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 Administering incorrect insulin dosages to diabetic patients can be fatal, 

leading to severe health consequences. Insulin detection, in conjunction with 

blood glucose monitoring, can significantly enhance diagnostic accuracy. 

Electrochemical methods for insulin detection offer a low-cost and portable 

solution. This study presents an insulin concentration estimation system 

using a customized electrochemical potentiostat operating in real-time via 

Bluetooth low energy (BLE). Conventional electrochemical sensing, which 

relies on calibration curves to determine concentration, poses accuracy 

limitations in portable devices. To address this, we implement a multiple-

predictor approach that incorporates peak currents from multiple cycles of 

cyclic voltammetry responses and the electroactive surface area of a multi-

walled carbon nanotube (MWCNT-COOH) modified screen-printed sensor. 

This modified sensor enhances sensitivity compared to bare screen-printed 

carbon sensors, making it suitable for low-volume and portable applications. 

Through cross-validation, our method demonstrated strong performance, 

achieving a determination coefficient (R²) greater than 0.90 for all training 

dataset combinations and greater than 0.85 for all testing dataset 

combinations. Hypothesis testing further confirmed the statistical 

significance of the electroactive surface area (p=0.006) as predictor, 

indicating its meaningful contribution to concentration estimation. This 

approach improves portable detection performance, supporting the 

development of affordable and reliable personal insulin monitoring systems.  
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1. INTRODUCTION  

Insulin regulates blood glucose levels in the body. This hormone is a polypeptide secreted by the 

pancreas and consists of 21 amino acids in the A chain and 30 amino acids in the B chain [1]. Dysfunction of 

this hormone secretion can cause diabetes which is one of the most common noncommunicable diseases [2]. 

According to the International Diabetes Federation (IDF), an estimated 537 million people are affected by 

diabetes, which is projected to reach 643 million by 2030 and 783 million by 2045 [3]. Diabetes current 

treatment involves insulin dosing [4], and proper adjustments can prevent the risks of hypoglycemia and 

hyperglycemia-related complications [5]. Blood glucose levels can help estimate the amount of insulin 

required, but because exercise and diet can affect blood glucose levels, a more accurate diagnosis can be 

achieved with the addition of insulin detection [6], [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Analytical methods for insulin detection can be developed using immunoassays, chromatography, 

and optical techniques. These methods are very time-consuming, slow, and high-cost, and require the 

modification of insulin molecules with isotopic or fluorogenic labels [8]. Therefore, electrochemical methods 

commonly associated with inexpensive and small instruments, fast responses, and simple preparation [4] are 

more suitable for point-of-care testing (POCT). The electrochemical approach can be utilized because insulin 

contains amino acids, such as tyrosine, tryptophan, and cystine, which are electroactive species [7]. 

Several electrochemical techniques can be employed for insulin detection. For example, cyclic 

voltammetry (CV) technique where the voltage applied to the electrodes is linearly increased and then 

decreased back to the initial voltage. The current response from CV contains information about 

oxidation/reduction reactions occurring in the analyte. In several studies, it has been observed that an 

increase in CV peak current is related to insulin concentration variations [1], [8]–[10]. The fitting between 

these peaks and concentration forms a calibration curve, with the slope indicating the sensitivity of the 

measurement. Determining concentration through a calibration curve is simple and straightforward. 

However, this calibration curve is specific to a particular sensor and cannot be applied to other sensors with 

different sensitivities. Even the same sensor can produce different calibration slopes due to the degradation of 

the sensor's performance over time and with repeated cycles. Therefore, in this study, the concentration 

estimation system is improved using a multiple predictors approach. While the calibration curve method 

relies on a single predictor, specifically the peak current, the proposed method incorporates multiple 

predictors, involving the sensor's performance information, to improve the accuracy of concentration 

estimation. 

An instrument used to perform electrochemical techniques is commonly called a potentiostat. 

