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 Autonomous navigation is one of the key challenges in robotics. In recent 

years, several research studies have tried to improve the quality of this task 

by adopting artificial intelligence approaches. Indeed, the neuro-fuzzy 

approach stands out as one of the most commonly employed methods for 

developing autonomous navigation systems. Nevertheless, it may encounter 

problems of accuracy, complexity, and interpretability due to redundancy in 

the fuzzy rule base, particularly in the fuzzy sets associated with the 

system’s variables. In this work, a strategy is proposed to optimize an 

adaptive-network-based fuzzy inference system (ANFIS) controller for 

reactive navigation by addressing the problem of complexity and accuracy. 

It consists in combining a suite of methods, namely, data-driven fuzzy 

modeling, fuzzy sets merging, fuzzy rule base simplification, and parameter 

training. This process has produced a fuzzy inference system-based 

controller with high accuracy and low complexity, enabling smooth and 

near-optimal navigation. This system receives local information from 

sensors and predicts the appropriate kinematic behavior that enables the 

robot to avoid obstacles and reach the target in cluttered and previously 

unknown environments. The performance of the proposed controller and the 

efficiency of the followed strategy are demonstrated by simulation 

experiments and comparisons with state-of-the-art methods. 
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1. INTRODUCTION 

In robotics, autonomous navigation stands out as a widely studied area of research, crucial for 

various robotic applications like logistics and warehousing, search and rescue operations, exploration of 

hazardous environments, self-driving vehicles, and service robots. Its primary objective is to chart a safe path 

from an initial position to a target, enabling robots to fulfill tasks within a given environment without 

encountering obstacles. In the literature, there are two types of autonomous navigation: global path planning 

and local path-planning [1]. The first type is applied in previously known environments. It is based on static 

environment maps to determine from the outset an optimal path to reach a target. Whereas, the second type, 

that is reactive navigation, can be used in unknown and dynamic environments, as it can ensure instantaneous 

reactive behavior of the robot depending on the position in the workspace. In this type of navigation, the 

https://creativecommons.org/licenses/by-sa/4.0/
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robot perceives its surrounding environment in each state using an onboard sensor system and decides its 

movement using an intelligent control system. This system uses local information as input and forecasts an 

output, which may be an adjustment of the steering angle or wheel velocities, to steer clear of obstacles 

nearby while moving toward the desired destination. 

In the past few years, many research studies have approached the problem of autonomous 

navigation. Generally, there are two categories of methods: the classical methods which require intensive 

computation and do not operate efficiently in dynamic and uncertain environments, and heuristic methods 

which can deal with navigation problems in uncertain environments [2]. In addition, there are hybrid 

methods, which combine classical and heuristic methods to improve the safety, optimality, and smoothness 

of navigation in complex and dynamic environments. In Table 1, we summarized the state-of-the-art 

approaches that address the problem of path-planning for mobile robots. 

 

 

Table 1. State-of-the-art approaches for mobile robot path planning 
Paper Year Approach Navigation type Objectives/advantages 

[3] 2024 Improved elephant herding 
optimization 

Global path 
planning 

This swarm intelligence algorithm is used to plan the 
optimal path. 

[4] 2023 Improved simulated annealing Local path 

planning 

The proposed approach is used to avoid moving obstacles 

in dynamic environments. 
[5] 2023 Dhouib-matrix-SPP Global path 

planning 

This technique challenges the shortest path problem. 

[6] 2023 Improved water flow potential 

field method and the beetle 

antennae search algorithm 

Global path 

planning 

This hybridization is used to solve obstacle avoidance and 

local optimum problems. 

[7] 2022 Improved A* algorithm Global path 

planning 

This algorithm incorporates a bidirectional alternating 

search approach to overcome issues of computation time, 

large turning angles, and the unsmoothed path. 
[8] 2022 Forward search optimization and 

subgoal-based hybrid path 

planning 

Global path 

planning 

This approach is used to reduce and smooth the path. 

[9] 2022 Domain knowledge-based 

genetic algorithms 

Global path 

planning 

This algorithm aims to enhance the capability of 

conventional genetic algorithms in terms of time. 

[10] 2022 Enhanced ant colony algorithm Global path 

planning 

This algorithm integrates historical paths and improves 

global search ability and stability 

[11] 2022 Hybrid-adaptive-network-based 

fuzzy inference system  
(Hybrid-ANFIS) 

Local path 

planning 

In this approach, ANFIS is used for the local path-planning 

task, whereas global positioning system (GPS) and heading 
sensors are used for the global path-planning task. 

