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 Greenhouse cultivation is one of the main methods for improving 

agricultural yield and quality. With the world needing more and more 

production, improving greenhouses using innovative technology becomes a 

must. These high-tech, aka, smart greenhouses depend much on the accuracy 

and availability of sensor data to perform at their best. In challenging 

situations such as sensor malfunctions or data gaps, utilizing historical data 

to predict microclimate parameters within the greenhouse is essential for 

maintaining optimal growing conditions and effective sustainable resource 

management control. In this work, and by employing a synthesis technique 

across various time series models, we forecast internal temperature and 

humidity, the two main parameters for a greenhouse, by incorporating 

diverse characteristics as input into a customized forecasting model. The 

selected architecture integrates deep learning and nonlinear learning models, 

specifically long short-term memory (LSTM) and light gradient boosting 

machine (LightGBM) as an ensemble approach, providing a comprehensive 

framework for time-series prediction, evaluated through mean absolute error 

(MAE), root mean square error (RMSE), and coefficient of determination 

(R²) metrics. With a focus on improving accuracy in anticipating 

environmental changes, we have achieved high precision in predicting 

temperature (98.45%) and humidity (99.61%). 
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1. INTRODUCTION 

Greenhouses are vital for sustainable agriculture and food security, providing a controlled 

environment for year-round crop production, optimizing resource use, and increasing agricultural output. As 

climate change and rising food demand create new challenges, adopting smart greenhouses becomes crucial 

for ensuring a reliable food supply. An in-depth study of greenhouse dynamics shows that the delicate 

balance of microclimate factors significantly influences plant growth and resource utilization [1]. 

Consequently, enhancing the accuracy in predicting internal climate conditions, particularly temperature and 

humidity, as they are pivotal factors [2], is essential due to their complex and nonlinear fluctuations that can 

be impacted by external environmental factors [3]. To address these issues, especially when failures in 

request or sensor malfunctions may compromise data input, implementing sophisticated smart systems within 

greenhouses is necessary to analyze and adjust these parameters [4] dynamically. 

https://creativecommons.org/licenses/by-sa/4.0/
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Diverse methodologies, including mechanistic models, time series analysis, and machine learning 

(ML) techniques, have been employed to improve efficient and accurate smart agricultural systems [2]. 

Among these, artificial neural network models have gained prominence. Specifically, multi-layer perceptrons 

(MLPs) in [5]–[9] display accuracies of 96%, 97.7%, 99.9%, 99.9%, and a root mean square error (RMSE) of 

3.7 °C, respectively. Additionally, the LightGBMRegressor in [10] and [11] emerged as a standout model, 

achieving a remarkable precision of mean absolute error (MAE) by 1.485 °C, and an accuracy of 98% in 

temperature predictions, respectively. 

The recent trend toward employing deep learning (DL) techniques for time series predictions [7], 

[12] has demonstrated significant potential. Models like gated recurrent units (GRU) in [3] outperformed 

traditional ML methods by achieving an average accuracy of 91% in predicting temperature, even with 

limited meteorological data. Furthermore, the study [13] evaluates various DL models in forecasting 

temperature where the long short-term memory (LSTM) model yielded precision rates between 95% and 

99%. This work underscores the importance of model selection and time intervals for accurate climate 

predictions. Tawfeek et al. [14] proposes an adaptive one-dimensional convolutional neural network (CNN) 

with an exactness of 97.56%. 

Models predictive has been successfully implemented to emulate greenhouse functionality with 

methods like the Mamdani fuzzy inference system in [15], enhancing the tracking of internal parameters. 

Additionally, the constrained model predictive strategy discrete or combined in [16] and [17] has effectively 

managed indoor temperatures through simulations. While hybrid approaches combining fuzzy logic and 

GRU in [18] have achieved an RMSE of 0.292. 

