
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 15, No. 2, April 2025, pp. 1620~1631 

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i2.pp1620-1631      1620  

 

Journal homepage: http://ijece.iaescore.com 

Enhanced embedded system for various synthetic 

electrocardiogram generation using McSharry’s dynamic 

equation 
 

 

Nada Fitrieyatul Hikmah, Rachmad Setiawan, Nafila Cahya Andanis, Aldo Pranata 
Department of Biomedical Engineering, Faculty of Intelligent Electrical Technology and Informatics, 

Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 11, 2024 

Revised Oct 7, 2024 

Accepted Oct 23, 2024 

 

 An electrocardiogram (ECG) is a signal that describes the heart’s electrical 

activity. Signal processing techniques are necessary to extract meaningful 

information from ECG signals. Researchers often use large databases like 

the PhysioNet database to evaluate the performance of algorithms. However, 

these databases have limitations concerning the lack of temporal or 

morphological variations. This study addresses this limitation by introducing 

a synthetic ECG capable of producing both normal 12-lead ECG signals and 

abnormal ECG signals and implementing it into the microcontroller. The 

primary contribution involves developing a synthetic ECG model using 

McSharry's dynamic equation model and implementing it using Mikromedia 

5 for STM32F4 Capacitive as a microcontroller. This model enables users to 

set the desired heart rate and accurately replicates ECG waveforms using 

parameters 𝑎𝑖, 𝑏𝑖, and 𝜃𝑖 , each determines the peak’s magnitude, the peak’s 

time duration, and the angular velocity of the trajectory. The synthetic ECG 

was evaluated qualitatively and quantitatively, demonstrating waveform 

similarity to the ECG signals. This study implies that the synthetic ECG 

model serves as a valuable tool for researchers and practitioners in 

electrocardiography. It enables the generation of normal and abnormal ECG 

signals, aiding in algorithm development and potentially enhancing the 

understanding and diagnosis of heart conditions. 
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1. INTRODUCTION 

An electrocardiogram (ECG) is a signal that describes the heart’s electrical activity that causes the 

heart to contract and relax. One normal cycle of the ECG represents the atrial depolarization or repolarization 

and ventricular depolarization or repolarization activity that occurs with each heartbeat. This cycle can be 

seen from the ECG waveforms labeled P, Q, R, S, and T. To obtain clinically meaningful information from 

ECG signals, signal processing techniques include the detection of the R peak, QT interval, derivative of 

heart rate, and respiration rate from the ECG [1]–[3]. The RR interval is the time between the R-peaks and 

the series of RR intervals known as the RR tachogram. The variability of the RR interval can provide a lot of 

important information about human physiology. Evaluation of biomedical signal processing algorithms is 

usually done by applying them to ECG signals in large databases such as the PhysioNet database. However, 
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PhysioNet has several limitations, including the absence of time or morphological variations [4]. To address 

this limitation, synthetic ECG is used to generate ECG data that is not commonly available for various 

reasons. For instance, an example of an abnormal ECG signal is a myocardial infarction (MI) signal. Existing 

12-lead ECG databases such as Physikalisch-Technische Bundesanstalt (PTB), Physikalisch-Technische 

Bundesanstalt eXtended Leads (PTB-XL), and ST-T database III (STAFF III) also have a class imbalance. 

For example, the PTB-XL database, one of the databases that has the most MI signal data, has data on  

2,685 patients with inferior MI, 354 patients with anterior MI, 201 patients with Lateral MI, and only 17 

patients with posterior MI [5]. This applies not only to MI signals, but there are many different abnormal 

ECG signal symptoms. To facilitate obtaining ECG data, it is necessary to classify the existing ECG signals. 

This classification is based on the research by Pałczyński et al. [6], which categorizes ECG into five main 

classes and several sub-classes. 

McSharry et al. [4] created a dynamic model based on three differential equations that can create 

real ECG signals. Subsequent researchers widely used this model to create synthetic ECG generators, one of 

which was carried out by Wei et al. [7]. The synthesized synthetic ECG was programmed on the 

microcontroller unit (MCU) with the help of a field programmable gate array (FPGA), digital-to-analog 

converter (DAC), liquid crystal display (LCD), flash memory, and keypad. The signal was then displayed 

using LabVIEW so that the user could access and control the waveform of the generated ECG signal. The 

created ECG generator allowed the user to easily set various parameters such as sampling frequency, mean 

heart rate  ̧ values of amplitude, duration, and peak at each of the P, Q, R, S, and T, which determine the 

position of each wave, as well as other parameters. The signal shown in this study is just a normal heart 

signal at different 3-leads [7].  

Zhu et al. [8] utilized machine learning via the generative adversarial network (GAN) approach to 

generate synthetic ECG data, notably achieving a loss function of zero faster than other methods. 

