuits: (a) single-tuned filter (b) double-tuned filter (c) 1st order high-pass 

filter (d) 2nd order high-pass filter (e) 3rd order high-pass filter and (f) type C filter 

 

 

a. Based on the characteristics of the load:  

First the value of Cn is calculated based on the reactive power requirement 𝑄𝑐 of the load 

 

𝐶𝑛 =
𝑄𝑐

𝑛𝜔𝑈𝑠
2 (1) 

 

In which 𝑈𝑠 is the phase voltage applied to capacitor Cn and 𝜔 is the fundamental angular frequency of 

the source. To eliminate the nth harmonic component, Ln and Cn must resonate at the nth frequency. 
 

𝐿𝑛 =
1

𝑛2𝜔2𝐶𝑛
 (2) 

 

The series resistance for the inductor of the nth order is 

 

𝑅𝑛 =
𝑛𝜔𝐿𝑛

𝑄𝑛
  (3) 

 

where 𝑄𝑛 is the quality factor of the inductor, which is normally considered as 10 < 𝑄𝑛 < 100 

b. Using multi-objective optimization algorithms:  

the parameters of the PPF are also determined by applying multi-objective optimization algorithms 

such as genetic algorithm [17]–[19], particle swarm optimization (PSO) [20]–[22], Cuckoo search 

algorithm [23], Fortran feasible sequential quadratic programming [19]. There are also a few studies 

using multi-objective optimization algorithms to find all the parameters of PPF, APF and control circuit 

[25]–[28]. PSO with system stability constraints [25], Social Spider algorithm [26], Vortex algorithm 

[27], Jaya [28] with constraints: 𝑅𝑖𝑖𝑚𝑎𝑥𝑖𝑚𝑖𝑛
, 𝐿𝑖𝑖𝑚𝑎𝑥𝑖𝑚𝑖𝑛

, 𝐶𝑖𝑖𝑚𝑎𝑥𝑖𝑚𝑖𝑛
 and an objective function such as 

minimizing total harmonic distortion of the voltage applied to the load (𝑚𝑖𝑛 𝑇𝐻𝐷𝑈) or minimize the total 

harmonic distortion of the supply current (𝑚𝑖𝑛 𝑇𝐻𝐷𝐼). 
 

3.2.   Design the output filter  

The output filter (OF) is designed to filter unwanted harmonic components at the inverter output. It 

affects the compensation effect of HAPF. The requirements when designing the OF for HAPF are: simple 

structure, fast response time, avoiding resonance problems, reducing DC link voltage, attenuation with high 

order harmonics, low initial investment costs and power loss. The types of OF commonly used in HAPF are 

shown in Figure 3. 

Figure 3(a) [15], [31], and Figure 3(b) [4], [6], [7], [9]–[13], [26]–[28] have a simple structure. 

However, with this structure, the capacity requirement of the APF must be large, leading to increased initial 

investment costs and large losses, making it difficult to reduce high-order harmonics. Figure 3(c) has the 

ability to reduce high-order harmonics, but the response time is not fast and requires the DC link voltage to 
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be large enough, investment costs and power loss are also large [29], [30]. Figure 3(d) is the most effective 

form [32]. It has a relatively complex structure, moderate investment costs, and average dynamic response 

time. However, its biggest advantage is small power loss and DC link voltage value is lower than other 

structures. 
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Figure 3. Types of output filter (a) L type (b) LC type (c) LCL type and (d) LCLC type 

 

 

3.3.   Inverter structure and pulse width modulation method 

The inverters used in HAPF are three-phase two-level voltage source inverters [4], [6], [7], [9]–[13], 

[33], [34] and use the sinusoidal pulse width modulation method. Because the structure of HAPF in the 

second, third, fourth and sixth models uses PPFs to filter high-order harmonic components and uses injection 

circuits. Therefore, the voltage applied to the inverter is significantly reduced, and the inverter is only 

controlled to compensate for low-order harmonics. Therefore, the switching loss in the inverter is also 

significantly reduced. However, in the first and fifth models, a multi-level inverter can be used if the load has 

a large harmonic capacity or the source has a high voltage. The most common here is to use a three-level 

NPC inverter [35]–[38] and a nine-level voltage source inverter and using space vector modulation method 

[39]. 