Commercially available potentiostats (benchtop instruments) provide a high resolution and can measure low 

currents with high precision and minimal noise. However, these potentiostats are expensive, large, heavy, and 

unsuitable for POCT applications [11], [12]. Although powerful for a wide range of applications, benchtop 

potentiostats are less suitable in resource-limited conditions, thus using customized, low-cost, and wireless 

potentiostats is more necessary. 

The development of low-cost, portable potentiostats has surged recently, particularly open-source 

designs [12]–[16], which facilitate easy replication and allow the researchers to modify for specific analysis 

techniques and target analytes without starting from scratch. Bluetooth low-energy (BLE) selected as a 

connectivity option, is an interesting approach that allows for portable and low-power devices that can be 

easily implemented in mobile devices (smartphones and tablets). Several studies using Bluetooth and mobile 

device user interfaces have chosen different types of microcontroller units, such as board ESP32 in eSTAT 

[17], Arduino Nano in Paqaristat [18], BLE chipset in KAUSTat [11], RFduino in UWED [12], and CC2541 

in BluChem [19]. Their designs succeeded in building customized potentiostats at affordable prices (<$100).  

Most low-cost and portable potentiostats have been validated using the ferricyanide/ferrocyanide 

redox couple [𝐹𝑒(𝐶𝑁)6]3−/4− as a standard solution, and their performance has been evaluated through 

cyclic voltammetry at various concentrations or scan rates. However, very few studies have reported 

evaluations on specific analytes, as most devices have been developed for general electrochemical purposes 

[11], [12], [17], [20], [21] where the analyte responses fall within the device’s current reading range. In this 

study, a low-cost and portable potentiostat specialized for insulin detection was designed. The estimation of 

the insulin concentration was then improved by incorporating information about the electrode surface area of 

the electrochemical sensor used. One advantage of developing customized potentiostat for insulin detection 

along with multi-predictors approach is to generally estimate concentration with different sensor’s 

performance in real-time which is not possible with the use of benchtop potentiostat and a simple calibration 

curve (single-predictor approach). 

 

 

2. METHOD  

2.1.  Sample preparation 

Trisodium citrate (Na3C6H5O7), monopotassium phosphate (KH2PO4), and dipotassium phosphate 

(K2HPO4) were purchased from Merck, Singapore. 100 mL phosphate buffered saline (PBS) solution (0.1 M 

and pH 7) was prepared by dissolving 0.339 grams KH2PO4 and 2.022 grams K2HPO4 in distilled water. PBS 

was chosen as the solvent because it mimics physiological conditions, maintaining a stable pH to prevent 

structural changes in insulin, which is pH-sensitive. This ensures consistency in electrochemical 

measurements and minimizes variability in sensor responses.  

Potassium ferricyanide K3[Fe(CN)6], isopropanol, sodium hydroxide (NaOH) and sulfuric acid 

(H2SO4) were purchased from Smart Lab. Potassium ferricyanide was chosen as a redox probe. This redox 

probe was prepared by dissolving 0.33 grams of potassium ferricyanide in 50 mL PBS to achieve a final 

concentration of 20 mM. 
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Standard stock solutions of insulin were prepared by diluting 60 insulin units (IU) in 25 ml PBS 

solution i.e. 7.20 µmol/L (1 µIU/mL equals to 6.0 pmol/L according to the American Diabetes Association 

conversion [22]). Concentration variations were prepared by diluting the stock to specified concentrations in 

PBS solution. These solutions may degrade over time due to adsorption onto container surfaces, particle 

contamination after long exposure to the surrounding air, and potential oxidation. Therefore, testing should 

be conducted immediately after sample preparation and within three days to ensure reliability. Extended 

storage might cause fine clumps of aggregation in the sample.  

 

2.2.  Apparatus 

2.2.1. Sensor 

Screen-printed carbon electrodes (SPCE) modified with carboxyl functionalized multiwalled carbon 

nanotubes (MWCNT-COOH) purchased from Metrohm DropSens were used as sensors. This type of SPCE 

(Ref. 110CNT DropSens) is a three-electrode system consisting of a surface-modified working electrode, 

carbon counter electrode, and silver reference electrode. Compared with the bare carbon electrode, the SPCE 

modified with MWCNT is expected to provide greater sensitivity and a broader linear range. This can be 

achieved owing to the capability of CNT to increase the surface area [4], decrease the overpotential of insulin 

[7], and minimize surface fouling [23]. The use of screen-printed electrode also tackles the problems arising 

from conventional electrodes, such as the necessity for a large amount of analyte for sensing analysis, 

difficulty in the cleaning process and modification of the larger electrode area [24]. 