Lee et al. [9] leveraged the PTB dataset to create V-lead ECG signals from limb leads using a GAN with  

R-peak alignment. This approach preserved physiological information and translated time domain ECG into 

two-dimensional space using ordered time-sequence embedding. The GAN was pair-trained with modified 

limb II leads and chest leads. Adib et al. [10] created synthetic ECGs with the Wasserstein GAN with 

gradient penalty (WGAN-GP) model, consistently producing beats closer to real beats than the denoising 

diffusion probabilistic model (DDPM) beats in every instance and metric. Thambawita's research on 

WaveGAN and Pulse2Pulse demonstrated the potential of GANs in generating realistic synthetic 10-second 

12-lead ECGs, with the latter surpassing WaveGAN in generating 121,977 DeepFake normal ECGs [11]. 

Hazra and Byun [12] introduced SynSigGAN, a novel GAN model capable of autonomously generating 

synthetic biomedical signals for electrocardiogram, electroencephalogram, electromyogram, and 

photoplethysmogram. The model exhibited superior performance in comparison to conventional and other 

GAN models based on evaluation metrics. Bhagwat and Ravikumar [13] employed the mean average 

precision (MAP) machine learning method to generate diverse morphologies from real ECG records, using 

polynomials and spline fits in R2 vector space. However, GAN outperformed MAP by 45.9% in terms of 

computational complexity. Hernandez-Matamoros et al. [14] proposed a new method for synthesizing 

biomedical signals, involving a bidirectional recurrent neural network and a statistical stage. This method 

could generate five types of biomedical signals, including electrocardiogram, electroencephalogram, 

ballistocardiogram, photoplethysmogram, and respiratory impedance, and could be trained in both positive 

and negative time directions. A shared limitation among all machine learning-based synthetic ECGs is that, 

to generate an ECG signal, they must initially acquire knowledge from a database. Inaccuracies in the 

database will consequently lead to inaccuracies in the synthetic ECGs. Moreover, the synthetic ECGs tend to 

replicate the characteristics of the training signals. For instance, if the training data consists of normal ECG 

waves, the resulting synthetic ECGs will exhibit normal patterns and will not include any abnormal ECG 

waves. To incorporate abnormalities, it is essential to have these variations represented in the database for 

machine learning to learn and replicate them. 

Quiroz-Juárez et al. [15] employed four mathematical models, including heterogeneous nonlinear 

oscillators, reaction-diffusion model spatially discretized, differential equations with time delays, and quasi-

periodic motion. Parameter adjustments for other ECG patterns are challenging due to the complex parameters. 

Cheffer et al. [16] developed a mathematical model using three nonlinear oscillators with time-delayed 

connections to describe heartbeats, generating synthetic ECGs for normal and pathological rhythms. However, 

their focus is on specific arrhythmias, such as atrial flutter, atrial fibrillation, and ventricular fibrillation.  

Quiroz-Juárez et al. [17] proposed a model with two RLC linear oscillators representing the atria and ventricles, 

along with an electrical cardiac conduction system. Their model addresses only healthy synthetic ECG signals, 

without studying the parameter effects. Awal et al. [18] introduced a simplified model for generating various 

cardiac dysrhythmias, including normal beats, atrial premature beats, paced beats, and premature ventricular 

contractions. The model can represent asymmetric ECG components but is limited to specific cases. 

Que et al. [5] developed a dynamic model to generate 12-lead ECGs for myocardial infarction (MI) with 
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different characteristics, achieving a 95.6% average fidelity using the DTW-GRA distance algorithm. However, 

the model has yet to validate the similarity to real infarct ECGs. 

Thaurisingham et al. [19] devised a model to predict RR intervals employing a time-varying chaotic 

sequence and an enhanced logistic map multiplied by a constant parameter. They integrated mean heart rate and 

solved ordinary differential equations; however, their application was limited to healthy patients. 

Quiroz-Juárez et al. [20] proposed a model for generating electrocardiogram signals through a discretized 

reaction-diffusion system. This approach utilized three nonlinear oscillators to emulate heart pacemakers, with 

the ability to control the transition from a normal rhythm to ventricular fibrillation (VF) with a single parameter. 

While this model eliminated the necessity for multiple parameters or external signals to replicate chaotic heart 

rhythms, it did not encompass the generation of abnormal ECG waveforms. Bachi et al. [21] developed a 

simulator based on a discrete-time Markov chain model to simulate atrial and ventricular arrhythmias, with a 

particular focus on analyzing atrial fibrillation. The simulator incorporated statistical information regarding 

episode duration, heartbeat characteristics, muscle noise, motion artifacts, and the influence of respiration, 

making it suitable for data augmentation in machine learning. One limitation of this simulator is its digital 

representation, as the mathematical model is inherently more complex due to the involvement of multiple 

parameters, and the output data remains in digital format. Evaristo et al. [22] applied the McSharry model to 

generate ECG signals, transitioning from a Gaussian model to an autoregressive model for RR tachograms. 

