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 This study examines the complicated logistics optimization issue known as 

the vehicle routing problem for multi-product and multi-suppliers  

(VRP-MPMS), which deals with the effective routing of a fleet of vehicles 

to convey numerous items from multiple suppliers to a set of consumers. In 

this problem, products from various suppliers need to be delivered to 

different customers while considering vehicle capacity constraints, time 

windows, and minimizing transportation costs. We propose a hybrid 
approach that combines a generalized reduced gradient method to identify 

feasible regions with a feasible neighborhood search to achieve optimal or 

near-optimal solutions. The aim of the exact method is to get the region of 

feasible solution. Then we explore the region using feasible neighborhood 
search, to get an integer feasible optimal (suboptimal) solution. 

Computational experiments demonstrate that our model and method 

effectively reduce transportation costs while satisfying vehicle capacity 

constraints and relaxed time windows. Our findings provide a viable solution 
for improving logistics operations in real-world scenarios. 
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1. INTRODUCTION 

As a result of its significance to the economy, the field of logistics and supply chain management 

has been advancing consistently and quickly in recent years. Since the majority of businesses view supply 

chain management as a function that enhances their market, it plays a crucial part in their strategic decision-

making. Due to the constantly increasing demand from customers, businesses need efficient delivery services 

without sacrificing the standard of their customer care in order to remain profitable. In order to fulfil these 

increasing expectations, logistics operations have been under continual pressure to become more effective. 

As a result, for effective management, businesses must design the routes for their vehicles so as to save 

expenses while still satisfying customer requirements. The vehicle routing problem (VRP) is the name used 

in operations research to describe this method of route determining [1], [2]. 

Mathematically, the VRP can be described as following: Let 𝐺 = (𝑉, 𝐴) be a directed graph, where 

𝑉 = {0, . . . , 𝑛} is a set of nodes, with vertex 0 representing the depot and the remaining vertices representing 

customers. 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈  𝑉, 𝑖 ≠  𝑗} represents arcs in the graph. The depot was home to a fleet of m 

identical vehicles, each having a 𝑄 capacity. The fleet size, 𝑚 is a decision variable that needs to be 

determined. Each customer 𝑖 has a request 𝑞𝑖, which is a non-negative quantity representing their demand. 

Additionally, there is a cost matrix 𝑐𝑖𝑗 defined for each arc (𝑖, 𝑗) in 𝐴, which represents the cost (or distance) 
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associated with traveling from node 𝑖 to node 𝑗. It is important to note that in this formulation, assume that 

distances, travel costs, and times are measured equivalent.  

The VRP’s goal is to create 𝑚 vehicle routes that adhere to the following restrictions: The depot  

(node 0) is where every route must begin and terminate. Each customer’s demand must be satisfied by having 

exactly one vehicle visit them. Each route’s overall demand cannot be more than the vehicle’s capacity. 

Each route's total length (or price) must not go beyond a certain threshold, 𝐿. The objective is to minimize the 

overall transportation cost or route length while fulfilling the aforementioned limitations by optimizing the 

assignment of clients to vehicles and the order in which they are visited. In the symmetric case, that is, when 

𝑐𝑖𝑗 = 𝑐𝑗𝑖 for all (𝑖, 𝑗) ∈ 𝐴, the solution search is usually done using the set of edges, 𝐸 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝐼 < 𝑗}. 

The VRP was first developed by Dantzig and Ramser [3] to address the problem of efficiently 

routing a fleet of fuel delivery trucks from a bulk terminal to numerous service outlets supplied by the 

terminal. This marked the origin of VRP as a mathematical optimization problem. Over the years, VRP has 

gained significant attention in the research community, and various extensions and variations of the problem 

have been explored. Further literature on the VRP and its different attributes can be referred to the following 

sources for a comprehensive survey and overview [4]–[6]. These references provide valuable insights into the 

VRP and its evolution, including different problem variants and solution approaches that have been 

developed over time. 