 

2.2.2. Benchtop potentiostat 

Electrochemical techniques were conducted using a Corrtest Instruments benchtop potentiostat 

(CS310M model). This instrument supports scan rates from 0.001 mV/s to 10,000 V/s, with a minimum 

potential gain of 0.075 mV, a voltage range of ±10 V, a voltage resolution of 10 µV, and a current resolution 

of 1 pA. Measurements involved connecting the SPCE to the potentiostat via a DropSens connector from 

Metrohm. All analyses used cyclic voltammetry, with parameters determined by sweeping specific voltage 

ranges over the insulin sample and identifying the reaction peak. The voltage and current response ranges 

from these measurements determine the design of the proposed potentiostat. Previous studies [4], [25], [26] 

have shown a distinct oxidation peak of insulin around 0.7 V in cyclic voltammetry, with peak shifts 

influenced by material modification, sample concentration, and external conditions (pH and temperature). 

 

2.3.  Hardware design 

The general block diagram of the proposed device can be seen in Figure 1. This design was inspired 

by eSTAT, the low-cost portable potentiostat developed in [17]. While their work was intended to introduce 

basic electrochemistry for general purposes, this work was aimed for specific insulin detection. Therefore, 

the current reading range and its resolution was customized according to the prepared insulin concentration 

variations. The details of each block are as follows. 

 

 

 
 

Figure 1. General block diagram of the proposed device 

 

 

2.3.1. Microcontroller 

The ESP32 development Board DevKit V1 was used as the microcontroller part of the design. The 

board is already equipped with an ESP-WROOM-32 module with Bluetooth, Bluetooth low energy (BLE) 

and Wi-Fi on a single chip, built-in voltage regulator and micro-USB port which are useful for the proposed 

design. This board is also compatible with boards and libraries management in the Arduino IDE software. 

 

2.3.2. Analog/Digital converter 

The ESP32 features a built-in 12-bit analog-to-digital converter (ADC) and an 8-bit digital-to-

analog converter (DAC). For precise A/D conversion, especially for small currents, an external 16-bit 
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ADS1115 ADC was used with a programmable gain amplifier capable of boosting signals up to 16 times. 

This ADC offers a resolution as low as 0.125 mV within a 0-4.096 V range. The ESP32's 8-bit DAC 

resolution and signal-to-noise ratio are insufficient; therefore, pulse width modulation (PWM) is chosen for a 

compact and cost-effective design. The PWM signal is converted to a constant signal by a low-pass filter, 

achieving a DAC resolution that can exceed 8 bits depending on the PWM frequency configuration. 

 

2.3.3. Analog circuit 

Two key elements in a potentiostat are the control amplifier and the transimpedance amplifier 

(TIA). The control amplifier sets the electrode potential, whereas the TIA reads the current response and 

converts it to voltage. Additional components include level shifters, a buffer, and low pass filters. Two level 

shifters map the ESP32 voltage range (0 to 3.3 V) to the desired range (-1.5 to 1.5 V) and adjust the current 

reading voltage to the ADC working range (±4.096 V). A buffer bridges the TIA and shifter for maintaining 

the converted voltage. One low-pass filter converts the ESP32 PWM signal into a DC signal, and another 

filters high-frequency noise before the ADC reads the signal. The TL084 op-amps which have 4 channels, 

low input bias current (30 pA at room temperature), low input offset voltage (3 mV at room temperature), 

and high slew rate (20 V/μs) is chosen as amplifiers. The schematic of the analog part is shown in Figure 2. 