Recent studies invest in heterogeneous ensemble learning methods that can significantly improve 

time-series data predictions while minimizing noise-related errors. The study [19] utilizing ensemble 

techniques among seven regression models achieved, where the best-performing models are selected and 

combined, an impressive accuracy of 0.96 in predicting indoor humidity. The findings in [20] indicated that 

all hybrid resampling models outperformed the linear regression (LR) model. Additionally, the paper [21] 

focuses on using advanced supervised learning techniques, specifically extreme gradient boosting (XGBoost) 

and recurrent neural networks (RNN) combined with LSTM. The LSTM-RNN model yielded the best results 

during the summer season, achieving a precision of 99.94%. El Alaoui et al. [22] conducted a comparison of 

four MLs including bagging and boosting trees methods against computational fluid dynamics (CFD) models 

for predicting indoor temperature and humidity where the ML models excel well with 98% accuracy. 

This work addresses the critical need for accurate forecasting of influential microclimate 

parameters, which are vital for informed decision-making and proactive measures against future scenarios. 

Our proposed methodology employs the ensemble technique that integrates the strengths of models within a 

carefully structured framework to boost predictive accuracy. By thoroughly examining the interrelationships 

of microclimate parameters and incorporating diverse time-series features, we enhance the effectiveness of 

our predictive models. The remainder of this article is structured as follows: Section 2 details our 

methodology, including data preprocessing, model development, and evaluation metrics. Section 3 presents 

the results, analysis, and discussion. Finally, section 4 summarizes our findings and suggests potential 

applications and future research directions. 

 

 

2. METHOD 

Introducing artificial intelligence (AI) as a solution to analyze meteorological features offers a 

promising approach to advancing agricultural practices. Through AI integration, we aim to develop a 

dynamic control system that utilizes real-time data from various sensors within the greenhouse. As illustrated 

in Figure 1, our main strategy involves incorporating AI models to refine learning methodologies. The 

approach integrates ensemble models that combine the strengths of both bagging and stacking techniques. In 

this framework, the base models, which form the bagging ensemble, are trained on various subsets of the 

data. This strategy helps to mitigate overfitting and enhances the model's ability to generalize to new data. 

The predictions resulting from these base models are then used to train a second model, known as the meta-

model. The meta-model learns to synthesize the predictions from the base models to produce a final and more 

accurate prediction [19], [22]. 

Applying this ensemble approach can greatly enhance the precision of greenhouse microclimate 

predictions. To achieve this aim, we will test a range of ML and DL models, to analyze and predict the 

complex data present in greenhouse environments [7], [12]. A thorough comparative study of these models 

will be essential to identify the most effective option for microclimate forecasting. These models exhibit 

diverse strengths and capabilities in handling such data, ranging from traditional ML techniques like support 

vector machines (SVM) to more advanced DL architectures such as CNNs and LSTMs. Furthermore, we 

emphasize the importance of time series prediction, which enables us to incorporate temporal dynamics into 
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our analysis. This means that the mode considers not only current environmental conditions but also how 

those conditions change over time. 

By incorporating bagging and stacking into the learning architecture for greenhouse microclimate 

predictions, we can significantly enhance the robustness and accuracy of the forecasting model by leveraging 

the diversity of multiple models trained on different subsets of the data. The initial data structuring involves a 

lag approach to facilitate transformation. Subsequently, rolling mean and standard deviation calculations are 

applied with diverse window sizes, a common practice in time-series data analysis [11], [23]. Both measures 

offer valuable insights into the distribution and variability of the data. The next step includes partitioning the 

dataset into training and testing sets, dedicating 80% of the available data for model training, and reserving 

the remaining 20% for testing model performance. 

 

 

 
 

Figure 1. The proposed architecture 

 

 

2.1.  Data collection 

To achieve our goal of enhancing accuracy by building the greatest predictive model, we must first 

deal with the data aspect. We initiate this process by gathering a dataset containing measurements of various 

microclimate-related characteristics obtained from Kaggle. This dataset includes measurements at 10-minute 

intervals spanning from March 3rd, 2021, to July 3rd, 2021. Table 1 provides an enumeration and description 

of the columns comprising this dataset. 