Research on the VRP continues to be a dynamic field due to both unresolved theoretical challenges 

and the ongoing influx of practical logistics data from supply chain operations. One of the most extensively 

studied variants of the VRP is with time windows (VRPTW), which was first introduced by Schrage [7]. In 

the VRPTW, specific time constraints are placed on customer visits, known as time windows. Time window 

constraints in VRPTW can be driven by various factors, such as product constraints (e.g., product usable 

dates), production limits, or requirements imposed by customers based on their inventory policies. In addition 

to these time windows for customer visits, there are also travel times between all customers and between 

customers and the depot. The main objectives in VRPTW are to plan vehicle routes that satisfy the following 

criteria: Each vehicle must serve all assigned customers within their respective time windows, Vehicles are 

permitted to arrive at the location of a client before the time window begins, but they must wait if they do so 

before the consumer is prepared to be served. Vehicles are not permitted to arrive late or after the time 

window ends for any customer. The primary goal is to minimize the total transportation cost, taking into 

account both travel distances and time-related penalties for violating the time windows. VRPTW is 

particularly relevant in situations where time-sensitive deliveries are crucial, and it poses additional 

challenges compared to the classic VRP. Due to its practical importance and complexity, VRPTW has been 

the subject of extensive research and has led to the development of various solution methods and algorithms 

to find optimal or near-optimal solutions in real-world logistics and transportation applications [8]–[10]. 

The VRPTW is indeed a challenging problem due to its combinatorial nature, which makes it 

difficult to find optimal solutions, especially for larger instance [11]. Kohl [12] established that VRPTW is an 

NP-hard problem, indicating that solving it to optimality becomes computationally infeasible as the problem 

size increases. As a result, researchers have turned to heuristic and metaheuristic approaches to find good-

quality solutions within reasonable computational time. Various metaheuristics and heuristics have been 

proposed to tackle VRPTW, aiming to strike a balance between solution quality and computational 

efficiency. Some of these approaches include those developed by researchers such as [13]–[16]. Efficient 

metaheuristics, in particular, often rely on local search-based refinement procedures and focus much of their 

computational effort on exploring neighborhoods of solutions. This approach can significantly improve the 

quality of solutions found, but it also places an emphasis on evaluating the impact of potential solution 

changes efficiently. However, it's worth noting that even finding a feasible solution for VRPTW, without 

necessarily aiming for optimality, remains computationally challenging. As mentioned, Savelsbergh [17] 

demonstrated that determining a feasible solution for VRPTW is also an NP-hard problem. This highlights 

the inherent complexity of the problem and underscores the need for sophisticated optimization techniques to 

address it effectively, especially when dealing with real-world instances with practical constraints and larger 

numbers of customers or subscribers [18]. 

In order to develop early solutions for the VRPTW, it is frequently used intermediate solutions with 

flexible time frame limitations. However, as mentioned, it may not always be feasible or optimal for 

guaranteeing availability of multiple initial solutions. Several relaxation schemes have been explored in 

previous research to handle time window constraints more effectively: Penalties for Late Arrivals: One 

common relaxation method involves assigning penalties for late arrivals at customer locations. This allows 

for some flexibility in meeting time windows while penalizing deviations from the desired schedule. This 

approach was discussed by Sun et al. [19]. Early and Late Arrivals: Another relaxation scheme considers 

both early and late arrivals at customer sites. It allows vehicles to arrive before or after the time window but 

incurs penalties accordingly. This approach was studied by Ibaraki et al. [20]. Refund Penalties on Time: [21] 
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proposed a refund penalty approach, where vehicles could earn refunds for arriving earlier than required 

while being penalized for arriving late. This approach encourages early arrivals but still respects time 

window constraints. 

While these relaxation schemes offer some flexibility in finding initial solutions, they can also 

introduce complexity in evaluating potential solution changes and may lead to larger search spaces. 

Therefore, your research aims to establish a new relaxation scheme that balances feasibility and solution 

quality more effectively. Developing innovative relaxation strategies that strike the right balance between 

feasibility and solution quality is essential in the context of VRPTW optimization, as it can lead to improved 

initial solutions and ultimately enhance the performance of heuristic and metaheuristic algorithms for solving 

this challenging problem. 

