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 Thyroid dysfunction, comprising conditions such as hyperthyroidism and 

hypothyroidism, represents a substantial global health challenge, 

necessitating timely and precise diagnosis for effective therapeutic 

intervention and patient welfare. Conventional diagnostic modalities often 

involve invasive procedures, that could cause discomfort and inconvenience 

for individuals. The non-invasive techniques like diffuse reflectance 

spectroscopy (DRS) can offer a promising alternative. This study 

underscores the critical role of preprocessing methods in enhancing the 

accuracy of thyroid hormone functionality through a non-invasive approach. 

In the proposed study the spectral data acquired from the DRS setup are 

subjected to different preprocessing techniques to improve the efficacy of 

the prediction model. Thirty individuals with thyroid dysfunction were 

included in the study, and preprocessing methods such as baseline 

correction, multiplicative scatter correction (MSC), and standard normal 

variate (SNV), were systematically evaluated. The study highlights that SNV 

preprocessing outperformed other methods with a root mean square error 

(RMSE) of 0.005 and an R² of 0.99. In contrast, MSC resulted in an RMSE 

of 0.87 and an R² of 0.86, while baseline correction showed a RMSE of 0.84 

and an unusual R² of 1.09, indicating potential issues. SNV proved to be the 

most effective technique. 
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1. INTRODUCTION 

Pre-processing of spectral data is crucial for achieving reliable outcomes. Preprocessing methods are 

crucial for model performance, as spectra can be affected by various disturbances that impact measurement 

accuracy [1]–[4]. Major influences include measuring geometry-such as sample thickness, detector distance, 

contact pressure, and light source angle [5], [6]. Eliminating scattering effects from differently sized particles 

is also essential in preprocessing. This discussion will concentrate on the pre-processing of data obtained 

from diffuse reflectance spectroscopy for non-invasive thyroid hormone functioning assessment. 

Different spectroscopic methods encounter specific challenges. Near-infrared spectroscopy typically 

contends with consistent or linear shifts in the baseline due to scattered light, Raman spectroscopy often 

exhibits polynomial backgrounds from fluorescence, and mid-infrared spectra are affected by variations in 

sample thickness [7], [8]. The purpose of preprocessing is to remove these interferences while retaining the 

critical information within the spectrum. Diffuse reflectance spectroscopy (DRS) has proven to be a valuable 

https://creativecommons.org/licenses/by-sa/4.0/
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asset in medical diagnostics. The accurate interpretation of spectral data from DRS is highly dependent on 

efficient preprocessing techniques, such as multiplicative scatter correction (MSC), standard normal variate 

(SNV), and baseline correction. These methods are crucial for addressing baseline shifts and variations in 

diffuse reflectance spectra, ensuring that the data is properly normalized and ready for in-depth analysis. 

Multiplicative signal correction (MSC) addresses major effects by defining a reference spectrum 

usually the mean of the calibration data and the correcting spectra for baseline and multiplicative scattering 

effects, aligning with the Kubelka–Munk theory [9], [10]. SNV removes constant offset terms by subtracting 

the spectrum’s mean and scaling by its standard deviation, making it a popular method for its simplicity [11]. 

SNV and MSC often produce similar, interchangeable results [12], [13]. The importance of preprocessing in 

DRS: preprocessing techniques like MSC, SNV, and baseline correction play a fundamental role in 

enhancing the quality of spectral data. MSC is used to correct for scattering effects that can distort the 

spectra. It adjusts the spectra by aligning them to a reference spectrum, which minimizes variations caused by 

particle size, shape, and other physical properties of the sample. SNV is another technique that normalizes 

each spectrum by removing scatter effects and centering the data around zero. It is particularly useful for 

dealing with multiplicative interferences. Baseline correction addresses any shifts or drifts in the baseline of 

the spectra, which can result from instrument variations or sample inconsistencies. By correcting these 

baseline issues, the spectra become more comparable and reliable for further analysis [14]. 