The dataset contains 17,542 records, primarily consisting of float64 data types, except for the 

timestamp field “created”, which is in DateTime format. It encompasses eight variables related to 

meteorological measurements both inside and outside the greenhouse, with varying degrees of missing data. 

Detailed statistical information about the dataset, excluding the timestamp, is provided in Table 2. 

 

 

Table 1. Dataset columns enumeration and description 
Number Column Description Unit 

1 greenhous_temperature_celsius The inside temperature Celsius 

2 greenhouse_humidity_percentage The inside humidity % 

3 greenhouse_illuminance_lux The inside illuminance lux 
4 online_temperature_celsius The outside online temperature  Celsius 

5 online_humidity_percentage The outside online humidity % 

6 greenhouse_total_volatile_organic_compounds_ppb The inside total volatile organic compounds ppb 
7 greenhouse_equivalent_co2_ppm The inside equivalent CO2 ppm 

8 Created The timestamp of when the record was created date/time 

 

 

Table 2. Statistical analysis of the dataset 
Columns Mean Std min max 

Humidity 53.126 13.125 15.314 8.720e+01 

Temperature 25.619 13.082 -4.120 7.757e+01 

illuminance_lux 3654.316 5833.280 0.000 3.649e+04 
online_temperature 11.039 6.702 -4.900 3.230e+01 

online_humidity 73.818 17.852 18.000 1.000e+02 

total_vol_org_comp 972.689 1052.417 0.000 1.311e+04 

equivalent_co2_ppm 1214.514 1230.192 0.000 1.811e+04 
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2.2.  Data preprocessing and engineering 

A fundamental step in data analysis is understanding the integrity of data. To do this, we cleaned the 

dataset by handling missing values. Identifying these missing values is crucial as they can significantly 

impact our analyses and results. In our case for handling missing data in our air quality dataset, we have 

delved into “Quadratic interpolation”. Quadratic interpolation is a technique that estimates missing values by 

fitting a quadratic function to the neighboring data points. This approach is valuable when the data exhibits 

nonlinear patterns. Figure 2 exemplifies the treatment of the humidity percentage data. Figure 2(a) shows the 

humidity percentage before any process and Figure 2(b) illustrates the handling of missing values after. The 

time series within our dataset is characterized by a frequency of 1.0, a key attribute that offers vital insights 

into the temporal intervals between each recorded data point.  

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Evolution of humidity percentage over time before and after correction (a) original humidity 

percentage representation and (b) projected data after quadratic interpolation application. 

 

 

Figure 3 depicts the evolution over time of temperature and humidity. The temporal progression is 

showcased in Figure 3(a), while Figure 3(b) highlights a segment of three days. To untangle the complex 

interactions among various parameters and identify the key input combinations that significantly influence 

modeling results, rigorous importance on correlation analysis is essential [2], [20]. We have chosen to utilize 

the simple yet powerful Pearson's correlation coefficient 𝑟, defined as (1), between 𝑥 and 𝑦 [19]: 
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𝑟 = 𝛴ᵢ((𝑥ᵢ − 𝑚𝑒𝑎𝑛(𝑥))(𝑦ᵢ − 𝑚𝑒𝑎𝑛(𝑦))) (√𝛴ᵢ(𝑥ᵢ − 𝑚𝑒𝑎𝑛(𝑥))² √𝛴ᵢ(𝑦ᵢ − 𝑚𝑒𝑎𝑛(𝑦))²)⁻¹  (1) 

 

 
 

  
(a) (b) 

 

Figure 3. Example of data showing the evolution of temperature and humidity over time (a) temporal 

progression of temperature and humidity and (b) three-day segment high-lighting temperature and humidity 

 

 

This strategic approach ensures that the model is built on a foundation of well-understood 

relationships between variables. In our modeling process, we adopted a selection criterion centered around 

negative correlation coefficients upper than 0.50, as shown in Figure 4. The method involved singling out 

variables that displayed the most pronounced negative correlation coefficients among all input variables. This 

led to the identification of four key input combinations resumed in Table 3. 