However, the parameters governing this transition were not adaptable, thereby limiting their capacity to 

generate abnormal signals. Despite being closer to reality than the Gaussian model, the RR tachograms were 

solely generated using normal parameters. 

Building upon prior research, this study has developed a synthetic ECG capable of generating 

normal heart signal patterns across 12 leads as well as various heart signals featuring ECG abnormalities 

categorized in previous ECG classifications. Beyond diversifying the array of heart signal types, this 

synthetic ECG system allows users to easily adjust heart rate parameters. The synthesis of ECG data was 

achieved through the utilization of Mikromedia 5, integrated into the STM32F407ZG capacitor, equipped 

with the STM32F4 microcontroller and visual thin film transistor (TFT). Visual TFT, employing thin-film 

transistor technology for pixel control, offers the distinct advantage of rendering clearer, sharper, and more 

vibrant images. The entire program is embedded within the microcontroller, and the resulting synthetic ECG 

signal is presented via visual TFT. Users can configure heart rate parameters and manipulate the ECG signal 

waveform through the touchscreen functionality provided by visual TFT. Additionally, in addition to being 

displayed on visual TFT, the signal is converted into analog form using a digital-to-analog converter via the 

DAC Click module. In the development of this synthetic ECG, the differential equation framework 

established by McSharry et al. [4] was employed, with the computational method implemented being Runge-

Kutta order 4. The primary contribution of this work lies in the creation of a synthetic ECG model that will 

serve as a novel dataset. By using synthetic data, this dataset addresses privacy concerns, as traditional ECG 

datasets are often kept private for confidentiality reasons. 

 

 

2. METHOD 

The synthetic ECG system consists of hardware and software systems. The hardware system uses 

Mikromedia 5 for STM32 Capacitive, equipped with the STM32F407ZG microcontroller and TFT display. 

The overall diagram of the synthetic ECG signal generation process can be seen in Figure 1. The heart rate in 

beats per minute (bpm) and the type of signal to be shown, including normal heart signals at 12-leads and MI 

signals, were entered into the synthetic ECG. The production of the power spectrum, which is impacted by 

respiratory sinus arrhythmia (RSA) and Mayer waves, uses temporal and spectral parameters, such as 

frequency, standard deviation of low frequency (LF) and high frequency (HF), and the ratio of LF to HF. 

Mikromedia 5 for STM32 Capacitive is used as the hardware, and the process will operate on the 

microcontroller STM32F407ZG with visual TFT as a graphic user interface (GUI) for users to enter input 

heart rate and control signal output. The touchscreen capability on the visual TFT also makes it clear for 

users to choose and modify the signal output. In addition to the signal displayed via the TFT, the signal is 

also converted to analog via a digital-to-analog converter (DAC) using DAC Click. The analog signal that 

comes out through the DAC Click already has a smooth output signal, so there is no need to do a low-pass 

filter again. A differential voltage divider lowers the signal's voltage once it has been converted to analog.  

 

2.1.  RSA and Mayer waves generation 

The autonomic nervous system plays a vital role in the regulation of the body's visceral functions by 

means of the sympathetic and parasympathetic nervous systems. These systems are responsible for 

maintaining the dynamic equilibrium and essential functions of the body. Within the cardiovascular system, 

this equilibrium results in fluctuations in heart rate intervals, a phenomenon known as heart rate variability 
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(HRV) [23]. The activity of the sympathetic nervous system tends to increase heart rate, whereas the activity 

of the parasympathetic nervous system tends to lower it. The interplay between these two systems is referred 

to as sympathovagal balance, and it is believed to be reflected in variations in the cardiac cycle from one beat 

to the next. Spectral analysis of the RR tachogram is a commonly used method to assess the influence of 

sympathetic and parasympathetic activity. It distinguishes between two primary frequency components: low 

frequency (LF), which falls within the range of 0.04-0.15 Hz, and high frequency (HF), within the range of 

0.15-0.4 Hz, with the HF peak occurring around 0.25 Hz. Notably, the peaks within the LF range are 

typically associated with Mayer waves and are approximately at 0.1 Hz. Under normal conditions, Mayer 

waves are attributed to a combination of factors, including the baroreceptor and chemoreceptor feedback 

system, centrogenic rhythms in the brainstem with connections to respiratory oscillations, and 

autorhythmicity of vascular smooth muscle [24]. 
 

 

 
 

Figure 1. Synthetic ECG system diagram 

 

 

The effect of RSA and Mayer waves on the 𝑆(𝑓) power spectrum on the RR interval can be 

produced by the sum of the two Gaussian distributions, which can be seen in (1),  
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where variable 𝑓1 and 𝑓2 represent the frequencies of LF and HF, 𝑐1 and 𝑐2 represent the standard deviation of 

LF and HF respectively, 𝜎1
2 and 𝜎2

2 represent the power of LF and HF. While the variation is the same as the 

total area, it can be written as 𝜎2 =  𝜎1
2 + 𝜎2

2 , yielding the LF/HF ratio obtained from 𝜎1
2/𝜎2

2. In this research, 

the initial value 𝑓1 = 0.1, 𝑓2 = 0.25, 𝑐1 = 0.01, 𝑐2 = 0.01, dan 𝜎1
2/𝜎2

2 = 0.5 is used. 

