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 This article presents a methodology for assessing the strength of 

cryptographic algorithms and provides experimental data obtained from 

studying the cryptographic strength of the developed hash function  

HBC-256 using modern satisfiability problem (SAT) solvers. Various SAT 

solvers implementing the conflict-driven clause learning (CDCL) algorithm, 

based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm, were 

used to conduct the cryptanalysis of the HBC-256 hash function. The most 

effective was the parallel SAT solver Parkissat, and thus it was used for 

more in-depth research. A series of experiments were conducted to 

determine how resistant the HBC-256 hashing algorithm is to preimage 

attacks for one, two, three, and four rounds. For this purpose, four sets of 

files were prepared using special propositional encoding tools, each set 

including 30 files in the standard of center for discrete mathematics and 

theoretical computer sciences (DIMACS) format. These files contain 

Boolean formulas in conjunctive normal form (CNF), used as input for 

modern SAT solvers. To obtain more accurate time measurements, the same 

experiment was repeated multiple times, after which the average time was 

determined. The results of this study show that SAT solvers encounter 

significant difficulties when attempting to solve the preimage search 

problem for the full-round version of the HBC-256 hash function, even when 

only 30 bits of the original message are unknown. 
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1. INTRODUCTION 

Ensuring computer security in large open networks such as the internet is one of the most pressing 

areas of modern informatics. However, providing security is a challenging task as it involves addressing 

numerous technical issues to guarantee the highest possible level of reliability to meet the needs of regular 

users. These issues necessitate the use of specific protocols to ensure secure data exchange and modern 

cryptographic methods. Even when a protocol has a formal proof of security, it can still be compromised if 

the cryptographic algorithm used for its implementation possesses undesirable algebraic properties. Thus, one 

of the essential steps in creating a cryptographic scheme, algorithm, or protocol is conducting an initial 

cryptanalysis to assess the strength of the proposed scheme. 

Modern methods successfully applied to the analysis of cryptographic algorithms, such as linear 

cryptanalysis or differential cryptanalysis, rely solely on statistical tools. Another approach for analyzing 

cryptographic algorithms to obtain more reliable security guarantees is propositional encoding followed by 

the application of satisfiability (SAT) solvers [1]. Many practically significant problems related to 

https://creativecommons.org/licenses/by-sa/4.0/
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information management and processing in discrete systems can be effectively reduced to the satisfiability 

problems of Boolean formulas. This applies to problems of synthesis and verification in microelectronics, 

some theoretical programming issues, inversion problems of discrete functions, management of 

communication protocols, and many others.  

A Boolean formula of 𝑛 variables is an expression constructed according to specific rules over an 

alphabet that includes Boolean variables 𝑥1, . . . , 𝑥𝑛 , parentheses, and special symbols that are known as 

Boolean (propositional) connectives. Boolean formulas are also referred to as “propositional formulas” or 

“formulas of logic algebra.” There are Boolean formulas presented in a special form known as normal forms. 

The primary object of further consideration will be Boolean formulas in conjunctive normal form (CNF) [2]. 

Let {0, 1}𝑛 be the set of all words of length 𝑛 over the alphabet {0, 1}. In several sources, the 

elements of {0, 1}𝑛 are referred to as Boolean vectors. Any Boolean formula 𝐹 of 𝑛 variables define a 

completely defined Boolean function 𝑓𝐹: {0, 1}𝑛 →  {0, 1}. A formula 𝐹 is called satisfiable if there exists an 

assignment 𝛼 ∈ {0, 1}𝑛 of values to the variables in 𝐹 such that 𝑓𝐹(𝛼) = 1. Such an assignment is called a 

satisfying assignment for 𝐹. If no such assignment exists, 𝐹 is called unsatisfiable. For any Boolean formula 

𝐹, a circuit can be constructed from functional elements over an arbitrary complete basis, for example, {∧,¬}. 