The influence of real-world traffic conditions on vehicle routing is indeed a significant challenge in 

practical supply chain operations. Traditional VRP models typically assume constant travel times, which can 

lead to suboptimal or infeasible solutions when faced with the uncertainties and variability caused by traffic 

congestion. To address this issue, researchers have introduced more advanced variants of the problem that 

consider time-dependent travel times. One such variant is the time-dependent vehicle routing problem with 

time windows (TDVRPTW), which was introduced by Kumar and Panneerselvam [22]. In the TDVRPTW, 

the modeling explicitly takes into account the variability in travel times due to traffic conditions. This is 

achieved by considering time-dependent travel times for each arc or route segment, which can change based 

on factors like traffic congestion, time of day, and road conditions. To solve the TDVRPTW, various 

approaches have been explored [23]–[25], including mixed integer programming (MIP) formulations [26], 

which provide a mathematical representation of the problem with time-dependent constraints. Additionally, 

metaheuristic algorithms like genetic algorithms have been applied to find good-quality solutions within 

reasonable computational timeframes. By considering the impact of traffic conditions, the TDVRPTW 

provides a more realistic representation of routing challenges faced by vehicles in supply chain operations. It 

allows for the optimization of routes that are better adapted to real-world situations, ultimately improving the 

efficiency and reliability of logistics and transportation processes. 

Engaging with multiple suppliers in a TDVRPTW introduces significant complexity. Coordinating 

visits to suppliers with diverse time windows, ensuring timely pickups, and adhering to delivery periods add 

challenges. Additionally, accounting for real-time traffic conditions is crucial. To address these complexities, 

optimization approaches involve dynamic scheduling, advanced mathematical models, heuristic algorithms, 

and real-time data integration to find efficient solutions that consider the dynamic nature of supply chain 

operations and traffic conditions, enhancing the reliability and efficiency of multi-supplier logistics and 

transportation processes. 

Experiments involving 56 instances from the Solomon benchmark [27], each comprising 

100 customer nodes, 25 vehicles with a 200-unit capacity each, have yielded results only comparable to 

existing algorithms. Consequently, this study aims to propose an innovative discrete optimization model as 

an alternative approach for addressing the TDVRPTW in multi-supplier settings. Additionally, the research 

will develop a metaheuristic algorithm, with initial solutions generated through time window relaxation, to 

tackle this complex problem effectively. 

 

 

2. MATERIAL AND METHODS 

2.1.   Formation of vehicle routes 

A route 𝑟 ∈ 𝑅 will still be feasible when the route starts at a different time instant. Thus, for each 

route 𝑟, it is noticed that there are multiple routes 𝑟𝑡, one for each instant 𝑡 of possible departures. The 

duration of route 𝑟, 𝜎𝑟, will be different for different instances of departure, due to the waiting time for 

serving different customers. 

Suppose (𝑖1, … , 𝑖|𝑁𝑟|) is the order of clients visited on route 𝑟 ∈ 𝑅. The initial possible instant of 

time to end route 𝑟 is 𝑇𝑟
′− = 𝜃𝑖|𝑁𝑟|

𝑟 + 𝑠𝑖|𝑁𝑟|
+ 𝑠𝑖|𝑁𝑟|0

, where 𝜃𝑖|𝑁𝑟|

𝑟  is the first instance to begin provision on the 

latter client 𝑖|𝑁𝑟| in route 𝑟. Then calculate 𝑇𝑟
′−, taking into account that 𝜃𝑖ℎ

𝑟 = max{𝜃𝑖ℎ−1

𝑟 + 𝑠𝑖ℎ−1
+

𝑡𝑖ℎ−1𝑖ℎ
, 𝑎𝑖ℎ

} for ℎ ∈ {1, … , |𝑁𝑟|} where 𝜃𝑖0

𝑟 = 𝑎0. This means that starting route 𝑟 at any instance 𝑡𝑟
∗ ≤ 𝑇𝑟

− =

𝜃𝑖1

𝑟 − 𝑡0𝑖1
 causing it to stop instantly 𝑇𝑟

′−. Thus, such a route is subject by routes 𝑟 starting at the 𝑇𝑟
− instance, 

so they do not need to be concerned.   