[12] 2021 Morphological dilation Voronoi 

diagram roadmap algorithm 

Global path 

planning 

This algorithm is used to solve problems of computation 

complexity in complex environments. 
[13] 2020 Strategy for a multi-robot system 

inspired by the Bug-1 algorithm 

Global path 

planning 

This strategy is used to avoid obstacles while reaching a 

target by the shortest path. 

[14] 2020 GPS-ANFIS Local path 
planning 

In this method, ANFIS is designed to avoid obstacles and 
sensor data fusion is used to reach the target 

[15] 2019 Cuckoo optimization algorithm Local path 

planning 

The proposed algorithm aims to find a short, safe, smooth, 

and collision-free path in different environments. 
[16] 2018 Grey wolf colony optimization 

(GWCO) 

Global path 

planning 

The GWCO algorithm with the safe boundary concept is 

used to overcome the edged obstacle problem. 

[17] 2018 Teaching-learning-based 
optimization-ANFIS  

(TLBO-ANFIS) 

Local path 
planning 

 TLBO algorithm and least squares estimation (LSE) 
method is used to adjust the premise and consequent 

parameters respectively in ANFIS controller. 

[18] 2017 Dijkstra’s algorithm, objective 

particle swarm optimization 

Global path 

planning 

This approach focuses on minimizing the path length and 

maximizing the path smoothness. 

[19] 2017 Fuzzy-wind driven optimization 

algorithm 

Local path 

planning 

The WDO algorithm is used to adjust the input/output 

membership function parameters of the fuzzy controller 
[20] 2016 Invasive weed optimization-

ANFIS (IWO-ANFIS) 

Local path 

planning 

The invasive weed optimization algorithm and least 

squares estimation method are employed to adjust the 

premise and consequent parameters respectively in the 
ANFIS controller. 

[21] 2015 Improved artificial potential filed Global path 

planning 

This method is used to escape from deadlock problems. 

[22] 2015 cuckoo search-ANFIS  

(CS-ANFIS) 

Local path 

planning 

The cuckoo search (CS) algorithm and the LSE method 

are utilized to adjust the parameters of both the premise 

and consequent parts in the ANFIS controller. 
[23] 2015 ANFIS Local path 

planning 

Conventional ANFIS is used to design a controller for 

online path planning in unknown environments. 

[24] 2015 Efficient artificial bee colony 
(EABC) algorithm 

Local path 
planning 

The EABC algorithm improves the performance by using 
elite individuals to preserve good evolution. 
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According to our recently published literature survey [25], Over the last decade, researchers have 

shown significant interest in the neuro-fuzzy approach. The systems based on this approach combine the 

advantages of fuzzy logic with neural networks. On the one hand, fuzzy systems handle uncertainty and 

imprecision through linguistic variables and rules, thus contributing to the design of controllers capable of 

operating in real-time. Neural networks, on the other hand, enable data-driven self-learning to adjust the 

parameters of the fuzzy system’s membership functions. For instance, Pothal and Parhi [23] designed an  

adaptive-network-based fuzzy inference system (ANFIS)-based navigation controller capable of avoiding 

obstacles and reaching the target in previously unknown environments. This architecture uses hybrid 

learning, involving the adjustment of the nonlinear parameters in the premise part through the gradient 

descent method while fine-tuning the linear parameters in the consequent part via the least squares estimation 

(LSE) method. Whereas, Mohanty and Parhi [22] implemented a CS-ANFIS-based controller of 81 fuzzy 

rules such that the premise parameters are adjusted using the cuckoo-search (CS) algorithm. The use of this 

nature-inspired metaheuristic minimized the computation and overcame the local minima problem. Following 

the same strategy, Parhi and Mohanty [20] proposed a mobile robot navigation controller of 721 fuzzy rules 

based on invasive weed optimization-ANFIS (IWO-ANFIS). In this model, the non-linear parameters are 

optimized using the IWO metaheuristics. To implement a navigational model based on teaching-learning-

based optimization-ANFIS (TLBO-ANFIS), Aouf et al. [17] used the TLBO metaheuristic to adjust the 

premise parameters. Furthermore Gharajeh and Jond [14] designed a global positioning system-ANFIS 

(GPS-ANFIS) based navigation controller. This technique divided navigation into two tasks, global control 

based on GPS data when the robot is far from obstacles and local control based on ANFIS to avoid the 

nearest obstacles. This strategy improved the target-seeking and slightly minimized the number of fuzzy rules 

for the ANFIS controller since the target position is not taken into account as an input variable for the ANFIS 

model. 