From this circuit, using Tseitin transformations, one can construct a CNF 𝐶(𝐹) that is satisfiable if and only 

if 𝐹 is satisfiable. The formula 𝐶(𝐹) is generally a formula with more variables than 𝐹. However, 

importantly, the transition from 𝐹 to 𝐶(𝐹) is performed in polynomial time relative to the length of the 

binary representation of 𝐹. Given this, everywhere below, the Boolean satisfiability problem will refer to the 

problem of satisfiability of any CNF: that is, given an arbitrary CNF 𝐶, the question is to determine whether 

𝐶 is satisfiable. SAT is a classical NP-complete problem [3]. Thus, if 𝑃 ≠ 𝑁𝑃, then SAT cannot be solved in 

polynomial time (relative to the size of the CNF) in the general case. Nevertheless, the last 20 years have 

seen significant progress in the development of SAT-solving algorithms, achieving impressive results on 

extensive classes of so-called industrial benchmarks [4], [5]. 

One of the most important classes of logical equations is formed by equations in the form of  

CNF=1, where 1 denotes the true value. The problems of finding solutions to this class of equations belong 

to the so-called SAT problems. Special software tools called SAT solvers are used to solve SAT problems. 

For some cases, SAT solvers allow finding a satisfying assignment for the CNF, i.e., a set of variable values 

that evaluates the CNF to “true.” From this assignment, the desired secret key can be efficiently obtained. 

This approach is called SAT cryptanalysis. 

In the field of cryptanalysis, SAT solvers can be applied to a variety of tasks [6]. They are used to 

search for a key using a ciphertext-only attack, or to search for a key using a known-plaintext attack. 

Additionally, SAT solvers are employed to prove that a cipher is faithful, meaning the same ciphertext cannot 

be generated using different keys, which implies the absence of a universal key capable of decrypting 

ciphertext encrypted with any other key. They also demonstrate that a cipher is not closed, which means that 

for any two keys, there does not exist a third key such that double encryption with the first two keys is 

equivalent to encryption with the third key. Furthermore, SAT solvers can prove that a cipher does not have 

weak keys, specifically showing that no keys exist for which double encryption is equivalent to sequential 

encryption and decryption operations. Lastly, SAT solvers are used to evaluate the strength of hashing 

algorithms by searching for collisions, first or second preimages, and other vulnerabilities. 

Scientific studies on the application of SAT solvers for analyzing cryptographic hash functions have 

demonstrated various approaches and their effectiveness. These works explore both the theoretical aspects 

and the practical efficiency of applying SAT solvers in this field. Researchers have shown how SAT solvers 

can be utilized to identify vulnerabilities in hash functions, such as finding collisions or pre-images. 

Moreover, advancements in SAT solver algorithms have significantly improved their performance, making 

them a powerful tool for evaluating the security of modern cryptographic hash functions. 

In the study [7], SAT solvers were used to find collisions in the SHA-256 hash function based on so-

called “semi-free-start” collisions. Authors integrated the programmatic SAT+CAS paradigm with 

differential cryptanalysis methods previously employed in collision attacks on SHA-256. Although these 

attacks are still far from finding collisions for the full version of SHA-256, they show progress in applying 

SAT solvers for analyzing the security of hash functions.  

Programmable SAT solvers for cryptanalysis allow the customization of the SAT-solving process 

for specific cryptographic tasks, making them more flexible and effective for analyzing hash functions [8]. 

They enable the consideration of cryptographic operations' characteristics and apply them during the 

propagation and conflict analysis processes. The authors enhance the propagation and conflict analysis 

mechanisms of conflict-driven clause learning (CDCL) solvers by incorporating specialized algorithms 

tailored to the cryptographic primitives under examination. This method proves to be highly effective, 

particularly in the differential path analysis and algebraic fault detection of hash functions. Preliminary 
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results highlight the potential of this approach, confirming it as a substantial advancement compared to 

traditional Blackbox SAT-based cryptanalysis techniques. 