 

 

 
 

Figure 2. Schematic of the potentiostat’s analog circuit 

 

 

2.3.4. Power supply 

The power for all components can be provided from a power bank or 18650 Li-ion battery 

accompanied by an 18650-shield connected via a micro-USB port on board and then regulated with the 

board’s built-in 3.3 V power regulator. The negative voltage for operational amplifier is supplied by inverted 

voltage from ICL7660. Another negative voltage is supplied from LM2662 to provide more stable voltage. 

LM2662 has lower output impedance and higher output current than ICL7660 resulting in less voltage drop. 

 

2.4.  Estimation system 

In this work, cyclic voltammetry analysis was used in determination of insulin concentration. 

Several studies showed that there is an apparent positive correlation between oxidation peak current in CV 

responses and concentration of insulin [4], [25], [26]. The calibration curve obtained between the peak 

current value and concentration is commonly used to characterize sensor performance in terms of sensitivity 

and to determine the voltage value for chronoamperometry analysis. Higher sensitivity can be due to larger 

electroactive surface area, because more active sites for reaction can lead to a higher current response. 

Therefore, information regarding the electroactive area of the sensor was included with the expectation that 

this approach will be applicable to various sensors with different sensitivities.  
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To calculate the electroactive area, several CVs were conducted in 20 mM K3[Fe(CN)6] solution 

with various scan-rate and fit the linear regression of the peak current versus the square root of scan rate 

according to the Randles-Sevcik equation [27] given in (1). 

 

ip = 0.4463 (
𝑛3𝐹3

𝑅𝑇
)

1

2
𝐴𝐶0(𝐷0𝑣)1/2 (1) 

 

where 𝑖𝑝 is the measured peak current in voltammogram (A), 𝑛 is the number of electrons transferred in the 

reaction, 𝐹 is Faraday’s constant (96485 C/mol), 𝐶 is the molar concentration of the redox species (20 mM), 

𝐷 is the diffusion coefficient of the redox species (± 7.3 cm2/s), 𝑅 is the gas constant (8.3144 J/mol·K), 𝑇 is 

the temperature (K), 𝑣 is the scan rate (V/s) and 𝐴 is the electroactive surface area (cm2).  

Once the electroactive area of each sensor was calculated, CV data can be collected. CV 

measurements were carried out for each concentration by subtracting the peak responses from the baseline 

curve (response from a PBS sample in the absence of insulin). Each concentration experiment and its 

baseline were conducted using the same CV parameters, with voltage sweep from 0 to 0.8 V at a scan rate of 

100 mV/s. Before each cycle, the sensor was cleaned and activated through pretreatment, as described in [1], 

where five cycles of CV were performed, sweeping from -0.2 to 1.1 V in alkaline NaOH solution. All CV 

measurements were collected using individual screen-printed sensors with either a benchtop potentiostat or 

our customized potentiostat to build different datasets. The estimation system, developed by training these 

datasets, is further explained in supplementary information section 4. 

 

2.5.  Implementation system 

Our mobile application, developed on the MIT App Inventor platform, facilitates user-defined CV 

parameters such as scan rate, cycle number, and voltage range to be sent to the microcontroller via Bluetooth 

low energy (BLE). Sensor responses are transmitted to the application to be stored locally and forwarded to a 

server for processing concentration estimation. The process in the server is encapsulated in an API 

implemented with Flask framework which is accessible via HTTP. The mobile application can send CV 

responses by making a POST request while connected to the network. The server responds with the estimated 

concentration in JSON format that can be displayed in the app. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Cyclic voltammetry analysis from benchtop potentiostat 

From previous reports [4], [25], [26], CV responses of insulin indicate an irreversible reaction, as 

there is an apparent oxidation peak without a reduction peak. This reaction implies that successive scans 

result in a decreasing response current, as the material for the next reaction may be depleted. In Figure 3, the 

response of the subsequent scan with pretreatment using an alkaline solution remains quite stable and does 

not significantly decrease, whereas there is a reduction in response when no pretreatment is performed.  