 

2.2.  RR Tachogram generation 

The time series of the RR interval, 𝑇(𝑡), with the power spectrum 𝑆(𝑓) can be obtained using the 

inverse discrete Fourier transform (IDFT) method. However, mirroring 𝑆(𝑓) is required before applying this 

technique. According to a study by McSharry et al. [4] the amplitude was converted to √𝑆(𝑓) and then given 

a random phase that was dispersed between 0 and 1 Hz. The signal is initially divided into real and imaginary 

portions in order to do this random phase operation. The IDFT procedure can then be used to transform 

frequency-domain signals into time-domain signals. The results of the previous signal, which has been given 

a random phase, will be used for the IDFT process for each real and imaginary part. The IDFT was followed 

by the formation of the RR tachogram. In order to create a 3D path later on, the angular velocity from the 

time series can be obtained by using the formula 𝜔(𝑡) = 2𝜋/𝑇(𝑡) where 𝑇(𝑡) is the time series of the RR 

interval. 
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2.3.  Dynamical model 

 A three-dimensional path with 𝑥, 𝑦, and 𝑧 coordinates is generated by this model. One RR interval 

or heart rate is represented by each revolution of this trajectory cycle. The quasi-periodicity of the ECG is 

reflected by the movement of the track around the cycle in the x and y planes. Variations in ECG morphology 

are formed by movement on a trajectory in the z-direction. The locations of P, Q, R, S, and T are determined 

by the angles in the cycle named 𝜃𝑝, 𝜃𝑄, 𝜃𝑅, 𝜃𝑆, and 𝜃𝑇. Each point’s amplitude is determined by the 𝑎 and 

each wave phase’s duration is determined by the 𝑏. This dynamical model consists of three differentials 

equations as written in (2),  

 

�̇� =  𝛼𝑥 −  𝜔𝑦 

�̇� =  𝛼𝑦 +  𝜔𝑥  

�̇� =  − ∑ 𝑎𝑖∆𝜃𝑖exp (−
∆𝜃𝑖

2

2𝑏𝑖
2)𝑖 𝜖 {𝑃,𝑄,𝑅,𝑆,𝑇} − (𝑧 − 𝑧𝑜)  (2) 

 

where 𝛼 = 1 −  √𝑥2 + 𝑦2, ∆𝜃𝑖 = (𝜃 − 𝜃𝑖)𝑚𝑜𝑑2𝜋, 𝜃 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) and 𝜔 is the angular velocity of the 

track moving during the cycle. Baseline wander is written 𝑧𝑜 and plugged into the equation. The phenomenon 

of baseline wander is noise that frequently appears in ECG readings. The baseline wander equation is written 

as shown in (3), 

 

𝑧𝑜(𝑡) = 𝐴 sin(2𝜋𝑓2𝑡)  (3) 

 

where 𝐴 =  0.15 mV. The above equations are integrated numerically using the fourth-order Runge-Kutta 

method with a fixed-time step ∆𝑡 = 1/𝑓𝑠 where 𝑓𝑠 is the sampling frequency. The shape of the ECG signal is 

influenced by the size of the average heart rate value (ℎ𝑚𝑒𝑎𝑛). As the heart rate rises, the width of the QRS 

narrows. Changes caused by heart rate are made by modifying the exponential width and the angular 

position, which can be seen in Table 1 [25]. The value of α itself can be seen in (4),  
 

𝛼 =  √ℎ𝑚𝑒𝑎𝑛/60 (4) 

 

where α is the modulation factor. 
 

 

Table 1. Parameters of normal ECG morphology with α modulation 
Index (𝑖) P Q R S T- T+ 

Time (secs) -0.2√α -0.05α 0 0.05α 0.277√α 0.286√α 

𝜃𝑖 (radians) −
𝜋√𝛼

3
 −

𝜋√𝛼

12
 0 

𝜋𝛼

12
 

5𝜋√𝛼

9
− 

𝜋√𝛼

60
 

5𝜋√𝛼

9
 

𝑎𝑖 0.8 -5.0 30.0 -7.5 0.5𝛼2.5 0.75𝛼2.5 

𝑏𝑖 0.2α 0.1α 0.1α 0.1α 0.4𝛼−1 0.2α 

 

 

2.4.  4th order Runge-Kutta 

 Runge-Kutta is a numerical method commonly used to solve differential equations. The higher the 

order of Runge-Kutta, the higher the accuracy given, but the more complex the calculation. In this study, the 

fourth-order Runge-Kutta method was used to integrate the differential equations that were made previously 

in (2). Runge-Kutta calculations can be carried out as in (5),  
 

𝐾1 = ℎ𝑓(𝑥𝑛 , 𝑦𝑛)  