Lingeling is a highly optimized SAT solver that has been used successfully in various SAT 

competitions. It has been expanded into two parallel variants: Plingeling and Treengeling. In study [9], two 

solvers, Plingeling and Treengeling, are described, both of which support parallel and distributed computing. 

Plingeling divides the task among multiple threads on a single processor, while Treengeling distributes the 

work across several nodes in a distributed system. 

While SAT solvers represent a powerful tool for solving certain classes of problems, their 

application in cryptography is limited due to the complexity, scale, and specificity of cryptographic tasks. 

Successful use of SAT solvers in cryptography requires a deep understanding of both the cryptographic 

primitives themselves and the methods for transforming these problems into a solvable form for SAT solvers. 

The main limitations in applying SAT solvers include aspects such as exponential complexity, excessively 

large and complex Boolean formulas, and the challenging scalability of simplified versions of cryptographic 

algorithms to full-round versions. Overcoming these limitations in solving cryptographic tasks with SAT 

solvers requires a comprehensive approach, including algorithm optimization, the development of new 

methods, and the application of various strategies. One way to overcome these limitations is through the use 

of parallel computing. The use of parallel or distributed computing in SAT solvers is especially beneficial 

when dealing with large formulas, as it allows different parts of the task to be processed simultaneously, 

significantly improving the efficiency of solving problems. Based on this, the SAT solver experiments in this 

research were conducted on the HP Enterprise DL380 Gen10/2 Xeon Gold server. 

SAT solvers are powerful tools for evaluating the cryptographic strength of hash functions. With the 

continuous growth of computational capabilities, research is ongoing to enhance the efficiency of solvers and 

adapt them for analyzing modern cryptographic hash functions. The scientific community explores various 

approaches and SAT solvers to identify vulnerabilities such as collisions, first-preimage, and second-

preimage attacks. The essence of this research lies in assessing the cryptographic strength of the newly 

developed hash function HBC-256 using state-of-the-art SAT solvers, as the development of any hash 

function must be accompanied by a thorough security analysis, including modeling potential attacks with 

SAT solvers. 

To address this issue, the study conducted a practical cryptanalysis of the cryptographic hash 

function HBC-256. A series of experiments were carried out to evaluate the resilience of the HBC-256 

hashing algorithm against preimage attacks. This article presents an evaluation of the performance of parallel 

and sequential SAT solvers in solving preimage search problems for the HBC-256 hashing algorithm. The 

contributions of this work are as follows: 

− A brief overview of existing methods and approaches for checking the satisfiability of a Boolean function 

represented in CNF and finding its value set is provided; 

− A comparative analysis of the effectiveness of the SAT solvers Lingeling, CaDiCaL, Kissat, Plingeling, 

Treengeling, and Parkissat is conducted using the HBC-256 hash function as an example; 

− Using Parkissat, which demonstrated the best results in the comparative analysis, the high cryptographic 

strength of the HBC-256 hash function is proven. 
 

 

2. METHOD  

The following methods were employed during the research: i) propositional encoding to transform 

cryptographic algorithms into Boolean formulas and ii) solution search for the satisfiability problem of 

Boolean formulas using efficient SAT solvers. The use of SAT solvers in algebraic cryptanalysis provides a 

powerful tool for solving complex systems of equations, making this approach particularly effective for 

analyzing cryptographic systems. The advantage of algebraic cryptanalysis lies in its versatility, as this 

approach can be applied to any cipher that can be expressed in algebraic form, including symmetric ciphers, 

asymmetric schemes, elliptic curve-based schemes, and hash functions, whereas differential and linear 

cryptanalysis are generally limited to symmetric block ciphers and their effectiveness depends on the 

specifics of the algorithm. However, the application of SAT solvers to cryptographic problems requires 

significant computational resources, limiting their practical use in some cases. Therefore, in terms of 

performance and efficiency, the main focus will be on selecting the specific SAT solver. 