 

3.4.   Control strategies and methods 

The general control block diagram of HAPF is shown in Figure 4. The reference current here can be 

the supply harmonic current or the load harmonic current [40]–[42]. It depends on the structure of the HAPF 

and the chosen control strategy. The reference current is normally determined using the synchronous 

reference frame method [43] as shown in Figure 5. Where iLa, iLb, iLc are the load currents and iLah, iLbh, iLch 

are the harmonic components of the load current. 
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Figure 4. Control block diagram of HAPF 
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Figure 5. Harmonic detection method using the synchronous reference frame 

 

 

The harmonic detection method using the synchronous reference frame has the advantage of being 

simple. However, it has the disadvantage of depending on high-pass filter (HPF) or low-pass filter (LPF). 

When the LPF has a high cut-off frequency, its dynamic response will be fast, but in the steady-state is poor. 

On the contrary, when the cut-off frequency is low, the dynamic response time will be large, but at steady 

state, the harmonic content in the fundamental current will be very low. Furthermore, when using LPF, the 

overshoot during the transition period will be very large. To reduce the dependence on LPF. Studies have 

used neural network to determine the harmonic current [31], [44]. The load current will be analyzed into 

separate components and each component is assigned a weight. During the working process, the neural 

network will update and adjust the weights so that the error is zero. This method has the advantage of 

https://imperix.com/doc/implementation/neutral-point-clamped-inverter
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determining the exact harmonic components at steady-state. However, it also has the disadvantage of a slow 

dynamic response time. A few studies have improved the p-q harmonic detection method, such as changing 

the cut off frequency using 1st, 2nd, 3rd low-pass or high-pass filters [43], [45]–[47] use a regulator fuzzy to 

improve the LPF in the p-q harmonic determination method to reduce dynamic response time. References 

[48] and [49] use an improved least mean square (LMS) algorithm that makes the dynamic response time 

faster and independent of LPF. Moradi and Pichan [50] used the wavelet transform to identify harmonics. 

This method does not use LPF, but collecting sample data is complicated, especially when the load changes. 

Boussaid et al. [51] used multivariable filters (MVF) to increase the harmonic filtering efficiency and reduce 

the harmonic content in the fundamental harmonic current. Tao et al. [52] determines harmonics based on an 

improved Gray Wolt algorithm with optimized variational mode decomposition. The reference current signal 

can be based on the supply harmonic current or the load harmonic current, depending on the chosen control 

strategy. The error between the reference signal and the compensation signal will be passed through the 

controller, pulse width modulation (PWM), inverter, output filter and applied to the grid at the point of 

common coupling (PCC). Most research focuses on controllers that minimize errors and respond to load 

changes. The simplest is to use single controllers such as: proportional integral (PI) [53]–[57], deadbeat [58], 

fuzzy [59], neural [60]. The above single controllers have the disadvantage of slow response and constant 

parameters during control, so they are not suitable for changing load systems and have large errors. Since 

then, hybrid controllers have been proposed, such as: PI-fuzzy [61], PI-neural [62], [63] and fuzzy-neural 

[64]–[67]. Several recent studies used proportional resonant (PR) controller [68], [69]. The advantage of PR 

controller is that it gives error at steady state equal to zero. However, it often has a long transient time. 

Therefore, PR controller is often combined with fuzzy controllers [70] to reduce transient time. There are 

also a few studies using self-adaptive control [71], predictive control [72], [73] and sliding control [74]. 

These controls are modern and highly efficient and are suitable for variable load situations. 