Nevertheless, all these ANFIS-based studies have used the grid partitioning method to generate the 

fuzzy sets and rule base. In grid partitioning, the input space of the system is divided into a predefined 

number of intervals along each dimension. These intervals form a grid, and each grid cell represents a fuzzy 

set. The number of intervals along each dimension determines the granularity of the partitioning and hence 

the complexity of the resulting fuzzy inference system. Thus, this technique often produces complex systems, 

as it does not take into account the physical meaning and distribution of the data points [26]. 

In this paper, we propose a strategy to model an ANFIS-based controller for reactive navigation of 

mobile robots in cluttered and previously unknown environments. It is adopted to optimize the complexity of 

the ANFIS architecture, minimize the computational cost, and improve the interpretability of the resulting 

fuzzy system while maintaining high accuracy. This strategy consists in combining a set of methods, namely, 

data-driven rule base modeling using a clustering algorithm, fuzzy set merging using a similarity technique, 

redundant rule merging, and parameter training using the ANFIS model. 

The remaining sections of this article are structured in the following manner. In section 2, we will 

explain the methods incorporated into the proposed strategy to model the navigation controller. These include 

the ANFIS architecture used to train the premise and consequent parameters of a Takagi-Sugeno fuzzy 

inference system (TS-FIS), data-driven fuzzy rule modeling focusing on the subtractive clustering algorithm, 

fuzzy set merging using a similarity technique, and redundant fuzzy rule merging. In section 3, we will 

present an experimental study of the proposed strategy, simulation results to demonstrate its efficiency 

compared with state-of-the-art methods, and a discussion to summarize the advantages of the proposed 

strategy in the mobile robotics field. 

 

 

2. PROPOSED METHOD 

Reactive navigation enables a mobile robot to move in previously unknown environments, avoiding 

obstacles and moving toward a target. This navigation must be safe, smooth, and effective. In this context, we 

aimed to model a mobile robot controller based on a TS-FIS which must address the accuracy/complexity 

trade-off. This system receives four sensor data which are: the front obstacle distance (FOD), the left obstacle 

distance (LOD), the right obstacle distance (ROD), and the target angle (TA) for predicting the robot's 

steering angle (SA), which must be a suitable kinematic behavior in the workspace. In Figure 1, we illustrate 

the components of the fuzzy inference system (FIS) representing the autonomous navigation controller of a 

robot with these input and output variables. To model this controller, considering the constraints of accuracy 

and complexity, the proposed strategy involves a set of steps from the dataset generation to the production of 

an efficient TS-FIS containing a simplified rule base. In Figure 2, we explain the sequence of steps in this 

strategy, namely: dataset generation, data-driven rule base modeling, fuzzy set merging, fuzzy rule merging, 

parameter training, and fuzzy system evaluation. 
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Figure 1. The components of a fuzzy inference system for the navigation controller 

 

 

 
 

Figure 2. Steps of the proposed strategy for modeling and optimizing an ANFIS-based controller for mobile 

robot navigation 

 

 

2.1.  ANFIS architecture 

The ANFIS architecture, introduced by Jang [27], is a neuro-fuzzy model designed to address 

various challenges such as nonlinear function modeling, control system modeling, and chaotic time series 

prediction. This adaptive network integrates the elements of a TS-FIS and performs learning thanks to the 

least mean squares (LMS) algorithm, which efficiently maps system inputs and outputs. Its learning 

mechanism employs a hybrid approach: adjusting the nonlinear parameters of the premise part via gradient 

descent in the backward pass, and tuning the linear parameters of the consequent part using the LSE method 

in the forward pass. To explain the ANFIS architecture, we consider a TS-FIS with two input variables x and 

y, and an output z. Assuming that this system contains two IF-THEN rules expressed as: 

 

𝑅1:    𝐼𝑓 𝑥  𝑖𝑠  𝑋1 𝑎𝑛𝑑  𝑦 𝑖𝑠  𝑌1 𝑇ℎ𝑒𝑛  𝑓1 = 𝑝1 𝑥 + 𝑞1 𝑦 + 𝑟1 

𝑅2:    𝐼𝑓 𝑥 𝑖𝑠 𝑋2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝑌2 𝑇ℎ𝑒𝑛  𝑓2 = 𝑝2 𝑥 + 𝑞2 𝑦 + 𝑟2  

 

Expertise-based guidance technique is used to generate data pairs for rule base modeling and training phase. 