 

 

 
 

Figure 4. Correlation analysis 

 

 

Table 3. The four combinations of inputs were selected 
N° Combination Correlation To predict 

1 Temperature, Humidity -0.93 Temperature 

2 Online temperature, Humidity -0.66 Humidity 

3 Online humidity, Temperature -0.54 Temperature 

4 Illuminance, Humidity -0.59 Humidity 
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After identifying all combinations, the next step is reshaping these time series datasets into a 

supervised learning problem that relies on employing a sliding window methodology [24], [25]. In the chosen 

transformation, we utilize the value from the preceding time step (𝑡 − 1) and the current time value (𝑡) to 

predict the value at the time step (𝑡 + 1), with a window width (also known as lag or sliding method) set to 

one. The four input combinations involve information from both previous times (i.e., data at 𝑡 − 1) and 

current times (i.e., data at 𝑡) to forecast the greenhouse temperature or humidity at time 𝑡 + 1. The primary 

goal is to predict temperature or humidity, resulting in three input features and one output value for 

prediction in each training pattern. In Table 4, an example of the pair tuple (temperature and humidity) likely 

demonstrates how are utilized together to forecast temperature values. 

The proposal advocates for a comprehensive approach to time series tasks, advice on the integration 

of external attributes, and the application of internal feature engineering methodologies, underscoring their 

inherent benefits. This strategic framework involves the incorporation of key features, notably lag values of 

numerical attributes [23]. These statistical attributes, encompassing metrics such as mean, rolling, standard 

deviation, month, week, day, hour, minute, and day of the week, offer valuable insights into the broader 

trends of environmental factors across the temporal spectrum. Moreover, they play a pivotal role in 

counteracting the impact of outliers during the model training phase [11]. We utilize three sets of lagged 

values, representing data from the previous day, a 7-day retrospective, and a 30-day retrospective, to serve as 

proxies for capturing metrics from the last week and last month. This incorporation of lagged values as 

statistical features aims to capture temporal dependencies and historical patterns, empowering the model with 

the ability to leverage past information for improved accuracy in time series analysis. As a result, we have, 

for each combination, a total of twenty-eight inputs for each pair tuple.  

 

 

Table 4. Data lagged with a window width of one 
Humidity (t-1) Temperature (t-1) Humidity (t) Temperature (t+1) 

68.055576 13.223257 68.271154 13.1496152 

68.271154 13.149615 68.402229 13.0943393 
68.402229 13.094339 68.483559 12.9893954 

68.483559 12.989395 68.556920 12.9019275 

68.556920 12.901927 68.746014 12.8791106 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Comparative analysis of forecasting models 

To find the optimal approaches for temperature and humidity prediction, and during the selection of 

the performant model, we employed a diverse range of models such as CNN-LSTM, LSTM, SVM-RBF, 

Prophet, LightGBM, and XGBoost on training the dataset based on specific input combinations. Our primary 

objective is to evaluate each model's performance by a synthesis analysis. The evaluation metrics is crucial 

and is informed by the searcher in the literature. Given the regression nature of our problem, we have opted 

for mean absolute error (MAE), root mean squared error (RMSE), and R-squared (R2) metrics. These metrics 

are commonly used in similar studies and provide a comprehensive assessment of model performance.  

Table 5 provides a summary of the results obtained during the test phases for all models. The 

distinction between the LSTM and LSTM Series lies in the sequence of features taken as inputs (name). 

Figure 5 illustrates the performance of ML and DL models across various prediction combinations.  

Figure 5(a) illustrates ML models in temperature prediction, while Figure 5(b) shows DL models in humidity 

prediction for the first combination. For the second combination, Figure 5(c) displays the performance of ML 

models for humidity prediction, and Figure 5(d) depicts DL models for the same task. The third combination 

features Figures 5(e) and 5(f), which represent ML and DL models, respectively, for temperature prediction. 