In the same way, last ending time instantaneous on route 𝑟 is 𝑇𝑟
′+ = 𝜙𝑖|𝑁𝑟|

𝑟 + 𝑠𝑖|𝑁𝑟|
+ 𝑡𝑖|𝑁𝑟|0

, where 

𝜙𝑖|𝑁𝑟|

𝑟  is the instance to begin provision on the client 𝑖|𝑁𝑟|| in course 𝑟 and 𝜙𝑖ℎ

𝑟 = min{𝜙𝑖ℎ−1

𝑟 + 𝑠𝑖ℎ−1
+

𝑡𝑖ℎ−1𝑖ℎ
, 𝑏𝑖ℎ

}, for ℎ ∈ {1, … , |𝑁𝑟|}with 𝜙𝑖0

𝑟 = 𝑏0. It concludes that starting route 𝑟 in time after 𝑇𝑟
+ = 𝜙𝑖1

𝑟 − 𝑡0𝑖1
 

results in that route being infeasible, because it ignores at minimum of one client time windows. 
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It should be noted that path 𝑟 starts in time [𝑇𝑟
−, 𝑇𝑟

+], the waiting time is reduced hence it would 

have minimized duration. As an example, each 𝑟 ∈ 𝑅, the time [𝑇𝑟
−, 𝑇𝑟

+], is calculated. Thus, feasible routes 

quantity will equal ∑ ⌈
𝑇𝑟

+−𝑇𝑟
−+1

𝑈
⌉𝑟∈𝑅 , where 𝑈 is the unit of time assumed to equal 1. 

 

2.2.  Discrete model development 

Incorporating multi-supplier constraints adds significant complexity to the model. In this research, a 

directed acyclic graph 𝛱 = (𝛥, 𝜓) is used to represent each working day. The vertices, 𝛥 = {0,1, … , 𝑊}, 
signifies distinct time of 0 to the day's length, while 𝛹 = {(𝑢, 𝑣)^𝑟: 0 ≤ 𝑢 < 𝑣 ≤ 𝑊, 𝑢 ∈ [𝑇_𝑟^−, 𝑇_𝑟^+ ], 
𝑣 = 𝑢 + 𝜎_𝑟, 𝑟 ∈ 𝑅} ∪ {(𝑢, 𝑣)^0: 0 ≤ 𝑢 < 𝑣 ≤ 𝑊, 𝑣 = 𝑢 + 1} represents arcs. These arcs (unit arcs) refer to 

possible routes or waiting times. The vehicle's time at the depot inside a working day is shown by the waiting 

time arc. It is essential to note that in the model under development, the start time of each route 𝑟 ∈ 𝑅 is 

adjusted to the previous time instant 𝛽 ∑ 𝑠𝑖𝑖∈𝑁𝑟
 to account for the vehicle's loading time. 

Considering the factors mentioned above, the model being developed will have constraints that grow 

polynomially with the size of 𝑊, the number of variables that also grow polynomial with 𝑊 size, and 

possible routes will be bounded by a constant determined by the parameter 𝑡𝑚𝑎𝑥. As a result, a collection of 

pseudo-polynomial variables and constraints will be present in the final model. 

The 𝜆𝑢𝑣
𝑟  variables will serve as a representation of flow in arc (𝑢, 𝑣)𝑟, indicating the number of 

vehicles traveling along route 𝑟, departing from stations at time instant 𝑢, arries at time 𝑣 within workday. 

The 𝑧 variable will represent the graph total flow and interpreted as the node 𝑊 return flow back to node 0. 

Additionally, 𝑑𝑟 will be utilized to denote the cost associated with route 𝑟, calculated as total distance 

travelled along that route. The models are defined as (1): 

Minimize, 

 

∑ (𝑑𝑟 − 𝛼 ∑ 𝑔𝑖𝑖∈𝑁𝑟
)𝜆𝑢𝑣

𝑟
(𝑢,𝑣)𝑟∈Ψ   (1) 

 

with constraints 

 

∑ 𝜆𝑢𝑣
𝑟

(𝑢,𝑣)𝑟∈Ψ|𝑖∈𝑁𝑟
≤ 1,   ∀𝑖 ∈ 𝑁  (2) 

 

− ∑ 𝜆𝑢𝑣
𝑟

(𝑢,𝑣)𝑟∈Ψ + ∑ 𝜆𝑢𝑣
𝑠

(𝑢,𝑣)𝑠∈Ψ = {
𝑧 𝑖𝑓 𝑣 = 0
0 if 𝑣 = 1, … , 𝑊 − 1

−𝑧 if 𝑣 = 𝑊

  (3) 

 

𝑧 ≤ 𝐾  (4) 

 

𝜆𝑢𝑣
𝑟 > 0 and integers,   ∀(𝑢, 𝑣)𝑟 ∈ Ψ   (5) 

 

𝑧 ≥ 0 and integers  (6) 

 

In (1) outlines the model's objective, which is to reduce the covered distance of total vehicles within a single 

working day. Constraint (4) is in place to acknowledge that visiting all customers may not be feasible 

because of the available vehicle’s limitation, expressed within the inequality constraints (2). Nevertheless, 

increasing the number of customers is the objective, which is a favorable outcome. Constraint (3) represents a 

fundamental flow conservation constraint within the network, ensuring flow entering a node is at equilibrium 

with the flow exiting that node. These constraints collectively define the optimization problem and guide the 

decision-making process for efficient vehicle routing. 