 
Based on the data points, the subtractive clustering algorithm is used to create many initial TSFIS according to several 

cluster radius values. each system consists of an IF-THEN rule base and fuzzy sets of input variables. 
 

 
For each input variable, a similarity measure is computed between fuzzy sets to determine the most similar according to a 
threshold that needs to be adjusted. the similar fuzzy sets are merged by computing the average of the membership 

function parameters. 
 

 

The fuzzy rules that have the same premise part are merged to simplify the rule base. 
 

 

The premise and consequent parameters of the FISs are adjusted based on ANFIS architecture using hybrid learning. 

 

 
After the learning phase, the resulting FISs are evaluated using the RMSE metric to choose the system with high accuracy 
and low complexity according to the cluster radius and similarity threshold. 
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where 𝑋𝑖 and 𝑌𝑖 are the fuzzy sets associated respectively with the input variables 𝑥 and 𝑦, 𝑝𝑖 , 𝑞𝑖, and 𝑟𝑖 are the 

linear parameters of the consequent part. In Figure 3, we illustrate the ANFIS architecture that corresponds to 

the TS-FIS considered above, and in Table 2, we detail the layers and parameters of this architecture. 

 

 

 
 

Figure 3. ANFIS architecture for the considered TS-FIS 

 

 

Table 2. Description of ANFIS architecture 
Layer Description Node function  

1 It represents the fuzzification phase. Within this layer, the nodes calculate 

the membership degree for the fuzzy sets Xi. Various types of membership 
functions can be employed during the fuzzification process. In this study, 

Gaussian functions are selected due to their suitability for the data 

distribution and their minimal parameter representation. To adjust the 
function’s parameters ai and ci, the gradient descent method is applied. 

𝑂𝑖
1 = 𝑢𝑋𝑖

(𝑥) = 𝑒

−(𝑥−𝑐𝑖)
2

2𝑎𝑖
2

  
(1) 

2 Within this layer, the premise elements of a fuzzy rule are joined using the  

T-norm product operator to express the intersection, which determines the 
firing strength Wi of this rule. 

𝑂𝑖
2 = 𝑤𝑖 = 𝑢𝑋𝑖

× 𝑢𝑌𝑖
  (2) 

3 It is employed to normalize the firing strength 𝑤𝑖. 𝑂𝑖
3 = �̅�𝑖 =

𝑤𝑖

∑ 𝑤𝑛
2
𝑛=1   

  (3) 

4 It represents the linear functions of the rule’s consequent parts. In the 

learning phase, the parameters 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖 are tuned via the LSE method. 
𝑂𝑖

4 = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)  (4) 

5 It uses the defuzzification formula to compute the overall system’s output. 𝑂𝑖
5 = ∑ 𝑤𝑖𝑖 𝑓𝑖 =

∑ 𝑤𝑖𝑖 𝑓𝑖

∑ 𝑤𝑖𝑖
  (5) 

 

 

2.2.  Data-driven rule base modeling 

In reactive navigation, the robot faces input/output situations, which consist in acquiring local 

information from the environment and predicting a kinematic behavior that will enable it to navigate 

efficiently. The uncertain character of the information leads to fuzzy modeling. In our case, we use a TS-FIS 

based on an IF-THEN rule base whose premise parts use fuzzy sets for the fuzzification of the input 

variables. To model a system that reflects reality, the data-driven fuzzy modeling technique is adopted. It is 

based on clustering algorithms that can partition a dataset into clusters according to the distribution of data 

points in space to assign membership functions and generate fuzzy IF-THEN rules. In our case, the 

subtractive clustering algorithm is used. This technique, introduced by Chiu [28], is a fast one-pass algorithm 

for determining the number of clusters and the center of each one. It depends on the potential of each data 

point, taking into consideration the density of adjacent data points and a parameter called the cluster radius. 