The SNV technique was meticulously implemented to significantly diminish the multiplicative 

interference resulting from scatter. This approach involved subtracting the mean value of the entire spectrum, 

effectively removing constant offset terms. Additionally, it normalized the scale of all spectra by dividing 

each spectrum by the standard deviation of the complete spectrum [15]. MSC and SNV are frequently used 

interchangeably, producing results that are typically similar [16]. SNV is distinguished as a preferred 

preprocessing method, known for its straightforwardness and efficacy [17]. MSC, and SNV enhance the 

predictive capabilities of spectroscopic analyses. These preprocessing methods ensure that the spectral data 

used in predictive models are accurate and reliable, leading to better clinical outcomes [18]. DRS has proven 

useful in other medical areas. For instance, it has been employed in the diagnosis of breast lesions and the 

assessment of tumor margins during surgeries highlighting its ability to provide real-time feedback during 

surgical procedures [19]. In summary, diffuse reflectance spectroscopy, when coupled with appropriate 

preprocessing techniques like MSC, SNV, and baseline correction, holds significant promise in medical 

diagnostics, including thyroid assessment. 

 

 

2. METHOD 

2.1.   Dataset 

A randomized study was conducted during this examination to collect real-time spectrum signals. 

With folio number 8462/IEC/2022 serving as proof, the SRM Medical College Hospital and Research Center’s 

Ethical Committee granted the necessary ethical clearance for this study. Thirty volunteers (N=30) both male 

and female, aged eighteen and up, who have regular clinical visits to maintain thyroid hormone imbalance were 

included in the study. 

 

2.2.   Experimental setup of diffuse reflectance spectroscopy 

The experimental configuration for DRS is shown in Figure 1. It encompasses a Tungsten Halogen 

light source (LS-1) specifically tailored for the visible near-infrared (NIR) wavelength range, spanning from 

360 to 2,500 nm. Additionally, the setup features a spectrometer (USB 4000) equipped with interface 

capabilities and high-speed electronics. The USB 4000 showcases responsiveness within the wavelength range 

of 360 to 1,100 nm.  

Figure 2 shows the real-time DRS setup. This section outlines the detailed setup, components, and 

procedures involved in the DRS measurements. The primary light source used in the DRS setup is a Tungsten 

halogen lamp (LS-1). This light source is specifically chosen for its ability to emit a broad spectrum of light, 

covering both the visible and NIR wavelength ranges. The emission spectrum of the LS-1 spans from  

360 to 2,500 nm, making it ideal for capturing a wide range of optical properties from the tissue. A USB 

4000 spectrometer, equipped with high-speed electronics and a computer interface, is used to capture the 

diffusely reflected light from the tissue. The USB 4000 is responsive across a wavelength range of 360 to 

1,100 nm. This spectrometer is selected for its ability to provide high-resolution spectral data quickly and 

accurately. The spectral data collected by the USB 4000 are essential for analyzing how light interacts with 

the tissue, including absorption, scattering, and reflection properties, which are indicative of tissue 

composition and health. The light emitted from the Tungsten Halogen source is transmitted to the tissue 

through a specialized fiber optic reflectance probe (R400). The R400 probe is equipped with bifurcated 

optical fibers arranged in a specific configuration to optimize light delivery and collection. The probe 
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contains 7 optical fibers, each with an inner diameter of 400 micrometers. One fiber is positioned at the 

center, surrounded by six other fibers. The six surrounding fibers are responsible for delivering light to the 

tissue, while the central fiber collects the diffusely reflected light. 