 

2.3.  Time window relaxation scheme development 

In (1)-(6) model nodes represent instants of time. Distance and time are usually not in integer form, 

and thus there are two alternatives: using a smooth discretization (each unit of time will be 0.01), using 

rounding off procedure to utilize time units. The first option would provide a network flow model with a 

large number of restrictions and variables, making it impractical for an immediate solution. Therefore, in this 

study, the second alternative is used. Since the solution approach is intended to obtain an exact solution, 

algorithms are developed that iteratively refine the discretization. 

 

2.3.1. Initial rounding strategy 

Notice that the arc (𝑢, 𝑣)𝑟 in model (1)-(6) corresponds to a route 𝑟 that starts at time 𝑢 and ends at 

time 𝑣. Knowing that vertex of graph Π is demarcated the set of values ∆ = {0, … , 𝑊}, it is essential for arc 
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(𝑢, 𝑣)𝑟 ∈ Ψ, rounding 𝑢 and 𝑣 to values that are in the set ∆. As previously mentioned, first consider the 

units of time equal to 1, namely ∆ = {0, 1, 2, 3, … , 𝑊 − 1, 𝑊}. Some possible rounding procedures are as: 

− 𝑢 = ⌊𝑢⌋ and 𝑣 = ⌈𝑣⌉. In this model, routes are constructed to start slightly before and end slightly after 

their actual occurrence. This implies that some potential solutions may not be considered, but any feasible 

solution obtained by relaxing the constraints (1)-(6) in this manner will also be viable for original 

problem. 

− 𝑢 = ⌈𝑢⌉ and 𝑣 = ⌊𝑣⌋. In the current scenario, relaxation is for the model, which means the solutions 

initiate may not always be reasonable. Though, this relaxation serves the purpose of establishing an 

effective lower bound for the problem. 

− 𝑢 = ⌈𝑢⌉ and 𝑣 = ⌈𝑣⌉ or 𝑢 = ⌊𝑢⌋ and 𝑣 = ⌊𝑣⌋. In the current case, a lower bound will also be found. 

In this study, the proposed algorithm uses the second rounding procedure, namely by considering 

𝑢 = ⌈𝑢⌉ and 𝑣 = ⌊𝑣⌋. The reasons for choosing this procedure were: i) relaxation is expected to be tight and 

ii) the inappropriateness is local and can be corrected. 

Considering paths in the flow model that involve two successive routes, designated as 𝑟 and 𝑟′, with 

a gap less units of time waiting among them, results in infeasible solutions, it is crucial to highlight. To 

address this issue, one initial approach is rectifying solution either moving route 𝑟 rearward or route 𝑟′ 
onward to eliminate conflict. If this adjustment results in a feasible solution, it not only resolves the 

infeasibility but also proves optimality, as feasible solutions share same routes and have lower bound 

equivalent cost. In essence, after obtaining the 𝑥∗ result, efforts are made to construct on same routs 

favorable solution identified in the 𝑥∗ solution. 

The proposed algorithms operate in the following manner: For each working day, it attempts to 

create a new route while preserving the existing routes sequence in the solution. Suppose (𝑟1, … , 𝑟𝑝) is the 

line of routes in weekdays, and 𝑇𝑟𝑖
 is the starting route and 𝑇𝑟𝑖

′  is the ending route 𝑟𝑖, ∀𝑖 ∈ {1, … , 𝑝}. Set  

𝑇𝑟𝑖
= max(𝑇𝑟𝑖

−, 𝑇𝑟𝑖−1
′ ). If 𝑇𝑟𝑖

≤ 𝑇𝑟𝑖
+, ∀𝑖 ∈ 1, … , 𝑝, is viable solution. otherwise, then feasibility is not proven, 

and additional algorithm must be cast-off. 