 

2.1.  Propositional encoding to transform cryptographic algorithms into Boolean formulas 

Since manual encoding is impractical, cryptographic algorithms are typically transformed into 

Boolean formulas using specialized tools. These tools enable the expression of cryptographic algorithms in 

high-level programming languages, followed by the conversion of the resulting program into the 

corresponding Boolean formula in CNF. The resulting formula is then saved in a file with the standard 

DIMACS format, making it compatible for use as input data by modern SAT solvers.  
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For the preparation of experimental data in this paper, the Transalg software suite was employed as 

such a tool. Transalg was developed by the Matrosov Institute for system dynamics and control theory of the 

Siberian Branch of the Russian Academy of Sciences, located in Irkutsk [10]. This suite facilitates the 

conversion of arbitrary algorithms into Boolean formulas. These algorithms compute everywhere-defined 

discrete functions, i.e., functions of the form 𝑓: {0, 1}∗ → {0, 1}∗, and are expressed using the specially 

designed programming language TA akin to C [11]. 

 

2.2.  Searching for solutions to Boolean formula satisfiability problems using efficient SAT solvers 

Any Boolean satisfiability problem consists of two key subtasks-checking the satisfiability of an 

arbitrary Boolean function represented in CNF and finding a set of values for which such a CNF is satisfied. 

The foundation of most SAT solvers is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [12], [13] 

which was specifically proposed for determining the satisfiability of Boolean formulas written in CNF, i.e., 

for solving SAT problems. The DPLL algorithm serves as the basis for most efficient SAT solvers. 

The main idea of the DPLL algorithm is to apply depth-first search methods and utilize the unit 

propagation rule. The DPLL algorithm divides the set of variables of the CNF formula into two subsets, A 

and B, where subset A contains variables with a value of “true” and subset B contains variables with a value 

of “false.” At each step, an arbitrary variable from the CNF formula is chosen, and it is assigned a value of 

“true” (adding the variable to subset A). Then the original formula is simplified, and the simplified problem 

is solved. If the simplified CNF formula is satisfiable, then the variable value chosen is correct; otherwise, 

the chosen variable is assigned a value of “false,” and it is moved to subset B. The problem is then solved 

again for the chosen “false” variable value. Thus, either the correct variable value (“true” or “false”) will be 

found, or it will be proven that the original formula is unsatisfiable [14], [15].  

The foundation of the vast majority of modern complete SAT solvers, effective on broad classes of 

practical tests, is the conflict-driven clause learning (CDCL) algorithm. In turn, this algorithm is based on the 

DPLL algorithm. The main difference between these two algorithms is that CDCL uses memory to store 

search history more precisely, and information about dead-end branches of the search tree is recorded in the 

form of new constraints, called conflict clauses [16]–[20]. This allows for significantly deeper backtracking 

in some cases than in DPLL. In addition to conventional or sequential SAT solvers, parallel SAT solvers 

have gained widespread use. These solvers are divided into three categories: portfolio solvers, divide-and-

conquer solvers, and solvers based on parallel local search.  

Portfolio solvers are built on the use of multiple algorithms or different configurations of the same 

algorithm. All solvers in the parallel portfolio work on different processors to solve the same problem. If one 

solver program is completed, the portfolio solver reports whether the problem is satisfiable or unsatisfiable 

according to that solver. All other solvers stop working. Diversifying portfolios by including different 

solvers, each of which performs well on different types of problems, enhances solver efficiency. Many 

solvers use random number generators internally. Diversifying their initial values (seeds) is a simple way to 

diversify the portfolio. Other diversification strategies include enabling, disabling, or diversifying certain 

heuristics in the sequential solver [21], [22]. 