Thus, the likelihood value for a data point xi to define a cluster center is calculated as (6): 

 

𝑃𝑖 = ∑ 𝑒
−

4

𝑟𝑎2‖𝑥𝑖−𝑥𝑗‖
2

 𝑘
𝑗=1  (6) 

 

where k is the number of data points in an M dimensional space, ‖𝑥𝑖 − 𝑥𝑗‖
2
 is the Euclidean distance, and ra 

is the cluster radius, which defines the area of the cluster influence and determines the number of clusters. 

Each cluster center defines a fuzzy rule. Indeed, for a fuzzy system with n obtained clusters, n fuzzy rules are 

generated and each input variable is associated with n fuzzy sets. 

 

2.3.  Fuzzy set merging 

Data-driven fuzzy modeling is an effective method for generating a FIS that corresponds to data 

points. However, it may produce fuzzy models with redundant information when there is a high degree of 
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similarity between fuzzy sets that cover nearly identical areas within the input variable's domain. This 

increases the complexity of the model and complicates the linguistic interpretability of the system. To 

overcome this problem before moving on to the training stage, the strategy proposes to merge the most 

similar fuzzy sets by applying a similarity threshold on the membership functions. To compute the degree of 

overlap between the fuzzy sets Xi and Xj of an input variable, we use the Jaccard similarity measure based on 

the intersection and union operators (∩ and ∪ respectively) of the fuzzy sets as (7): 

 

𝑆(𝑋𝑖 , 𝑋𝑗) =
|𝑋𝑖∩𝑋𝑗|

|𝑋𝑖∪𝑋𝑗|
 (7) 

 

where | | is the set cardinality. In the case of a discrete universe 𝑈 =  {𝑥𝑡| 𝑡 = 1, 2, … 𝑛}, formula (7) can be 

expressed using the membership functions as (8): 

 

𝑆(𝑋𝑖 , 𝑋𝑗) =
∑ [𝜇𝑋𝑖

(𝑥𝑡)∧𝜇𝑋𝑗
(𝑥𝑡)]𝑛

𝑡=1

∑ [𝜇𝑋𝑖
(𝑥𝑡)∨𝜇𝑋𝑗

(𝑥𝑡)]𝑛
𝑡=1

 (8) 

 

where ∧ and ∨ are the minimum and maximum operators respectively. 

The fuzzy sets that present a similarity above a certain threshold are substituted with a new fuzzy set 

whose membership function parameters are the average of the membership function parameters of the initial 

fuzzy sets. Figure 4 depicts an example of overlapping between two Membership functions MF1 and MF2 

associated respectively with two fuzzy sets X1 and X2. This overlapping results in a high degree of similarity 

between the fuzzy sets according to (8). 

 

 

 
 

Figure 4. High overlapping between two membership functions MF1 and MF2 

 

 

2.4.  Fuzzy rule simplification 

After applying the fuzzy set merging phase on an initial FIS, the peers of similar fuzzy sets are 

replaced in all the premise parts of the rules. In this way, we can obtain a rule base with redundancy in which 

there are rules with the same premise part. To simplify the base, redundant rules are replaced by a single rule 

that retains the same premise part. While the linear parameters of the consequent part are computed by 

averaging the linear parameters of the merged rules as indicated in (9): 

 

𝑉𝑟 =
1

𝑛
∑ 𝑉𝑖

𝑛
𝑖=1  (9) 

 

where n is the number of redundant rules, Vi is a vector of the linear parameters of the ith rule, and Vr is a 

vector of the linear parameters of the resulting rule. Figure 5 shows the flowchart of the proposed algorithm 

for the rule-base simplification. It comprises two phases: fuzzy set merging and redundant rule merging. 
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Figure 5. Flowchart of the proposed algorithm for the rule-base simplification 

 

 

3. EXPERIMENTAL RESULTS AND DISCUSSION 

This section presents an experimental study that illustrates the efficiency of the proposed strategy in 

optimizing an ANFIS-based controller for autonomous navigation. This controller is designed to ensure safe, 

smooth, and effective navigation in cluttered and previously unknown environments. For this, the section is 

divided into four subsections: experimental context, experimental study for the proposed strategy, simulation 

results, and discussion. 

 

3.1.  Experimental context 

To implement an ANFIS-based controller for mobile robot navigation according to the strategy 

outlined in the previous section, we present the experimental context below. First, we describe the robot’s 

specific characteristics. Next, we specify the implementation and simulation platform used to carry out all 

phases of this work. Lastly, we discuss the dataset generation technique, which enables the ANFIS controller 

to learn and adapt to complex navigation challenges. 