Three cycles of CV ranging from 0 to 0.8 V for each variation of insulin concentration measurement 

were performed. The resulting voltammogram for the first cycles at several concentrations is shown in  

Figure 4(a), and the calibration curve for each cycle is displayed in Figure 4(b). The peaks fitted in  

Figure 4(b) were obtained by subtracting the baseline curve (PBS with the absence of insulin), thereby 

isolating the peaks attributable solely to the Faradaic reaction. 

 

 

 
 

Figure 3. CV response of PBS with and without pretreatment 
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(a) 

 
(b) 

 

Figure 4. Peak current responses from various concentrations (a) at first cycle, and (b) all three cycles after 

subtracted from baseline current in the form of curve calibration 

 

 

The fitting curve of the first cycle had the highest slope, indicating good sensitivity; however, it also 

had the highest standard error. Calculating electroactive area of each sensor also yielded different result 

depending on the sensor performance. The sensitivities for each cycle in each sensor, obtained by averaging 

three measurements, along with their corresponding electroactive areas, is listed in Table 1. Estimating 

concentration based solely on peak current will be unreliable due to variations in slopes among different 

sensors. Therefore, the aim in this study is to estimate concentration by incorporating information about the 

electroactive area, as the slope depends on it. 

The performance comparison of fitting the regression with different selections of variables as 

predictors can be seen in Table 2. The variables involved are the peak currents from the first, second, and 

third cycles, abbreviated as I1, I2, I3 respectively, and the electrode's electroactive area, The data used for 

fitting were collected from measurements taken from 4 different sensors. The low R2 value when using peak 

current from only one cycle as a predictor suggests that variations in concentration are inadequately 

explained by this predictor alone, especially given that peak currents differ across sensors. Incorporating peak 

current values from additional cycles and electroactive area significantly enhances R2, indicating that these 

new variables contribute to explaining concentration variations more effectively.  

 

 

Table 1. Sensitivity from each cycle and the corresponding electroactive surface area for each sensor 
Sensor 

number 

Sensitivity (10-1 µA/µM) Electroactive 

area (cm2) Cycle #1 Cycle #2 Cycle #3 

1 5.97 3.89 2.78 0.0284 

2 3.16 2.50 2.08 0.0257 
3 7.53 4.31 3.65 0.0222 

4 2.39 1.38 1.08 0.0128 

 

 

Table 2. Comparison of regression fitting performance across various selected predictors 
Predictor selection R2 MSE MAE 

I1 0.70 0.46 0.48 

I2 0.79 0.35 0.40 

I3 0.74 0.42 0.45 
I2, A 0.81 0.32 0.42 

I1, I2, A 0.84 0.28 0.37 

I2, I3, A 0.92 0.15 0.30 
I1, I2, I3, A 0.92 0.15 0.30 

 

 

3.2.  Hardware design 

The analog part of our portable potentiostat was initially simulated using LTspice. Subsequently, the 

printed circuit board (PCB) layout was created using EasyEDA Designer. Finally, all components were soldered 

onto the PCB along with microcontroller, ADC, and supply regulator circuit. The final assembled form can be 

seen in Figure 5. The details of the PCB layout can be seen in the supplementary information section 2. 
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Figure 5. Assembled form of our potentiostat 

 

 

3.2.1. Voltage output conversion 

The process to generate the potential between electrodes for CV analysis involves several steps. 

First, the ESP32 generates a PWM signal with a frequency of 50 kHz. This signal is then filtered by a simple 

first-order low-pass filter consisting of a 5.6 kΩ resistor and a 470 nF capacitor, resulting in an 

approximately 60.47 Hz cutoff frequency. The next step involves mapping the filtered signal range from 0 to 

3.3 V to the desired range. Figure 6 shows the plot of the resulting WE-RE potential with the corresponding 

10-bit PWM digital values. Beyond 850 PWM digital value, the voltage increase saturates because the  

op-amp output voltage cannot fully reach its supply voltage. Therefore, to maintain linearity, this value was 

not exceeded and the final output range became -2 to 1.5 V, with 4.4 mV resolution and a very high R2 value. 