Finally, Figure 5(g) illustrates the accuracy of ML models in humidity prediction using the fourth 

combination, whereas Figure 5(h) demonstrates the accuracy of DL models. These representations 

demonstrate and provide a comprehensive view of the strengths of both ML and DL approaches across 

different forecasting combinations. 

The four ML models demonstrated exceptional proficiency in capturing intricate data relationships, 

yielding impressive results in prediction. Prophet, a time series forecasting model developed by Facebook, 

showcased consistent performance in all metrics. However, the results were subpar with the data combination 

3, yielding an MAE of 6.860, an RMSE of 11.349, and an R² of 19.6%. This outcome negatively impacts our 

selection of this model compared to the earlier results from other models. In contrast, the comparison of 

LightGBM with XGBoost and SVM-RBF favors the LightGBM model due to its consistent reduction in 

MAE and RMSE values across temperature and humidity predictions. This consistent improvement, also in 

the work of [11] and [21], underscores LightGBM's reliability and effectiveness in capturing the underlying 

data patterns, making it the preferred choice for temperature and humidity forecasting tasks. 
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Table 5. Models’ performance summary for temperature and humidity prediction 
      Indicators 

 
     Model 

Combination 1 to predict 

temperature 

Combination 2 to predict 

humidity 

Combination 3 to predict 

temperature 

Combination 4 to 

predict humidity 
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

LightGBM 0.875 1.888 0.977 0.614 0.972 0.993 1.054 2.314 0.966 0.527 0.853 0.994 

XGBoost 1.012 2.158 0.971 0.741 1.157 0.991 1.216 2.626 0.957 0.596 0.937 0.994 
SVM-RBF 0.918 1.859 0.978 0.819 1.409 0.986 0.846 1.771 0.980 0.702 1.242 0.989 

Prophet 0.479 0.871 0.995 0.469 0.752 0.996 6.860 11.349 0.196 0.463 0.760 0.996 

LSTM 1.366 1.850 0.979 0.973 1.210 0.989 - - - 0.925 1.254 0.989 
LSTM Series 0.021 0.032 0.966 0.036 0.049 0.917 0.023 0.029 0.972 0.020 0.027 0.974 

CNN-LSTM  0.033 0.041 0.944 0.031 0.042 0.939 0.019 0.036 0.956 0.031 0.037 0.951 

 

 

  
(a)  (b)  

  
(c)  (d)  

  
(e)  (f)  

  
(g)  (h)  

 

Figure 5. Visual representation of (a) models’ performance in temperature, (b) models’ performance in 

humidity prediction, (c) the performance of ML models for humidity prediction, (d) the performance of DL 

models for humidity prediction, (e) the performance of ML models for temperature prediction, (f) the 

performance of DL models for temperature prediction, (g) the accuracy of ML models in humidity prediction 

using the fourth combination, and (h) the accuracy of DL models 
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The LSTM model demonstrated weak predictive abilities, especially if we refer to the results of the 

previously mentioned models, as indicated by its MAE, RMSE, and R2 scores across different combinations. 

Similar to the Prophet model, for the third combination, the LSTM also undershoots with negative values for 

R2. To address this, we explored an alternative approach utilizing a specialized implementation of LSTM 

tailored for time series analysis, dubbed LSTM Series. We reorganized the datasets while preserving the 

sequential order of observations. Here, the data from the previous one hundred forty-four (144) records, 

representing one day, will be utilized to predict temperature or humidity readings for the following ten-

minute interval [26]. The details of the LSTM Series model proposed are given in Table 6. The model 

yielded compelling results with notable reductions in MAE and RMSE if compared against the prior results 

of all models and the CNN-LSTM which falls short of being the optimal solution.  