Unlike parallel portfolios, parallel divide-and-conquer solvers attempt to divide the search space 

among individual instances of SAT solvers running in parallel threads. However, due to the use of methods 

such as unit propagation, after partitioning the SAT problem into individual subproblems, they may vary 

significantly in complexity, leading to the challenging problem of load balancing. One strategy for parallel 

local search to solve SAT involves using opposite truth values for one or more variables (flip variables) in 

different nodes of the computing system. These variables are selected using heuristics that attempt to 

determine how this change can expedite the SAT problem-solving process by reducing the number of 

unsatisfied clauses. Another approach is to apply the aforementioned portfolio approach [23], [24].  

Despite the abundance of SAT solvers of various types available today, a universal solution that 

performs equally well for all tasks has not yet been found. Each solver may excel at tasks that others struggle 

with while performing significantly worse on some other tasks. It is practically impossible to predict in 

advance which solver should be used in a given situation, so the choice of solver that best suits solving a 

particular problem is determined experimentally. 

 

2.3.  Hash function HBC-256 

The cryptographic algorithm chosen for testing using modern SAT solvers was the HBC-256 data 

hashing algorithm, developed in the Information Security Laboratory of the Institute of Information and 

Computational Technologies of the Ministry of Science and Higher Education of the Republic of 

Kazakhstan. The HBC-256 hash function was built using the Merkle-Damgard construction with the wide-

pipe modification, which is one of the most common modifications. To ensure one-wayness, the Davies-

Meyer scheme was employed. The algorithm HBC-256 consists of 4 rounds, and the length of the resulting 
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hash value is 256 bits. The compression function utilized in this algorithm is based on a proprietary block 

cipher called CF, which was designed with consideration of requirements for encryption algorithms in 

software and hardware implementations [25]. The input and output block lengths of the compression function 

CF, as well as the round key length, are all 128 bits.  

To enhance the performance, the structure of the HBC-256 hashing algorithm is designed to allow 

the adjustment of the number of input blocks hashed simultaneously in parallel streams. This number is 

determined by the parameter k, which ranges from 3 to 8. The value of parameter k is selected based on the 

volume of data being hashed and the available computational resources of the computer used. Thus, the 

parameter k defines the length L of the input block for the HBC-256 hashing algorithm, where L=128×k bits. 

The structure of the hashing algorithm is shown in Figure 1. 

The HBC-256 algorithm under consideration, known for its high level of security, enhanced 

performance, and suitability for hardware implementation using parallel computations, is extensively 

described in [26]. This paper provides detailed results of conducted research on avalanche effects, strict 

avalanche effects, and statistical security. Additionally, works [27], [28] present conclusions on the 

impracticality of using methods such as differential, linear, and algebraic cryptanalysis to find collisions in 

the HBC-256 function. In our case, when preparing experimental data, we used the value k=3. Thus, the 

length L of the input block of the algorithm is 384 bits. 

 

 

 
 

Figure 1. The scheme of the HBC-256 hashing algorithm 

 

 

3. RESULTS AND DISCUSSION 

The Transalg translator takes as input a program that computes a discrete function, written in a 

specialized procedural programming language (TA language). The result of translating a TA program is a 

system of Boolean equations that encode the computation process of the considered function. The phases of 

text analysis of the TA program, constructing a syntax tree, and traversing the resulting tree for interpretation 

are implemented in a standard manner. A non-trivial aspect of the translation is the procedure for interpreting 

the language constructs, as this step is responsible for generating the system of Boolean equations that 

encode the algorithm's execution process. At this stage, numerous local problems arise, the resolution of 

which can significantly affect both the size and structure of the resulting code. 

As mentioned above, the Transalg software suite was used to transform this algorithm into a 

Boolean formula. Initially, using the specialized programming language TA, which is part of the Transalg 

software suite, a program code was written to implement all the operations performed by the algorithm. 