𝐾2 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ , 𝑦𝑛 +

1

2
𝐾1)  

𝐾3 = ℎ𝑓(𝑥𝑛 +
1

2
ℎ , 𝑦𝑛 +

1

2
𝐾2)  

𝐾4 = ℎ𝑓(𝑥𝑛 + ℎ , 𝑦𝑛 + 𝐾3)  

𝑦𝑛+1 = 𝑦𝑛 +
1

6
(𝐾1 + 2𝐾2 + 2𝐾3 + 𝐾4) (5) 

 

where K1, K2, K3, and K4 are Runge-Kutta coefficients, h is step size, x is input, y is output, and n is sequence. 
 

2.5.  DAC and differential voltage divider 

 DAC Click is the device utilized in this study to convert digital signals to analog. DAC Click is a 

12-bit digital-to-analog converter MCP4921 which is a product produced by Microelectronics. One of the 

characteristics of the DAC Click module is its capacity to produce extremely high precision with little noise. 
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This eliminates any steps in the signal output from the DAC Click, negating the need for a low-pass filter 

(LPF) circuit. DAC Click is a 12-bit digital-to-analog converter. It means, it has a 12-bit resolution and can 

output an analog output in a value range of 0-4095. The maximum voltage that can be given by DAC Click 

or the output voltage value when it is at 4,095 is 3.3 volts. Given that the DAC Click only has an output 

voltage range from 0 to 3.3 V, the first step in converting digital signals into analog is to add the greatest 

negative value to all other values to ensure that none of the signal values are negative. The next step is to 

multiply each ECG signal value by a scaling factor set by (6). 

 

𝑆𝑐𝑎𝑙𝑒 = 4,095/𝑚𝑎𝑥𝑉𝑎𝑙  (6) 

 

The signal's maximum value is represented by 𝑚𝑎𝑥𝑉𝑎𝑙. Therefore, the DAC values that will be output as 

voltage will be as described by (7). 

 

𝑑𝑎𝑐𝑉𝑎𝑙 = 𝑉𝑜 ∗ 𝑠𝑐𝑎𝑙𝑒  (7) 

 

A differential voltage divider circuit can be used to reduce the voltage. In this study, the output signal is 

converted to a differential signal by measuring the voltage difference between points 1 and 2 [26]. 

 

 

3. RESULTS  

Signal generation initially took place within the Mikromedia 5 for STM32 Capacitive platform 

using MikroC Pro for ARM. MikroC Pro for ARM was utilized after the entire signal generation system and 

variations for different signal types were successfully developed. This platform was chosen due to its robust 

integration with ARM-based microcontrollers and ability to handle complex signal processing tasks 

efficiently. By leveraging MikroC Pro's extensive libraries and user-friendly interface, the development 

process was streamlined, allowing for the creation of versatile and precise signal outputs.  

 

 3.1.  Signal generation 

The outcomes of the spectrum creation in the LF and HF frequencies brought on by RSA events and 

Mayer waves are depicted in Figure 2. In Figure 2(a), the x-axis represents frequency in Hz units, and the 

y-axis represents power. The figure shows that LF has a frequency of 0.1 Hz and HF has a frequency of 

0.25 Hz. This spectrum's generation was successful because it followed the methodology that was employed. 

The process of reflecting the signal comes next after this spectrum has been successfully created, as shown in 

Figure 2(b). 

The process of forming the RR tachogram is carried out by continuing the previous process. The 

signal resulting from mirroring in the previous stage is carried out by the IDFT process. However, it is 

important to first add a random phase before doing IDFT, the results are shown in Figure 3(a). Once 

successful, the IDFT procedure can be used. To make the range of RR interval values tolerable at this point, 

offset values must be included. The RR tachogram will oscillate around 0 seconds prior to adding the offset, 

thus an offset is carried out, which is the outcome of dividing the input heart rate by 60. The results of the RR 

tachogram after adding the offset value can be seen in Figure 3(b). 

 

 

  
(a) (b) 

 

Figure 2. ECG signal generation in frequency domain of (a) LF and HF spectrums and  

(b) mirroring signal result 
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(a) (b) 

 

Figure 3. IDFT process in (a) addition of random phases, real (blue), imagery (red) and 

(b) RR tachogram after offset (60 bpm) 

 

 

The ECG signal is formed using the dynamical model equations written in (2). The omega produced 

in the previous phase is utilized in this equation. In addition, the values of 𝑎𝑖, 𝑏𝑖, and 𝜃𝑖 for each wave is 

required in order to build the ECG signal's shape. Additionally, the fourth-order Runge-Kutta method, as 

given in (5), is used to integrate the differential equation in (2).  