This high value indicates that the voltage generated at the sensor will be highly linear with the PWM signal, 

which is controlled by the voltage parameter set by the user through the app interface. 

 

 

 
 

Figure 6. The generated WE-RE potential with corresponding PWM value 

 

 

3.2.2. Current input conversion 

ADS1115 can only read voltage, so the current from the sensor is converted to voltage by a 

transimpedance amplifier (TIA). To capture small currents in the order of several microamperes, a high 

resistor value for gain, specifically 200 kΩ, was used in our potentiostat. The resulting negative-to-positive 

voltage is then shifted using another level shifter to ensure the voltage falls within a positive range readable 

by the ADC. As depicted in Figure 2, there is an additional buffer which serves as a bridge between the TIA 

and the level shifter, ensuring that the voltage from the TIA remains unaffected by the level shifter’s circuit. 

Additionally, a low-pass filter was added before the ADC reading to attenuate unwanted noise. 

The ADC voltage must be calculated back into current units to obtain the I-V curve. Voltage 

scanning across test resistors allowed us to derive the conversion equation. According to Ohm’s law, the 

current through a resistor is equal to the voltage across it divided by its resistance. By fitting the ADC 

readings to calculated currents, the average of slopes and biases for different resistors are obtained. We can 

use the averaged values since the variations in slope and bias across different resistors and scan rates were 

small and can be neglected. These values were then used to get the conversion formula below: 
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𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (µ𝐴) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑙𝑜𝑝𝑒 × 𝐴𝐷𝐶 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 (𝑉) + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑖𝑎𝑠 (2) 

 

with an average slope of 10.10 and average bias of -16.84. With a resolution of 0.125 mV in ADC readings, 

the smallest estimated current converted from the ADC is 1.26 nA. 

 

3.3.  Hardware validation 

Figure 7 shows the CV response of 2.88 uM insulin measured using our custom potentiostat on one 

of the sensors used. The Savitzky-Golay (S-G) filter [28] was applied to smooth the CV response, with the 

aim to reduce noise without distorting the shape and height of the prominent peak. The principle of the S-G 

filter involves fitting a least squares polynomial to a set of data points defined by the window length and 

convolving it across the entire data. In this study, a second-order polynomial with a window length of 40 data 

points was employed. 

 

 

 
 

Figure 7. Raw and smoothed CV response of 2.88 uM insulin using Savitzky-Golay filter 

 

 

CV measurements were performed using our custom potentiostat with the same parameters as those 

of the benchtop potentiostat. Figure 8(a) shows the first cycle response for each concentration, and Figure 8(b) 

presents the calibration curves for each cycle. The highest sensitivity was observed in the first cycle data, 

despite having the lowest R² and highest standard error among the cycles. Figure 9 compares baseline-

subtracted responses for the same concentrations between the benchtop (dashed line) and our potentiostat 

(solid line). The shift in peak potential is likely due to sensor differences caused by cycle numbers, fouling, 

and changes in electrode surface properties. Nonetheless, results from our potentiostat agree with those from 

the benchtop device, as increased concentration correlates with increased anodic peak current. 

 

 

 
(a) 

 
(b) 

 

Figure 8. Peak current responses from various concentrations (a) at first cycle, and (b) all three cycles after 

subtracted from baseline current in the form of curve calibration 
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Figure 9. CV responses obtained from benchtop (dashed line) and from our potentiosat (solid line) after 

subtracting the baseline 

 

 

3.4.  Estimation system 

As previously mentioned, this study proposes an estimation of insulin concentration using predictors 

I2, I3, and A. The fitting process to get multiple linear regression parameters was done in the training dataset. 

The testing dataset was then used to validate the system. There are 7 datasets obtained from 7 different 

sensors that were conducted with benchtop potentiostat (4 datasets: DA1, DA2, DA3, and DA4) and our 

potentiostat (3 datasets: DB1, DB2, DB3, and DB4). Each dataset comprises insulin concentration data with 

its peak currents in each 3 cycles and the sensor’s electroactive area. Our proposed estimation system is 

basically a supervised machine learning regressor with concentration as its label, and selected predictors as 

its features. The R2 score, mean squared error (MSE) and mean absolute error (MAE) were used as metrics to 

evaluate the estimation of the single-predictor and our proposed method as listed in Table 3. 