 

3.1.1. Robot characteristics 

A three-wheel differential-drive mobile robot is considered. It is equipped with a minimum of 

sensors which are positioned at 0°, 90°, and -90° to detect the FOD, ROD, and the LOD respectively. 

Another sensor is employed to determine the TA. 

 

3.1.2. Implementation and simulation platform 

In this work, we used the MATLAB R2021b platform to implement all phases of the proposed 

strategy. These include data generation, the creation of fuzzy inference systems, the simplification of the 

fuzzy rule base, and the training of the resulting ANFIS models. These capabilities make MATLAB an 

effective tool for optimizing and validating intelligent navigation systems. 

 

3.1.3. Dataset generation 

To collect the data pairs needed for the fuzzy rule-base modeling and training phase, we used our 

expertise-based guidance technique recently published in [29]. It consists in designing basic navigation scenarios in 

which paths are expertly planned to avoid obstacles and reach the target. A path-following algorithm is developed 

to enable the robot to collect data as it moves. In each state of the robot in the workspace, the ROD, FOD, LOD, 

and TA inputs are provided by the sensors, and the SA output is computed. Thus, we generated a dataset of 18,748 

data pairs, of which 80% are for training and 20% for validation, to improve generalization and minimize 

overfitting. Figure 6 shows the distribution of the generated data points in a three-dimensional space (FOD, TA, 
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SA). From this representation, we can distinguish three controller behaviors depending on the steering angle 

output: left deviation when the steering angle is greater than zero, right deviation when the steering angle is less 

than zero, and no deviation when the steering angle is equal to zero. 

 

 

 
 

Figure 6. Distribution of the data points in a three-dimensional space (FOD, TA, SA) 

 

 

3.2.  Experimental study of the proposed strategy 

As explained in the previous section, a strategy is proposed for optimizing a navigation controller 

based on a TS-FIS which will be trained by an ANFIS model. This strategy aims to balance the 

accuracy/complexity of the system. It consists in simplifying the fuzzy rule base using the following procedure: 

Modeling the fuzzy rule base using the subtractive clustering algorithm, merging fuzzy sets based on a 

similarity technique, and merging redundant fuzzy rules and training parameters using the ANFIS model. 

 

3.2.1. Data-driven fuzzy rule base modeling 

To generate an initial TS-FIS that corresponds to the distribution of data points, the subtractive 

clustering algorithm is applied to the dataset. the cluster radius value determines the number of clusters and 

subsequently affects the rule base size within the resulting system. In other words, specifying a small value 

for this parameter generally generates many small clusters, providing a TS-FIS with numerous fuzzy rules, 

and vice versa. According to the proposed strategy, the choice of this parameter must respect the 

accuracy/complexity trade-off after execution of the two phases: Simplification of the fuzzy rules and 

parameter learning using the ANFIS model. Table 3 shows the characteristics of the FISs obtained using the 

subtractive clustering algorithm with various radius values. 

 

 

Table 3. Characteristics of the FISs obtained using the subtractive clustering algorithm  

with various radius values  
Number of rules Number of fuzzy sets of variables (ROD, FOD, LOD, TA) 

FIS (r=0.3) 9 (9, 9, 9, 9) 

FIS (r=0.4) 7 (7, 7, 7, 7) 
FIS (r=0.5) 6 (6, 6, 6, 6) 

FIS (r=0.6) 5 (5, 5, 5, 5) 

 

 

3.2.2. Rules base simplification 

After generating FISs based on the data by applying the subtractive clustering algorithm with several 

cluster radius values, the rule base simplification phase is carried out. First, we applied the fuzzy set merging 

technique to the generated FISs. This step involves merging fuzzy sets whose membership functions have a 

high degree of overlapping for each input variable, based on a similarity threshold (ST). Several values of 

this parameter are used to balance the accuracy/complexity of the system. Next, we applied the rule merging 

technique to reduce the base when there are redundant rules, since the fuzzy set merging operation may 

produce a base with rules that have the same premise part. Table 4 details the experimental results obtained 

for each FIS depending on the cluster radius and similarity threshold. 
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3.2.3. ANFIS-based parameter training 

In this step, we adjusted the parameters of all FISs resulting in previous steps using the ANFIS 

model to increase the accuracy. This architecture is based on hybrid learning. The gradient descent method is 

used to adjust the non-linear parameters, while the LSE method is used to tune the linear parameters. For this, 

we used the data pairs generated by the method explained previously. Indeed, we used 80% of the data for 

training and 20% for validation to improve generalization and avoid overfitting. Figures 7 and 8 show 

respectively the curves of the training RMSE and the validation RMSE in 3,000 epochs for the case of the 

FIS with 𝑟 = 0.5 and 𝑆𝑇 = 0.85. 
 