In this section, one sample is selected from each class of abnormal ECG, and the associated tables 

and results are presented as depicted in Figure 4. The abnormality of hypertrophy in the ECG signal is shown 

in Figure 4(a) as left ventricular hypertrophy (LVH). In Figure 4(b), ECG is depicted as lateral myocardial 

infarction (LMI). In order to generate signals in different ECG formats, the method employed involves 

varying the ECG parameters listed in Table 2 to configure the desired signal patterns. The parameters in 

Table 2 have been derived from the modified original ECG signal parameters presented in Table 1. In  

Table 2, the values for time and 𝜃𝑖 remain unchanged, as the resultant ECG data will not exhibit any changes 

in the angular velocity of its trajectory. For the LVH data, the magnitude of the parameter 𝑎𝑖 in the T- and T+ 

segments have been inverted to negative, resulting in the inversion of the T signal morphology. In the LMI 

data, the 𝑎𝑖 values for the P, Q, R, and S segments have been adjusted to yield a smaller P wave morphology, 

a positive Q wave, a negative R wave, and a zero S wave to create ECG data resembling the LMI signal in 

Lead II. 

 

 

  
(a) (b) 

 

Figure 4. ECG synthetic (a) LVH on lead V5 and (b) LMI on lead V2 

 

 

Table 2. Parameters of LVH and LMI 

Index (i) 
LVH LMI 

P Q R S T- T+ P Q R S T- T+ 

Time (secs) -0.2√α -0.05α 0 0.05α 0.277√α 0.286√α -0.2√α -0.05α 0 0.05α 0.277√α 0.286√α 

𝜃𝑖 (radians) −
𝜋√𝛼

3
 −

𝜋√𝛼

12
 0 

𝜋𝛼

12
 

5𝜋√𝛼

9
− 

𝜋√𝛼

60
 

5𝜋√𝛼

9
 −

𝜋√𝛼

3
 −

𝜋√𝛼

12
 0 

𝜋𝛼

12
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3.2.  ECG signal on visual TFT 

The subsequent phase involves the transfer of all generated signals to the Mikromedia 5 for the 

STM32 Capacitive platform following their successful creation within the Delphi software. Programming of 

the Mikromedia 5 for STM32 Capacitive is achieved through MikroC Pro for ARM. The procedures align 

with the design process for ECG signal generation in software. Each output signal from every step is 

preconfigured to ensure that each stage yields the appropriate signal output. To facilitate the uploading of 

programs created in MikroC Pro for ARM into Mikromedia 5 for STM32 Capacitive, an additional tool 

known as CODEGRIP Suite is required. In this study, the user interface comprises 8 screens. The initial 

screen prompts the user to specify the heart rate value in beats per minute (bpm) and select the desired signal 

to be generated. The results of the signal generation on the visual TFT display are depicted in Figure 5(a).  

 

3.3.  USB UART Click 

USB UART is used in this study to transmit serial data from the resulting synthetic signal to the 

USART terminal. This serial signal data is being sent with the intention of being stored in a text file and used 

for additional purposes, one of which is signal testing with other programs. Numerous parameters, such as 

ComPort, Baud Rate, and others, need to be configured in order to use USB UART Click. The log is used to 

choose a file to be used as data storage to store serial data produced by synthetic signals. The data storage 

process can then be started by selecting start logging. 

 

3.4.  DAC Click 

The next step is to convert the digital signal into analog signal form. DAC Click was initialized on 

MikroC Pro for ARM and placed on Microbus 1 on the Mikromedia 5 Capacitive Shield. The digital signal 

data must then be transformed into an analog signal with a similar form after initialization. DAC Click is a 

12-bit digital-to-analog converter. This means it has a 12-bit resolution and can output analog output in the 

value range of 0 to 4,095. The maximum voltage that can be issued by DAC Click or the output voltage value 

when it is at 4,095 is 3.3 volts. With a high 12-bit resolution, DAC Click is able to issue a smooth signal. The 

output voltage's DAC must be set to a value range of 0 to 4,095 before converting the signal to analog form. 

The highest negative signal value is added to the signal first. The signal is then multiplied by the scale value 

that is produced by dividing 4,095 by the maximum signal value. 

 

3.5.  Differential voltage divider circuit 

The DAC Click signal will then be lowered in voltage using a differential voltage divider. The 

signal generation is shown in the condition of the Lateral MI signal on lead V2, which is shown in  

Figure 5(b). A change in signal amplitude has discernible implications. Reduction of resistance on R2 

corresponds to a decrease in the voltage of the output signal, accompanied by an increase in noise. 

Conversely, an increase in the resistance of R2 leads to a higher voltage on the output signal and a reduction 

in signal noise. The magnitude of this effect is susceptible to diverse noise sources, both internal, such as 

thermal noise, and external, such as electromagnetic interference emanating from electronic devices. Each 

resistor introduces thermal noise, and as resistance decreases within the circuit, current flow intensifies, 

contributing to elevated thermal noise, subsequently manifesting as increased noise on the oscilloscope. 