 

 

Table 3. Performance evaluation of the estimation methods across different datasets 
Predictor 

(s) 
Data train Data test SA4 Data test SB1 Data test SB2 

R2 MSE MAE R2 MSE MAE R2 MSE MAE R2 MSE MAE 

I1 0.83 0.31 0.41 0.64 1.61 1.07 0.90 0.03 0.17 - 0.34 0.52 

I2, I3, A 0.92 0.15 0.28 0.92 0.25 0.41 0.87 0.09 0.19 0.86 0.04 0.19 

 

 

The first method is analogous to the single-predictor approach which uses calibration curve of peak 

current versus concentration. Here, the single-predictor system utilized the peak current from the first cycle 

(I1) to estimate the concentration. The R² value from the training dataset was relatively low owing to the high 

variance caused by different sensors, as illustrated in Figure 10. The regression parameters derived from this 

training data struggle to accurately estimate concentration if the dataset includes a sensor with significantly 

different performance. Among the three sets of test data, one exhibited a low R² value, one is high, and one is 

completely unexplainable by the trained model (negative R²). Thus, although one sensor may yield good 

estimation results, this does not apply to the other two sensors, indicating that using a single predictor does 

not yield consistent results across all testing sensors. 

The proposed method, on the other hand, demonstrated good results across all different data tests 

(R2 > 0.85). By incorporating peak current from two cycles and the electroactive area, the system was able to 

generalize well to several data tests. In terms of computational complexity, although the training of our 

method was more complex than that of the single-predictor method, the testing process remained simple 

because the system only needed to compute multiplications of parameters with predictor values. The testing 

complexity can be expressed as O(m), where m represents the number of predictors. In this scenario, our 

method presents no challenges for real-time applications because there is no significant difference in 

computation time compared to the single-predictor method. 

To further validate the results, cross-validation was conducted using the dataset combinations 

presented in Table 4. Given that some sensors exhibited similar electroactive area values, the selected 

training combinations were carefully chosen to ensure significant variation in electroactive area. As shown in 

the table, all combinations yielded testing results with an R² value exceeding 0.85, demonstrating robust 

performance.  
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Figure 10. Estimating insulin concentration with peak current of the first cycle (I1) as predictor 

 

 

Table 4. Cross validation performance in training and testing data 
Training  

dataset 
Testing 

dataset 

Training Testing 

R2 MSE MAE R2 MSE MAE 

D1, D2, D3, D5  D4, D6, D7 0.92 0.17 0.29 0.90 0.35 0.45 

D1, D2, D3, D6 D4, D5, D7 0.93 0.14 0.29 0.90 0.27 0.40 
D1, D2, D3, D7 D4, D5, D6 0.93 0.15 0.28 0.90 0.20 0.37 

D1, D2, D4, D5 D3, D6, D7 0.90 0.21 0.33 0.96 0.05 0.19 

D1, D2, D4, D6 D3, D5, D7 0.93 0.16 0.31 0.88 0.23 0.34 
D1, D2, D4, D7 D3, D5, D6 0.92 0.16 0.31 0.87 0.21 0.36 

D1, D2, D5, D6 D3, D4, D7 0.89 0.17 0.31 0.88 0.46 0.50 

D1, D2, D5, D7 D3, D4, D6 0.89 0.18 0.32 0.86 0.51 0.51 
D1, D2, D6, D7 D3, D4, D5 0.91 0.15 0.29 0.89 0.39 0.47 

 

 

To ensure that there was indeed a statistically significant relationship between each predictor and the 

concentration values, hypothesis testing was also conducted. The null hypothesis stated that the coefficient of 

each predictor is equal to 0, indicating that each predictor does not have a significant relationship with 

concentration. With a total of 75 data points and 3 predictors, the computed p-values for each predictor, I2, 

I3, and A, were 8.52×10-10, 3.68×10-7, and 0.006, respectively. All three p-values obtained were < 0.05, thus 

rejecting the null hypothesis. This means that with a 95% confidence level, all predictors have a statistically 

significant relationship with the concentration values. 