 

  
  

Figure 7. Training RMSE curve in 3000 epochs for 

the case of the FIS with 𝑟 = 0.5 and 𝑆𝑇 = 0.85 

Figure 8. Validation RMSE curve in 3000 epochs for 

the case of the FIS with 𝑟 = 0.5 and 𝑆𝑇 = 0.85 
 

 

To evaluate the resulting FISs, we took into consideration the accuracy/complexity trade-off. The 

complexity depends on the number of fuzzy rules and the number of fuzzy sets. Whereas, the accuracy of the 

system can be determined based on the RMSE evaluation metric. Table 4 details the experimental results 

obtained for each FIS after the full execution of the strategy depending on the cluster radius and similarity 

threshold. According to this table, the controller based on the FIS designed with the parameters (𝑟 = 0.5 and 

𝑆𝑇 = 0.85) provides an acceptable number of fuzzy sets of (3, 2, 3, 3) representing the input variables (ROD, 

FOD, LOD, TA) respectively, and a minimum value of 0.0442 for RMSE. Hence, it is the controller that best 

respects the accuracy/complexity trade-off. To demonstrate its efficiency in reactive navigation, an 

evaluation through simulations is carried out. It consists in testing the quality of navigation by considering 

three criteria: target reaching, obstacle avoidance, and path smoothness. 
 

 

Table 4. Experimental results obtained for each FIS after the execution of the proposed strategy depending on 

the cluster radius (r) and similarity threshold (ST) 
 Similarity threshold 

(ST) 

Number of fuzzy sets per variable 

after fuzzy set merging 

Number of rules after 

rule base simplification 

Number of 

parameters 

RMSE after 

training 

FIS (𝑟 =0.3) 0.75 3, 2, 3, 3 8 62 0.0459 

0.80 4, 2, 4, 3 8 66 0.0457 
0.85 4, 2, 4, 3 8 66 0.0457 

FIS (𝑟 =0.4) 0.75 3, 2, 3, 3 6 52 0.0456 

0.80 3, 2, 3, 3 6 52 0.0456 
0.85 3, 3, 3, 3 6 54 0.0454 

FIS (𝑟 =0.5) 0.75 3, 2, 2, 3 5 47 0.0444 

0.80 3, 2, 2, 3 5 47 0.0444 
0.85 3, 2, 3, 3 5 47 0.0442 

FIS (𝑟 =0.6) 0.75 2, 2, 2, 2 4 36 0.0463 
0.80 2, 3, 2, 3 4 40 0.0479 

0.85 2, 3, 2, 3 4 40 0.0479 

 

 

3.3.  Simulation result 

In mobile robotics, experimentation remains the key to evaluating the efficiency of a controller. For 

this reason, using the robot configuration provided previously and the proposed controller based on the FIS  

(𝑟 = 0.5 and 𝑆𝑇 = 0.85), we have carried out simulation experiments in several environments designed with 
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different degrees of clutter. The simulation scenario in Figure 9 is performed to explain the robot's behavior 

according to the controller's prediction. Based on the path followed by the robot in this simulation 

experiment, we can conclude that the robot respected the three types of reactive navigation behaviors:  

target-seeking, obstacle-avoidance, and wall-following. The representative curve in Figure 10 illustrates the 

variation of the steering angle depending on navigation time in this simulation. 