External noise factors, including electronic interference, further influence this behavior. 
 

 

  
(a) (b) 

 

Figure 5. Lateral signal MI (a) lead aVL on Mikromedia 5 and (b) lead V2 on DAC 
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3.6.  Quantitative validation  

Quantitative validation is conducted by comparing the desired heart rate values with the actual heart 

rate values. The actual heart rate values are calculated using the Pan-Tompkins method [1]. The heart rates, 

measured in beats per minute, are set from 40 to 140 in increments of 20. These values are then compared to 

those obtained through the Pan-Tompkins method. The comparative results are displayed in Table 3. The root 

mean square error (RMSE) is calculated for these values, yielding a result of 0.02557. This indicates that the 

produced heart rate values are very similar to the desired values. 

 

 

Table 3. Comparison between desired and actual heart rate 
Desired heart rate (BPM) Actual heart rate (BPM) 

60 59.88 

80 79.79 

100 99.74 
120 120 

140 139.64 

 

 

4. DISCUSSION 

This study introduces a tool for generating synthetic ECG signals, specifically encompassing five 

distinct classes: normal, hypertrophy, myocardial infarction, ST/T change, and conduction disturbance. The 

provision of these ECG signals holds significant value, catering to the essential research in ECG signal 

processing, which necessitates access to comprehensive datasets. The proposed tool offers users the 

flexibility to set their desired heart rate and select from these signal conditions, enabling the generation of a 

variety of signal types. Furthermore, the resulting signals will be presented on the visual TFT and are 

adaptable for utilization in both digital and analog formats on an oscilloscope. This tool serves as a valuable 

resource for educational purposes, research endeavors, and the provision of ECG signal datasets. 

Testing is carried out in stages, starting from testing the system for carrying out signal generation to 

testing the hardware used. In testing the signal generation system, the RSA spectrum and Mayer waves are 

first formed using the sum of the two Gaussian equations. The results issued are in accordance with the LF 

and HF frequencies, as shown in Figure 2(a). After that, mirroring is performed, the results of which are in 

Figure 2(b), and a random phase is added in the range 0-1 Hz, as shown in Figure 3(a). In this section, the 

signal is divided into two parts, namely real and imaginary. The results obtained are also in accordance with 

what should be. To convert the frequency domain into the time domain, the IDFT process is carried out and 

at this point, the RR tachogram has been formed, as can be seen in Figure 3(b). The RR tachogram test is 

carried out by varying the heart rate input. The result is that the greater the heart rate entered, the smaller the 

average RR interval, which means that the distance from R to R is also getting closer. After the RR 

tachogram is declared appropriate, it can proceed to the next stage, namely modeling the ECG trajectory with 

a dynamic model. At this stage, the appropriate parameter values are sought to determine the amplitude, 

width, and location of each wave phase for each type of signal. The results obtained were then compared with 

the recorded ECG signal on the reference used. One of the results of this modeling can be seen in Figure 5. 

To diversify the ECG forms, manipulation of the parameters 𝑎𝑖, 𝑏𝑖, and 𝜃𝑖 is carried out, each of which 

determines the magnitude of the peaks, the width (time duration) of each peak, and the angular velocity of the 

trajectory. By altering these parameters, a range of ECG signal shapes are produced, enabling the formation 

of diverse ECG signal types. 

The hardware used includes Mikromedia 5 for STM32 Capacitive, DAC Click, USB UART, 

CODEGRIP, and a differential voltage divider circuit. The entire system that has been formed is then 

programmed on Mikromedia 5 for STM32 Capacitive. The hardware was also tested in a number of stages. 

The TFT visual test is performed by creating eight screens and running the signal on the TFT. TFT visuals 

showed the signal without issue. Following that, USB UART is used to output the signal serial data. The 

signal data was correctly stored and transmitted successfully. The next step is to use DAC Click to convert 

digital signal data into analog. The output signal has good results since the DAC module utilized has low 

noise performance, eliminating the requirement for an additional circuit to smooth the signal. The output 

analog signal is observed using an oscilloscope.  

After observing, the limitation of this study is that output voltage decreases with decreasing 

resistance, and the resulting signal has more noise. On the other hand, as resistance increases, the output 

voltage rises, and the signal becomes more rounded. Under these conditions, the amplitude of the ECG signal 

cannot resemble the original amplitude because, at a voltage of 1 mV, the signal that appears on the 

oscilloscope is very small and has a lot of noise, and the signal loses its original waveform. However, for this 

situation, a differential voltage divider was used, thus the outcome is closer to a real electrocardiogram 
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signal. The proposed method is compared with several existing methods to illustrate its advantages over the 

others. These comparisons are presented in Table 4. 