 

 

Table 6. The layers and parameters of the LSTM series 
Layer number Layer type Output shape Parameters 

1 LSTM (None, 144, 128) 80384 

2 LeakyReLU (None, 144, 128) 0 

3 LSTM (None, 144, 128) 131584 

4 LeakyReLU (None, 144, 128) 0 
5 Dropout (None, 144, 128) 0 

6 LSTM (None, 64) 49408 
7 Dropout (None, 64) 0 

8 Dense (None, 1) 65 

Total parameters: 261,441 

 

 

The analysis underlines the diverse strengths of each model in forecasting temperature and 

humidity, highlighting the critical importance of selecting models that align with our ensemble models. 

A thorough evaluation by metrics, alongside a comparison with other published works presented in Table 7, 

demonstrates the effectiveness of our preliminary results. This stage of comparative analysis is essential for 

identifying the most suitable forecasting models based on their predictive performance. 

 

 

Table 7. Comparison of model’s performance: literature results vs. our findings 
Model Reference Metric Prediction 

Temperature Humidity 

LightGBM [10] R2 0.980 - 
[19] 

[11] 

- 0.962 

MAE 1.485 - 

Our  R2/MAE 0.977 / 0.875 0.994 
XGBoost [11] MAE 1.626 - 

Our 1.012 - 

SVM [10] R2 0.977 - 
[22] 0.984 0.984 

[3] 0.790 - 
Our 0.980 0.989 

LSTM [3] R2 0.810 - 

[13] 0.950 0.940 
Our 0.972 0.974 

 

 

Notably, the revised LSTM model outperformed other models, closely aligning with the trend line 

of actual values, particularly evident in its superior MAE and RMSE metrics. Given the exemplary 

performance of this model, we aim to further enhance R2 metrics. To achieve this, we propose leveraging our 

ensemble approach by integrating nonlinear learning and deep-learning methodologies, combining the 

strengths of LSTM and LightGBM. Their demonstrated accuracy positions them as prime candidates for 

enhancing predictive performance in time-series forecasting. 

 

3.2.  Implementing the proposed architectural design 

The architecture designed for our study involves four LSTM models with distinct combinations 

from the dataset as inputs, while the predictions of each LSTM model are fed into LightGBM as inputs. We 

have opted to leverage the robust gradient-boosting framework of LightGBM with the parameters presented 

in Table 8. This choice is driven by LightGBM's effectiveness in regression tasks and time series forecasting, 

aligning well with the nature of the models we are employing. The adopted process of selecting and 

preparing inputs for the LightGBM algorithm can be summarized as follows:  
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Algorithm 1. The meta-model (LightGBM) 

Inputs: Prediction values resulting from the base models.  

Outputs: Predictions of temperature and humidity values. 

1. Store the R² accuracy values of the four base models 

2. Identify all base models with R² values greater than 0.9 

3. Retrieve predictions from all selected base models 

4. Reshape the predicted values from the time series into a supervised learning format 

5. The reshaped predicted values and corresponding real values as inputs for the meta-model 

6. Optimize the hyperparameters of the model using the best parameter setting 

7. Train the meta-model on the combined dataset 

8. Test the model on a separate test set to evaluate its performance 

9. Evaluate the results, including metrics such as R², MAE, RMSE. 

 

 

Table 8. Parameters used to train the LightGBM 
Parameters Values  

Number of boosting iterations to build 454 

Learning rate 0.182 

Maximum depth of each tree 4.570 
Minimum sum of instance weight needed in a child node 6.975 

Subsample 0.782 

Columns sample by tree 0.995 

 

 

The constructed architecture demonstrated significant improvements in regression tasks and time 

series forecasting, as indicated in Table 9. Notably, the model achieved an impressive accuracy of 98.45% in 

predicting temperature, with a minimal MAE of 0.7556 and RMSE of 1.2841. Similarly, for humidity 

prediction, the model achieved an accuracy of 99.61%, with a remarkable reduction in MAE and RMSE to 

0.4383 and 0.6951, respectively. 
 