 

3.5.   DC Link voltage stabilization 

Stabilizing the DC link voltage of the inverter is one of the most important jobs in the HAPF 

system. Depending on the structure of each system, the method of stabilizing the DC link voltage is also 

different. Normally, the DC link voltage is adjusted as in Figure 6. The actual voltage on the DC link is 

compared with the reference DC voltage value, will be passed through the PI controller, and the result will be 

added to the reactive current component in the synchronous reference frame [75], [76]. However, this method 

is often suitable for systems with small DC link voltage fluctuations. Luo et al. [77] proposed two methods to 

stabilize the DC link voltage for the fourth model: the first method is to use a circuit to discharge energy 

through a resistor, whereby when the voltage on the DC link increases, it will be discharged through a 

resistor by an insulated-gate bipolar transistor (IGBT) key. The second method is to use a controlled rectifier 

connected to the inverter via the DC link, whereby when the DC link voltage increases, it will be discharged 

into the grid and vice versa. Lam et al. [78] proposes an adaptive DC link voltage control method according 

to load changes. This study is different from previous studies in that it allows the DC link voltage to change 

according to the load, each load will correspond to an optimal DC voltage value. In the case of a fixed DC 

link voltage, the switching loss will be directly proportional to the DC link voltage, the system will obtain a 

large loss if the DC link value is large, and vice versa. Therefore, if the DC link voltage is adaptively 

adjusted according to the different power situations of the load, the system can achieve better and more 

flexible results. Bao and Thuyen [79] proposed a method to stabilize the DC link voltage using an 

uncontrolled bridge rectifier combined with a Boost DC/DC converter. Gong et al. [80] used a nonlinear PID 

controller based on robust exact differentiation to improve the dynamic response time on the DC link voltage. 

 

 

su

Lai

Lbi

Lci

di

qi

di

qi

-DC refU

Lahi

Lbhi

Lchi

sin

cos−
PLL

LPF

LPF
/ 0abc dq

LbiLai
Lci

+

+

+

−

−

−

DCU

Controller

+

++

−

0/dq abc

 
 

Figure 6. DC link voltage stabilization diagram 
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4. RESULTS AND DISCUSSION 

From the above analysis results, we can see that which model to use depends on the purpose and 

function of each model, the function of each model can be summarized as in Table 1. The most commonly 

used structure of PPF is the form in Figure 2(a). Calculate the parameters of PPFs in Figure 2(a) can be based 

on the characteristics of the load to find the values of L and C so that it resonates at a certain harmonic 

frequency or use multi-objective optimization algorithms. Some studies have used multi-objective 

optimization algorithms to determine the parameters for both PPF and control. In the case of changing load, 

determining the control circuit parameters is not necessary. Moreover, in online control, the control 

parameters must be continuously updated.  

Designing the OF plays a decisive role in the accuracy of the compensation signal to the grid. 

Output filters also come in many forms. Therefore, when deciding which type to use, we should consider 

factors such as structure, response time, resonance, DC link voltage value, high harmonic attenuation, power 

loss and investment cost. Below is a comparison of the characteristics of the output filters summarized in 

Table 2. 

 

 

Table 1. Functional comparison of HAPF models 
Compensation for specific application Hybrid active power filters models 

1st model 2nd model 3rd model 4th model 5th model 6th model 

Current harmonics * * * *  * 

Voltage harmonics     ** * 

Reactive power * ** ** ** * * 
Voltage imbalance and distortion     ** * 

Voltage regulation     ** * 

Higher number of ‘*’ is more preferred 

 

 

Table 2. Comparison of characteristics of output filters 
Output filters Structure Response time Resonance Voltage DC-link High-order harmonics 

 attenuation 

Power  

loss 

Cost 

L [15], [31] Simple Fast No High Large Large Medium 

LC [9]–[13] Simple Fast No High Large Medium Medium 

LCL [29], [30] Complex Medium No High Small Large High 

LCLC [32] Complex  Medium No Low Small Small Medium 

 

 

Inverter structure and pulse width modulation method: In the HAPF structures, it is only necessary 

to use three-phase two-level voltage source inverter (VSI) without using multi-level inverters. The most 

popular modulation method here is the sine pulse width modulation method because of its simplicity and ease 

of experimental implementation, but the output power of the inverter is not large. The Hysteresis method has 

the advantage of fast response, but the disadvantage is that the steady-state error is poor. The space vector 

modulation method can give an output power of the inverter larger than the sinusoidal pulse width 

modulation method, but it is complicated. This method is often used for model 1, accompanied by the use of 

a three-level NPC inverter. 