These operations include byte permutation, bitwise cyclic shift, substitution procedure using four 16-byte 

S-boxes, byte-wise XOR operation, and addition of elements from selected rows and columns of the matrix. 
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Then, the text of this program was passed to the parsing module of the Transalg software suite, the result of 

which is a syntax tree describing the internal representation of this program. Traversal of the syntax tree and 

construction of Boolean equations are performed by the transformation module. When generating the final 

propositional code, the transition to CNF is carried out using Tseitin transformations [29]. As a result of the 

propositional encoding of the HBC-256 hashing algorithm, a Boolean formula in CNF was obtained, 

containing 196,864 Boolean variables and consisting of 986,480 clauses, each of which represents a 

disjunction of literals. The total number of literals, i.e., Boolean variables or their negations, included in these 

clauses, is 3,321,880. Table 1 shows the number of Boolean variables, literals, and clauses depending on the 

number of rounds of the HBC-256 hash function. 

 

 

Table 1. Number of Boolean variables, literals, and clauses in the Boolean  

formula describing the HBC-256 hash function  
Number of rounds Number of variables Number of literals Number of clauses 

1 47,232 791,464 235,024 
2 97,024 1,633,912 485,168 

3 146,944 2,477,896 735,824 

4 196,864 3,321,880 986,480 

 

 

Once the propositional representation of the HBC-256 hashing algorithm is obtained, depending on 

the problem being solved, it is necessary to assign values to the input variables, each corresponding to a 

specific bit of the input block of the hashed message, and the output variables, each corresponding to a 

specific bit of the hash code. After that, a series of tests are performed using six modern SAT solvers to 

obtain information about the computation runtime, memory usage, and other experimental data.  

Depending on whether input and/or output variable values are specified, SAT solvers can solve the 

following 4 tasks:  

a. If neither input variable values nor output variable values are specified, random input variable values 

(input message) are generated, and then the corresponding output variable values (hash code) are 

computed. 

b. If input variable values (input message) and output variable values (hash code) are specified, the task of 

hash code verification is solved.  

c. If only input variable values (input message) are specified, the task of computing the values of the 

corresponding output variables (hash code) is solved.  

d. If only output variable values (hash code) are specified, the task of computing the values of the 

corresponding input variables (input message) is solved.  

The first three tasks, from the perspective of SAT solvers, are trivial and can be solved in just a few 

seconds. However, the fourth task (pre-image search), which is of the greatest interest in terms of 

cryptanalysis, cannot be solved in a reasonable amount of time. This is natural because any hash function 

must be resistant to pre-image attacks. One of the commonly used techniques when employing SAT solvers 

is Guess-and-Determine, which involves fixing the values of certain variables, significantly reducing the 

overall time required to find a solution to the cryptanalysis task at hand. Therefore, we will simplify our task 

by specifying, in addition to the output variable values (hash code), the values of certain input variables, and 

then attempt to find the values of the remaining input variables using a SAT solver. 

The computations were performed under the condition that the output variable values, representing a 

256-bit hash value, were fully known. Input variable values representing a 384-bit plaintext block were 

provided, with 𝑛 initial bits missing, where 1 ≤ 𝑛 ≤ 30. The task is to find the values of the input variables 

corresponding to the missing bits using SAT solvers and thereby fully recover the original message block. 

For experiments aimed at testing the resilience of the HBC-256 algorithm against this type of attack, three 

sequential SAT solvers were selected: CaDiCaL (1.6.0), Lingeling (sc2022), and Kissat (1.0.3), along with 

three parallel SAT solvers: Plingeling (sc2022), Treengeling (sc2022), and Parkissat (1.0.3) [30], [31]. These 

solvers have at various times achieved top rankings in the annual SAT competition. Table 2 shows the time 

taken to find the missing bits of the original message using the aforementioned SAT solvers. 

As can be seen from this table, it is preferable to use parallel SAT solvers to solve our problem. 