There are still not many studies reporting methods to determine concentration from CV response 

other than using calibration curves with single predictor. A novel analytical approach that does not rely on 

the typical calibration curve has been proposed by Chen and Chen [29]. In their study, they determined the 

concentration of pesticide using inverse calibration and high-order polynomial fitting. Their dataset had 20 

replicates in each concentration with pH ranging from 6.5 to 6.8. With these many replicates, even the peak 

current could not serve as useful detection index for concentration. Their idea was using area from CV curve 

as determination variable. The comparison of the resulting R2 can be seen in Table 5. They calculated R2 

from the fitting data, therefore we compared with the R2 from training. 

 

 

Table 5. Comparison of concentration estimation without conventional curve calibration 
Ref. Method Predictor R2 

[29] 3-order Polynomial  CV area between 0.5 and 0.9 V 0.78 
[29] 3-order Polynomial  CV area between 0.5 and 1.1 V 0.86 

This work Multiple linear regression I2, I3, and A > 0.90 

 

 

It is worth noting that the disadvantage of using electroactive area as predictor is that the necessity 

to re-calculate the surface area periodically due to its declining performance of sensor over time. For future 

research, alternative methods need to be explored that can predict the decline in surface area values based on 

the baseline CV shape. This approach will eliminate the need for continuous measurement of sensor surface 

area.   
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3.5.  Implementation system 

The use of a portable potentiostat offers a significant advantage over benchmark potentiostats: the 

ability to perform real-time concentration estimations. Portable potentiostats are fully customizable and can 

be easily connected to other devices, whereas benchtop potentiostats typically come with proprietary 

software designed for general electrochemical analysis. This software is often not easily configurable for 

specific tasks such as integration with an external API. In contrast, with our potentiostat, data migration is 

straightforward because the entire process can be fully customized to meet specific requirements. 

The MIT App Inventor platform was used to design the mobile application due to its simplicity and 

ease of visually creating an app using drag-and-drop programming. Because the complex computations are 

handled by a computer server, the application only requires basic features. Therefore, selecting this platform 

is a highly efficient approach. The application includes basic UI components such as labels, buttons, BLE 

connections, and a web component to call the API with HTTP requests. The user interface display of our 

mobile application is shown in Figure 11. More details on the block diagrams of the estimation system’s 

algorithm and implementation, as well as an explanation of the mobile app program, can be found in the 

Supplementary Information. 

 

 

 
 

Figure 11. Graphical user interface (GUI) of our insulin estimation mobile app 

 

 

4. CONCLUSION 

In summary, an insulin concentration estimation device was built using a wireless, low-cost, and 

portable potentiostat. CV analysis responses from our potentiostat aligned well with those of the benchtop 

device. Despite the unavoidable noise even after filtering, our portable potentiostat effectively captured 

microampere-level currents. The smallest voltage it can generate is 4.4 mV and the smallest current 

resolution it can calculate is 1.26 nA. To ensure robust concentration estimation across sensors with varying 

electroactive surface areas, the proposed method utilized multiple predictors: peak currents from the second 

and third cycles, and electrode surface area. This approach achieved R² values exceeding 0.85 across all three 

datasets using different sensors, surpassing the performance of the single predictor method that lacked 

consistency across all tests. The cross validation results also yielded R2 values more than 0.85 for all testing 

datasets and more than 0.90 for all training datasets. The hypothesis testing showed that the surface area as a 

predictor had a statistically significant relationship with concentration with a p-value of 0.006, proving that 

its relationship was not due to random chance. For future development, detecting even lower insulin 

concentrations, including analytes from those in body fluids, should be considered. Additionally, replacing 

the electroactive surface area as a predictor with baseline CV curve could eliminate the need for continuous 

electroactive area measurement, as the baseline curve characteristics may indirectly reflect the sensor’s 

declining performance over time, ensuring more practical and efficient usability.  
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