 

 

 
 

Figure 1. DRS configuration 

 

 

 
 

Figure 2. Real-time DRS setup 

 

 

Accurate DRS measurements require careful calibration of the system to ensure that the spectral data 

accurately reflect the tissue's properties. Barium Sulphate (BaSO₄) is used as a reflectance standard. BaSO₄ is 

chosen for its high reflectance of approximately 99%, making it an ideal reference material. The light from 

the Tungsten halogen source is directed onto the BaSO₄ surface. The reflected light from the BaSO₄ is 

captured by the spectrometer to generate a reference spectrum. This reference spectrum serves as a 

benchmark against which tissue spectra are compared. 

To account for ambient light and electronic noise, a dark spectrum is acquired by blocking the light 

source. This step ensures that any non-signal-related components are removed from the spectral data, 

enhancing the accuracy of the subsequent tissue measurements. After acquiring the reference and dark 

spectra, the system is set to reflectance mode using the Spectra Suite software.  

In this study, participants were initially briefed on the non-invasive approach and safe utilization of 

near-infrared light (NIR) on the neck region. The measurement site and probe tip were cleansed with an alcohol-

based solution to ensure accurate spectral readings and participants were safe from infections. The fiber optic 

probe is positioned on the neck. The light from the Tungsten halogen source is transmitted through the probe 

and onto the tissue. The reflected light, carrying information about the tissue’s optical properties, is captured by 

the central fiber and transmitted back to the spectrometer. The Spectra Suite software is used to capture and 
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analyze spectral data in real time. The collected data are immediately transferred to a computer connected to the 

spectrometer, ensuring the integrity and accuracy of the measurements. 

 

2.3.  Spectral preprocessing 

Spectral preprocessing techniques are utilized mathematically to enhance spectral data. The objective 

is to rectify unwanted influences like unpredictable noise, variations in light path length, and light scattering 

due to diverse physical properties of samples or instrument-related factors. This stage is typically executed 

before employing multivariate modeling, aiming to mitigate, remove, or standardize these influences on the 

spectra, thereby significantly improving the reliability of the calibration model [20]. In this study, three 

spectral preprocessing approaches are comparatively explored: SNV, MSC, and baseline correction. 

 

2.3.1. Multiplicative scatter correction 

Multiplicative scatter correction (MSC) is a robust technique used to address scatter effects in 

spectral data, which arise due to variations in particle size, surface texture, and other physical properties of 

the sample. These variations can distort the light path and intensity, leading to inaccuracies in the data. MSC 

regresses each spectrum against a reference spectrum and corrects using the slope and intercept of the linear 

fit. This minimizes baseline offsets and multiplicative effects [21]. The process of MSC begins with 

calculating the mean spectrum 𝑋𝑚 from the entire calibration set. This mean spectrum acts as the reference 

spectrum. For each spectrum (𝑋𝑖), a linear regression is performed against the mean spectrum to determine 

the slope (𝐵𝑖) and intercept (𝐴𝑖). The regression model is expressed as (1), 

 

𝑋𝑖 = 𝐴𝑖 + 𝐵𝑖𝑋𝑚 + 𝐸𝑖 𝑋𝑖,   (1) 

 

where 𝐸𝑖 represents the error term that includes the actual information. Once the intercept and slope are 

determined, the corrected spectrum (𝑋𝑚𝑠𝑐,𝑖) is obtained using (2). 

 

(𝑋𝑚𝑠𝑐,𝑖) =
𝑋𝑖−𝐴𝑖

𝐵𝑖
, (2) 

 

This correction process removes both multiplicative and additive scatter effects, normalizing the spectra to 

the mean spectrum and effectively reducing baseline shifts and multiplicative variations. 

 

2.3.2. Standard normal variate 

Standard normal variate (SNV) is an additional preprocessing technique that normalizes each 

spectrum independently to eliminate multiplicative scatter effects and adjusts for baseline variations. SNV 

individually centers and scales each spectrum by subtracting the mean and dividing by the standard deviation. 