 

 

 
 

Figure 9. Simulation experiment to illustrate the robot's behaviors: target-seeking, obstacle-avoidance, and 

wall-following 

 

 

 
 

Figure 10. Variation of the steering angle (system output) according to the robot’s behaviors 

 

 

The simulation scenarios shown in Figure 11 are performed in a previously unknown environment 

with a high degree of clutter to demonstrate the efficiency of the proposed controller. Each scenario is 

characterized by a target position and a robot starting point. According to these simulation experiments, the 

controller ensured the three criteria of autonomous navigation quality which are robot safety by avoiding 

obstacles, smoothness by planning a near-optimal path without zigzags, and effectiveness by reaching the 

target. To compare the proposed controller with other state-of-the-art controllers, we designed a benchmark 

environment with the same configuration as in the papers [11], [14], [23]. Figure 12 shows the paths planned 

by the proposed controller and the state-of-the-art ANFIS-based controllers in this environment. The  

ANFIS-based controller in [23] planned a collision-free path with three segments (dotted green path), which 

increased the path length. The hybrid-ANFIS-based controller in [11] planned a collision-free path that 
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unnecessarily moved away from the right obstacle (dashed yellow path), which slightly increased the path 

length. The GPS-ANFIS-based controller in [14] planned a collision-free path with zigzags (red path with 

circles), which delayed reaching the destination. In contrast, the proposed controller planned an almost 

straight collision-free path without zigzags (continuous blue path), which ensured optimality and smoothness. 

This result is due to the accuracy of the proposed controller, which establishes a balance between the two 

constraints: obstacle-avoidance and target-seeking. 

 

3.4.  Discussion 

In this article, we have proposed a strategy to model an ANFIS-based controller for reactive mobile 

robot navigation. It aims to balance the accuracy/complexity of the system to ensure safe, smooth, and 

effective navigation. First, we used the subtractive clustering algorithm to model many FISs that reflect the 

distribution of data points using several cluster radius values. Next, we merged the fuzzy sets of input 

variables using several similarity thresholds. We then merged the redundant rules of each FIS. Finally, we 

used the ANFIS model to train the FIS parameters. To satisfy the accuracy/complexity trade-off, we kept the 

most accurate and least complex FIS. That is, the FIS with the lowest test RMSE value and a reduced rule 

base (few rules and few fuzzy sets). This approach resulted in a fuzzy controller with satisfactory accuracy 

since simulation experiments confirmed the navigation quality in cluttered environments in Figure 11 and 

superiority over state-of-the-art methods when comparing planned paths in Figure 12. In addition, this 

controller is based on a less complex fuzzy system of 22 premise parameters and 25 consequent parameters, 

since the resulting architecture comprises just 5 fuzzy rules and (3, 2, 3, 3) fuzzy sets associated respectively 

with the input variables (ROD, FOD, LOD, TA). Table 5 shows the superiority of the proposed controller 

over the state-of-the-art ANFIS-based controllers in terms of model complexity. As a result, the fuzzy 

controller obtained by following the proposed strategy responded well to the accuracy/complexity problem. 

This will contribute enormously to the improvement of reactive navigation, which is demanded in real-time 

applications requiring high precision and very short execution time. 

 

 

  

  
 

Figure 11. Simulation scenarios of navigation in a previously unknown environment 
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Figure 12. Comparison of the proposed controller with the state-of-the-art ANFIS-based controllers in terms 

of path planification 

 

 

Table 5. Comparison of the proposed controller with the state-of-the-art ANFIS-based 

controllers in terms of model complexity 
Navigation controller Fuzzy set configuration rules Premise parameter Consequent parameter Total parameters 

GPS-ANFIS [14] 3, 3, 3 27 27 108 135 
Hybrid-ANFIS [11] 3, 3, 3 27 27 108 135 

CS-ANFIS [22] 3, 3, 3, 3 81 36 405 441 

IWO-ANFIS [20] 3, 3, 3, 3, 3, 3 729 54 5103 5157 
Conventional ANFIS [23] 3, 3, 3, 3 81 36 405 441 

Proposed method 3, 2, 3, 3 5 22 25 47 

 

 

4. CONCLUSION 

In this paper, we have proposed a strategy for modeling an ANFIS-based controller for mobile robot 

navigation from data generation to the model training phase. To address the accuracy/complexity trade-off, 

this approach combines a suite of methods, namely, data-driven modeling using a subtractive clustering 

algorithm, fuzzy set merging using similarity thresholds on the corresponding membership functions, 

redundant rule merging, and parameter training using the ANFIS architecture. The controller obtained using 

this strategy has demonstrated its performance in terms of accuracy and complexity through simulation 

experiments and comparison with state-of-the-art methods. However, the proposed controller is unable to 

plan collision-free paths in special environments such as U-shaped obstacles. We will therefore address this 

issue in future work by combining other methods. We will also adapt the proposed controller to a multi-robot 

system in environments where obstacles and targets are dynamic. 
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