 

Table 9. Forecasting performance metrics of the LSTM-LightGBM 
                Indicators  

    Model  

Predict temperature Predict humidity 

MAE RMSE R2 MAE RMSE R2 

LSTM-LightGBM model 0.7556 1.2841 0.9845 0.4383 0.6951 0.9961 

 

 

The visual representation in Figure 6 serves similarly as a compelling improvement of the 

effectiveness of integrating LSTM and LightGBM within the model architecture. Figure 6(a) showcases the 

accuracy of temperature prediction, whereas Figure 6(b) highlights the performance in humidity prediction. 

The graph vividly portrays the enhanced predictive capabilities and success of this approach, also the 

comparison with the previous in Table 10 and the precision R2 visually depicted in Figure 7 reinforces the 

notion that the fusion of these algorithms leads to improved model efficiency and accuracy. 
 

 

  
(a) (b) 

 

Figure 6. Performance visualization of LSTM and LightGBM implementation (a) temperature forecasting 

accuracy comparison and (b) humidity forecasting accuracy comparison 
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Table 10. Comparison of diverse ensemble models' performance with our LSTM-LightGBM using R2 metric 
Reference Ensemble model Prediction 

Temperature Humidity 

[22] Bagging trees 0.970 0.984 

Boosting trees 0.983 0.985 

[19] Stacking heterogeneous - 0.9651 
Our LSTM-LightGBM 0.9845 0.9961 

Our LSTM 0.9720 0.9740 

Our LightGBM 0.9770 0.9940 

 

 

 

Figure 7. The values of R2 in predicting temperature and humidity by different ensemble models  

 

 

It is important to emphasize that comparing our results with previous studies is crucial for refining 

our strategies and outcomes. However, these studies utilize various datasets, which can lead to differing 

results if we apply our approach. This variability can present challenges in preprocessing and feature 

engineering when evaluating the performance of other predictive models against our proposed model. 

Moreover, the content of these datasets varies, as they categorize specific meteorological parameters relevant 

to their respective regions. Access to these datasets, whether controlled or open, can also pose difficulties in 

obtaining the best comparisons. For instance, open-access datasets often require formal requests, which can 

be time-consuming. Additionally, most of these datasets are not publicly available. 

The approach aims to predict vital microclimate parameters, specifically temperature and humidity, 

using only two key parameters enhanced by additional features grouped in various combinations. In cases of 

sensor malfunctions or inaccurate actual temperature readings, for example, our model predicts this value 

based on humidity data-whether from the interior, exterior, or both. This flexibility allows for accurate 

temperature and humidity forecasting using different parameter combinations. The accuracy of findings 

derived from an ensemble approach highlights the effectiveness of AI in optimizing greenhouse 

microclimates to boost production efficiency. With the precision needed and the implementation of an  

AI-driven model that dynamically controls meteorological parameters, farmers can trust the model’s 

recommendations to enhance yields while conserving energy, especially during adverse conditions that 

threaten crops. 

 

 

4. CONCLUSION 

Our findings in this work highlight the enhanced performance achieved through the proposed 

ensemble approach, which significantly boosts overall prediction accuracy, aligning with numerous studies 

documented in the literature. To further refine our model, we conducted experiments utilizing various 

algorithms and innovative strategies for data utilization. By experimenting with different combinations of 

newly introduced and effective variables, we aimed to augment the dataset and improve predictive accuracy. 

This collaborative strategy not only sets the stage for advanced predictive modeling techniques but also 

enhances decision-making processes, opening up possibilities for optimizing resource management, 

improving crop yield, and promoting sustainable practices in greenhouse farming. Furthermore, our future 

works will also focus on exploring models that can be edge-implemented, also known as TinyML or EdgeAI, 

to limit the need to centralize decision-making in smart greenhouses that are placed far from the servers. 

Another point is our hope to take our work from the experimentation phase to the real-life greenhouse 

implementation. 
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