This corrects additive and multiplicative effects [22]. The SNV process involves calculating the mean (𝐿𝑖̅̅ ̅̅ ) 

and standard deviation (𝜎𝑖) for each spectrum (𝐿𝑖). The mean is calculated as (3), 

 

𝐿�̅�=
1

𝑛
∑ 𝐿𝑖𝑗,
𝑛
𝑗=1   (3) 

 

and the standard deviation is calculated as (4), 

 

𝜎𝑖 = √
1

𝑛−1
∑ (𝐿𝑖𝑗 − �̅�𝑖)

2
 𝑛

𝑗=1 ,  (4) 

 

where n is the number of data points in the spectrum. Each data point in the spectrum is then standardized 

using (5). 

 

 𝑆𝑖 =
𝐿𝑖𝑗−�̅�𝑖

 𝜎𝑖
,  (5) 

 

This transformation results in spectra that have zero mean and unit variance, which reduces the influence of 

scatter and enhances the spectral features. By making the spectra independent of the original scale and 

sample set characteristics, SNV ensures that the data is more consistent and easier to interpret. 

 

2.3.3. Baseline correction 

Baseline correction is a vital preprocessing method in spectroscopy that significantly enhances the 

quality and precision of data analysis. It is necessary to eliminate spectral artifacts that may result from 
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factors such as electronic interference, insufficient digital filtering, or incomplete digital sampling [23]. 

Baseline correction is a preprocessing technique used to remove baseline drifts and background noise from 

spectral data. These baseline drifts can be caused by instrument instability, environmental changes, or sample 

inconsistencies, and can obscure the spectral features of interest. The process of baseline correction starts with 

identifying the baseline of the spectrum using an appropriate method, such as polynomial fitting, moving 

average, or other baseline fitting algorithms. The determined baseline is subsequently subtracted from the 

original spectrum to derive the corrected spectrum, represented as (6), 

 

 𝐿𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐿𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝐿𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑥). (6) 

 

here, 𝐿𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the original spectrum, and 𝐿𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑is the spectrum after baseline correction. This 

correction process ensures that the spectral features related to the chemical composition are not obscured by 

baseline variations, leading to more accurate spectral analysis. 

 

2.4.  Performance-metrics 

R-squared (𝑅²) and root mean square error (RMSE) are the most used performance metrics for 

evaluating the accuracy of predictive models in spectroscopic analysis. 𝑅² indicates the proportion of 

variability in the dependent variable that can be explained by the independent variables, whereas RMSE 

measures the average size of the prediction errors in the same units as the dependent variable [24]. 𝑅² is 

determined by squaring the correlation between the predicted and observed values, with a value of 1 

representing an ideal fit. Table 1 shows the evaluation metrics with description. The choice of spectral 

preprocessing technique can significantly impact these metrics showing superior performance in certain 

applications [25]. 

 

 

Table 1. Evaluation metric table 
S.NO Metric Formula Description 

1 R2 
𝑅2 = 1 −

∑(𝑦𝑖 − 𝑦�̂�)
2

∑(𝑦𝑖 − �̅�)2
 

where 𝑦𝑖 is the actual value, 𝑦�̂� is the predicted value, and �̅� is 

the mean of the actual value. 
 

2 RMSE 

𝑅𝑀𝑆𝐸 = √
∑(𝑦𝑖 − �̂�)2

𝑛
 

where 𝑦𝑖 is the actual value, 𝑦�̂� is the predicted value and n is the 

number of samples 

 

 

3. RESULT AND DISCUSSION 

The spectral data acquired through diffuse reflectance spectroscopy contains nonlinearities that can 

impact the accuracy of predictive models. To address this issue, three preprocessing techniques were applied to 

the data: SNV, MSC, and Baseline Correction. The raw spectral data plot for 30 participants with thyroid 

dysfunction is presented in Figure 3(a). From the figure it is inferred that, around 700 to 950 nm, the 

reflectance intensity remains relatively stable and low. Beyond 950 nm, there is an increase in noise and 

variability in the reflectance intensity among participants. Some spikes and abrupt changes in intensity are 

observed around 1,000 nm, which may indicate increased sensitivity or variability in that region. The 

relatively stable reflectance intensity between 700 and 950 nm suggests that the participants’ spectral 

responses are consistent in this region. This stability is often desirable in spectral analysis as it can indicate a 

uniform response to the light across participants. 