Among the parallel SAT solvers (for our problem), the most efficient one was the Parkissat SAT solver, so it 

will be used in further experiments. Empty cells in the table indicate that the execution time exceeded the 

established limit. Now, we will conduct a series of experiments to determine the resistance of the HBC-256 

hashing algorithm to preimage attacks using one, two, three, and four rounds of the hashing function. Table 3 

presents the solution search time using the Parkissat SAT solver, and Figure 2 shows the dynamics of this 

time depending on the number of unknown variables for four rounds. 
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Table 2. Time to find the specified number of plaintext bits (in seconds) 
Number of unknown bits (n) SAT Solvers 

Sequential Parallel 

CaDiCaL Lingeling Kissat Parkissat Plingeling Treengeling 

1 0.37 8.30 0.52 2.51 1.20 8.54 

2 0.64 8.56 1.09 4.92 9.10 8.62 
3 0.71 8.00 175.30 4.96 1.30 8.81 

4 0.75 21.56 859.16 4.81 12.20 69.90 

5 1.15 23.18 4409.98 4.8 24.20 72.33 
6 1.62 53.18 1499.53 4.74 39.80 92.40 

7 2.28 - 1009.55 4.7 16.70 82.01 

8 3.19 - 10694.76 4.61 13.50 36.03 
9 6.95 - 65077.76 4.99 32.20 39.46 

10 10.82 - 1176.17 5.2 12.50 137.15 

11 21.03 - 158982.26 6.21 13.50 63.95 
12 51.56 - 41866.38 7.15 11.50 89.50 

13 37.09 - 21610.30 7.87 15.70 174.97 

14 54.38 - 8233.98 15.32 32.40 182.36 

15 349.83 - 30135.18 19.49 33.50 108.63 

16 53.14 - 3951.08 28.63 22.70 646.78 

17 - - 5936.58 43.51 61.20 - 
18 - - - 132.54 61.40 - 

19 - - - 162.57 259.60 - 
20 - - - 224.31 54.50 - 

21 - - - 466.26 1309.70 - 

22 - - - 982.04 1480.70 - 
23 - - - 2 136.75 448.90 - 

24 - - - 2 691.54 2043.50 - 

25 - - - 14 640.47 55822.00 - 
26 - - - 23 361.06 22479.30 - 

27 - - - 72 882.68 - - 

28 - - - 95 320.19 - - 
29 - - - 180 660.11 - - 

30 - - - 315 674.76 - - 

 

 

Table 3. Solution search time using the Parkissat SAT solver (in seconds) 
Number of unknown bits (n) Solution search time 

1 round 2 rounds 3 rounds 4 rounds 

1 2.16 2.18 2.48 2.51 

2 1.73 2.82 3.78 4.92 
3 1.80 2.84 3.85 4.96 

4 1.76 2.72 3.85 4.81 

5 1.75 2.81 3.73 4.8 
6 1.71 2.71 3.92 4.74 

7 1.76 2.74 3.79 4.7 

8 1.75 2.69 3.95 4.61 
9 1.73 2.80 4.27 4.99 

10 1.74 2.70 5.28 5.2 

11 1.76 2.88 4.84 6.21 
12 1.73 2.65 6.01 7.15 

13 1.55 2.93 6.46 7.87 

14 1.85 4.18 7.91 15.32 

15 1.99 4.58 10.43 19.49 

16 2.51 4.92 11.44 28.63 

17 4.19 9.25 26.11 43.51 
18 6.19 10.55 38.83 132.54 

19 11.98 12.85 70.16 162.57 

20 36.45 25.18 168.73 224.31 
21 42.92 67.79 320.02 466.26 

22 47.58 113.76 514.44 982.04 

23 77.77 347.71 1,257.46 2 136.75 
24 389.85 749.35 1,329.39 2 691.54 

25 694.88 1,100.26 3,848.17 14 640.47 

26 1,632.66 2,038.35 6,278.91 23 361.06 
27 2,489.21 4,269.47 20,488.25 72 882.68 