Control strategies and methods: The choice of control strategy based on the load harmonic current or 

the supply harmonic current (models 1 to 4) or based on the load harmonic voltage or the supply harmonic 

current (models 5 and 6) is depends on system characteristics. Next is the selection of the controller. The 

selected controller must ensure accuracy, fast response, small error and has the ability to update online with 

changes in load and easy to implement in practice. Single controllers are simple and easy to implement in 

practice although they have the disadvantage of poor steady-state performance. Therefore, they are often 

combined with fuzzy, neural, adaptive controllers. However, the above combined controllers are complex 

and difficult to minimize the steady-state error. Therefore, a new trend is to use PR controller combined with 

fuzzy and neural controllers to control online with load changes and can reduce the compensation error to 

zero at steady-state. 

DC link voltage stabilization: From the above summaries, we can see that there are two main 

methods of DC link voltage stabilization as follows: for models without fundamental frequency resonance 

circuit (models 1, 2, 5, 6), we can use the method in Figure 6. For models 3, 4, there is a fundamental 

frequency resonance circuit, so the voltage applied to the inverter is mainly harmonic, so once the voltage at 

the common connection point is sagged or distorted, the voltage on the DC link will fluctuate greatly, causing 

danger to the system. Therefore, DC link voltage stabilization of these models must be powered from a three-

phase source through a three-phase PWM or uncontrolled rectifier [77] as in Figure 7. The existing problems 

and the future development directions:  
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a. The circuit that determines the reference harmonic current depends on phase-locked loop (PLL) and LPF. 

Therefore, during the transient period, the reference current signal generated is not accurate and the 

transient time is long. As a result, the supply current during the transient period or when the load changes 

suddenly will be very large, which can easily cause system instability. Therefore, it is necessary to study a 

method to determine harmonic currents without using PLL and LPF. 

b. HAPFs have a rather large DC-link voltage and high switching frequency. This results in a large voltage 

applied to the IGBT and large switching loss. Therefore, research to improve the structure of the 

traditional two-level voltage source inverter is necessary. 

c. In practical applications, the IGBTs in the inverter may have a conduct together phenomenon that causes 

short circuits and open circuits in the inverter. This is very dangerous. Therefore, research to improve the 

VSI structure and control method so that it can overcome the conduct together, short circuit, open circuit 

phenomena in the inverter. It contributes to improving the safety during the operation of HAPF. 

d. Because the structure of HAPF includes many R, L, C elements connected together. Therefore, the 

compensation signal to the grid at the PCC will be phase shifted compared to the reference signal. As a 

result, there is always a deviation between the reference signal and the compensation signal. So, it is very 

important to study a control method has fast response, small error and phase shift compensation 

capability. 

e. In applications that require dynamic compensation of a large amount of reactive power, HAPF is often 

not satisfy. Therefore, research on HAPF models with connections between static var compensator and 

active power filter is necessary. 

f. Harmonic filtering for smart grids. Smart grids are large systems with many interconnections and many 

harmonic generating devices such as inverters and converters connected to renewable energy sources. 

Therefore, research on harmonic filtering for smart grids also needs to be interested. 
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Figure 7. DC link voltage stability with the third model and fourth model 

 

 

5. CONCLUSION 

This paper has given an overview of the three-phase three-wire HAPF systems, including: structures 

of HAPF, calculation of passive power filters, output filter design, inverter structure and pulse width 

modulation methods, control strategies, and DC link voltage stabilization and control methods. This study 

also serves as a basis for researchers to research, apply, and develop HAPF in practice. Studies have proven 

that: HAPF has many advantages in harmonic filtering and reactive power compensation. However, it also 

has many shortcomings that need to be addressed in the future, such as: adaptive control according to 

changes in load, stabilizing the DC link voltage in case the load has large harmonic capacity and sudden 

changes, large reactive power to be compensated, large investment costs as well as losses during the 

switching process, short circuit or open circuit of the semiconductor switches of the inverter.  
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