Figure 3(b) shows the spectral plot of SNV preprocessing, which normalizes the distribution across the 

wavelength range. In the SNV process, the data are mean-centered and scaled by their standard deviation, 

resulting in spectra centered around zero with uniform variance. This normalization helps to reduce multiplicative 

effects, enhancing the comparability and interpretability of the spectral data. The SNV preprocessed plot 

demonstrates a standardized representation, minimizing baseline shifts and scaling inconsistencies.  

Figure 3(c) displays the spectral plot after baseline correction using Savitzky-Golay filtering. This 

technique successfully eliminates baseline irregularities, smoothing the spectral baseline for a more consistent 

and stabilized data representation. The corrected plot reveals enhanced clarity of spectral features, as unwanted 

fluctuations and distortions are mitigated. This plot highlights the effectiveness of the baseline correction in 

improving the quality and interpretability of spectral data. Figure 3(d) presents the spectral plot after MSC 

preprocessing. MSC effectively addresses scattering effects, resulting in a more uniform spectrum across the 

entire wavelength range. By reducing the impact of scattering, this normalization process enhances the 

comparability and interpretability of the spectral information. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure 3. Preprocessed spectral plots (a) raw spectral data plot of 30 participants, (b) SNV,  

(c) baseline correction, and (d) MSC 
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The proposed preprocessing techniques were statistically analyzed based on the performance metrics 

as shown in Table 2, it is clear that SNV preprocessing approach significantly outperforms the other methods in 

terms of model accuracy and reliability. SNV resulted in an RMSE of 0.005 and an 𝑅² of 0.99. This highlights 

SNV’s superior ability to normalize the spectral data, effectively mitigating multiplicative effects. In contrast, 

MSC shows an RMSE of 0.87 and an 𝑅2 of 0.86. While MSC reduces scatter effects and improves the 

uniformity of the spectrum, it still exhibits a relatively high error margin and explains only 86 percent of the 

variance, making it less reliable compared to SNV. The higher RMSE indicates more significant errors in the 

predictions, suggesting that while MSC is beneficial, it does not achieve the same level of precision as SNV. 

Baseline correction using Savitzky-Golay filtering presents an RMSE of 0.84 and an R² of 1.09. 

Although the RMSE is slightly lower than MSC, the 𝑅² value exceeding 1 is unusual and points to potential 

overfitting or anomalies in the model’s evaluation process. This could imply that while baseline correction 

effectively smooths the spectral data, it might introduce artifacts or inconsistencies, thus affecting the overall 

model reliability and interpretability. 

 

 

Table 2. Evaluation-metric of preprocessing technique 
Preprocessing techniques 𝑅2 RMSE 

MSC 0.86 0.87 

SNV 0.99 0.005 

Baseline correction 1.09 0.84 

 

 

4. CONCLUSION 

The study signifies the importance of preprocessing in spectroscopic analysis. In the proposed study, 

the selection of efficient preprocessing techniques to obtain improved model accuracy has been evaluated. 

The study involved various preprocessing techniques such as SNV, MSC and baseline correction out of 

which SNV outperformed as the most robust technique, significantly improving the clarity, comparability, 

and interpretability of spectral data, thereby enhancing diagnostic accuracy for thyroid dysfunction. While 

MSC and baseline correction have their merits, they do not match the performance of SNV in this context. 

The findings emphasize the necessity for meticulous selection and application of preprocessing techniques to 

ensure high-quality spectral data, ultimately leading to more accurate non-invasive diagnostics and better 

patient outcomes. 
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