28 4,997.66 9,984.80 76,047.94 95 320.19 

29 19,304.95 27,842.22 87,101.22 180 660.11 
30 52,062.85 63,398.35 174,276.97 315 674.76 
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It is necessary to note the following nuance. When running the same SAT solver multiple times with 

the same input and output data, we obtain different times each time. This is because, at each step of the 

algorithm for solving the Boolean equation, the selection of the next variable for subsequent assignment of 

the value “true” or “false” is made using a random number generator. If the variable is “luckily” chosen, 

meaning the value chosen for it is part of the solution, this positively affects the search time. Otherwise, it 

will be necessary to return to this variable and assign it the opposite value, and then repeat the solution search 

procedure (a backtracking mechanism). For example, searching for the values of 25 unknown variables using 

the Parkissat SAT solver can take from 49 minutes to 15 hours, where they are shown in Table 4. 

To obtain a realistic assessment of time, it is necessary to repeat the same experiment multiple times, 

for example, 10 times, and then find the average time spent. In our case, the average time to find a solution 

was 23,361.06 seconds, or 6 hours, 29 minutes, and 21.06 seconds. As evident from Table 3 and the graph in 

Figure 2, with an increase in the number of unknown bits (starting from 25 and above), the time required to 

solve the problem sharply increases. It took over 87 hours using a computer with two 56-core processors to 

find the preimage of the message, assuming that 30 unknown bits were present while the values of the 

remaining 354 bits were fixed. The experiments were conducted on a computer with two 56-core AMD 

EPYC 7663 processors running at 2.0 GHz each (total of 112 cores) and 128 GB of RAM, operating on the 

Linux Ubuntu 22.04.3 LTS operating system. 

 

 

 
 

Figure 2. Dynamics of solution search time using the Parkissat SAT solver 

 

 

Table 4. Search time for values of 25 unknown Boolean variables 
Attempt number Search time 

(h, m, s) (seconds) 

Attempt #1 2 h 52 m 21.42 s 10,341.42 
Attempt #2 5 h 22 m 00.07 s 19,320.07 

Attempt #3 2 h 35 m 51.17 s 9,351.17 

Attempt #4 7 h 39 m 49.85 s 27,589.85 
Attempt #5 49 m 30.07 s 2,970.07 

Attempt #6 1 h 56 m 12.93 s 6,972.93 

Attempt #7 15 h 08 m 07.98 s 54,487.98 
Attempt #8 13 h 52 m 30.57 s 49,950.57 

Attempt #9 3 h 25 m 15.64 s 12,315.64 

Attempt #10 11 h 11 m 50.55 s 40,310.55 

 

 

4. CONCLUSION  

The study undertook a practical cryptanalysis of the cryptographic hash function HBC-256. The  

4-round compression function was described in the form of an equation in CNF=1 format using 986,480 

clauses, each of which represents a conjunction of literals and 196,864 Boolean variables. The solution to this 

equation was obtained using the SAT solver Parkissat.  

The results of the experimental studies show that for the full HBC-256 hash function consisting of 4 

rounds, the SAT solver struggles to solve the problem even when only 30 bits of the original message are 

unknown. Since finding the preimage requires determining all 384 bits of the original message block, this 

task is practically infeasible within a reasonable time frame. Therefore, it can be concluded that the HBC-256 

algorithm is resistant to preimage attacks using this method. 
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A limitation of SAT solvers is their brute-force nature, and the problem of reducing the search space 

is fundamental to these methods. A solution might not be found within an acceptable time frame, making it 

practically impossible to provide a theoretical estimate of the possibility of finding a preimage. Therefore, as 

a future research direction, it should be noted that other types of cryptanalyses and their combinations, 

including the combination of differential and algebraic cryptanalysis, will be explored to obtain a theoretical 

estimate of the strength of the considered hash function. 
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