 

 

Table 4. Comparison with other methods 
Name Method Result Limitation Accuracy of signals 

Zhu et al. [8] Machine learning with GAN Normal ECG Database needed RMSE 0.257 

Lee et al. [9] GAN with R-peak alignment V-lead ECG Database needed RMSE 0.25-0.35 
Thambawita 

et al. [11] 

WaveGAN 121.977 DeepFake normal 

ECG 

Database needed Accuracies from 

150.000 deep fakes 

81.6% (max) 
Hernandez-

Matamoros  

et al. [14] 

Bidirectional recurrent 

neural network 

Positive and negative time 

direction ECG 

Database needed Accuracies 

93.9% - 99.9% 

Quiroz-Juárez  

et al [15] 

Heterogeneous nonlinear 

oscillator. Reaction-

diffusion model spatially 

discretized, differential 

equation with time delays, 

and quasi-periodic motion 

Various ECG signal Complex parameter Not mentioned 

 

Quiroz-Juárez  

et al. [17] 

Two RLC linear oscillators Healthy synthetic ECG No parameter Not mentioned 

 
Thaurisingham 

[19] 

Time-varying chaotic 

sequence and enhanced 

logistic map 

Mean heart rate of ECG Limited to a healthy 

patient 

Not mentioned 

 

Bachi et al. [21] Simulator-based on a 

discrete-time Markov 

chain model 

ECG, primarily focuses on 

atrial fibrillation 

Limited to digital 

representation due to the 

complex involvement of 
multiple parameters 

Average fitting 

error 5.4% 

Evaristo et al. 

[22] 

Applied McSharry 

dynamic model with 
autoregressive model for 

RR tachograms 

ECG and RR tachogram The transition parameter 

is not adaptable 

Not mentioned 

 

Proposed 
Method 

Enhanced McSharry 
dynamic model 

Various ECG signals with 
flexible parameters, embedded 

using Mikromedia 5 for user 

interface, and provide digital-
analog data using DAC 

The amplitude of the 
ECG signal cannot 

resemble the original 

amplitude when below  
1 mV 

RMSE 0.02557 

 

 

As shown in Table 4, methods utilizing neural networks require a database, and the resulting ECG 

signals will inevitably follow the learning ECG signals derived from the database. This dependency makes it 

challenging to generate signals with morphologies different from those in the learning signals. In contrast, 

when compared to other methods that use dynamic equations to produce ECG data, the parameters of the 

proposed method are simpler and more flexible for generating various types of synthetic ECG data. Most 

validation methods in related works utilize qualitative approaches, emphasizing the similarity between the 

morphology of the generated signal and the desired signal. This reliance on qualitative assessment makes 

subjective comparison between the proposed method and existing methods challenging. Through quantitative 

comparison, it was found that the similarity between the desired signal and the generated signal using this 

method has a lower error rate compared to several other methods employing similar quantitative validation 

techniques. This indicates that the proposed method is more accurate in producing the desired signal. 

Additionally, this ECG data is stored in both digital and analog formats and embedded in Mikromedia 5, 

facilitating the ease of use of the device. This implies that the synthetic ECG model from this study may 

serve as a valuable tool for researchers and practitioners in electrocardiography. It enables the generation of 

abnormal ECG signals, aiding in algorithm development and evaluation, and potentially enhancing the 

understanding and diagnosis of heart conditions. 

 

 

5. CONCLUSION 

This study proposed a synthetic ECG generator, created using a dynamical model that can produce a 

12-lead signal under various ECG conditions. This model is generated using the parameters 𝑎𝑖, 𝑏𝑖, and 𝜃𝑖, 

each of which determines the magnitude of the peaks, the width (time duration) of each peak, and the angular 

velocity of the trajectory. Subsequently, these signals are implemented on visual TFT hardware to fulfill 

various requirements. The resulting data comprises both analog and digital ECG data. The research 

undertaken was assessed through qualitative and quantitative evaluation. The evaluation results indicate that 

the analog signal observed on the oscilloscope already replicates the waveform of the original signal. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 1620-1631 

1630 

However, it does not yet accurately mimic the actual voltage amplitude. Furthermore, for enhanced precision 

in the analog signal output, there is a desire to further align the amplitude of the analog signal with the 

intended amplitude of the ECG signal by utilizing surface mount device (SMD) resistors. SMD resistors 

exhibit high accuracy owing to their minimal tolerance in comparison to color-coded resistors. It can be 

deduced that the parameters primarily influencing the morphology of electrocardiogram signals are the 

parameters 𝑎𝑖, 𝑏𝑖, and 𝜃𝑖. Future research could explore optimizing these parameters to improve signal 

accuracy further and investigate other hardware solutions that could enhance signal fidelity. Additionally, the 

application of this synthetic ECG generator in clinical settings could be examined to determine its practicality 

and effectiveness in training medical professionals or in diagnostic scenarios. Such advancements could 

significantly contribute to the field of medical technology and practice. 
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