 

2.3.2. Perfecting iterative discretization 

The solution approach used involves an iterative correction of infeasibilities resulting from 

discretization problems. For algorithm each step, instances of infeasibility are identified. For each of these 

instances, the discretization is locally adjusted by addition fractional values required to complete relaxation 

initially imposed by original discretization. Several time instants can be combined into a single integer during 

the first relaxation. The existing graph would be divided into several nodes using this refinement method. 

conflicting arcs set (𝑢, 𝑣)𝑟 and 𝑢0, fractional values for 𝑣 and 𝑢0 are considered to enhance the solution. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Problem description 

3.1.1. Problem definition and notation 

In MVRPTW, there is a single depot represented as 𝑜 and it serves as both start and end point for all 

vehicle routes. The fleet consists of homogeneous vehicles, meaning that all vehicles are identical in terms of 

capacity and other attributes. Each vehicle in the fleet has a 𝑄 capacity units. further expected are a total of 𝐾 

vehicles accessible in this fleet for carrying out routing tasks. 

In MVRPTW: The set of customers is denoted as 𝑁 = {1, … , 𝑛}. Each pair of locations, including 

customers and the depot, has an associated distance 𝑑𝑖𝑗and travel time 𝑡𝑖𝑗. Each client 𝑖 has a specific request 

or request 𝑞𝑖, a service time 𝑠𝑖, a revenue 𝑔𝑖, and a time window [𝑎𝑖, 𝑏𝑖]. The time window specifies the 𝑎𝑖 

earliest time and the 𝑏𝑖 latest time at which provision can begin at client 𝑖. The windows must be open for 

vehicle arrives earlier than 𝑎𝑖. It is assumed that, by default, the vehicle starts serving a customer as soon as it 

arrives. The 𝑠𝑜 = 0, indicating that there is no service time required at the depot. The time window signifies 

the total time 𝑊 of a workday, which sets the time constraints for the entire routing problem. It is assumed 

that 𝑏𝑖 + 𝑠𝑖 + 𝑑𝑖𝑜 ≤ 𝑏𝑜 , ∀𝑖 ∈ 𝑁. 

Throughout the working day, each vehicle can go on a number of routes. Until the end of the 

workday, this entails being able to complete one route, reload at the depot, and head out for the subsequent 

route. Route 𝑟 is defined by the order of visits to a subset of customers 𝑁𝑟 ⊆ 𝑁. It is practical if the total 

number of requests from every client in 𝑁𝑟 does not exceed the vehicle's capacity and if the order of the visits 

allows for the visitation of every customer within a predetermined window of time. In this model it is also 

considered that the service of all customers on the route cannot be started longer than 𝑡𝑚𝑎𝑥 the maximum 

time unit after the route is started. The collection of all possible routes is denoted by 𝑅. There is also a setup 
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time to take into account for each route. Prior to departing the depot to travel route 𝑟, the vehicle 𝛽 ∑ 𝑠𝑖𝑖∈𝑁𝑟
 

time units to load, with 𝛽 ∈ ℝ+. Due to the limited number of available vehicles, it might not be possible to 

visit every client. Nevertheless, it is usually preferable to visit as many clients as possible. 

 

3.1.2. Mathematical formulation for MVRPTW 

The description expressed in a graph 𝐺 = (𝑉, 𝐴), with 𝑉 = 𝑁 ∪ {𝑜} a set of vertices and  

𝐴 = {(𝑖, 𝑗) ∶  𝑖, 𝑗 ∈ 𝑉} a set of arcs. In this description, there is a binary variable representing the subscriber to 

the route and determines the sequential pair of routes. The binary variables 𝑥𝑖𝑗
𝑟  and 𝑦𝑖

𝑟 respectively define, if 

arc (𝑖, 𝑗) and client 𝑖 associated to route 𝑟, while binary variable 𝑧𝑟𝑠 determines if any vehicle traveling route 

𝑟 is followed by route s within weekdays. The notation 𝑟 < 𝑠 signifies identical vehicle is allocated to do 

route 𝑠 afterward doing route 𝑟. The variable 𝑡𝑖
𝑟 represents the start time on client 𝑖, if associated with path 𝑟, 

and 𝑡𝑜
𝑟 and 𝑡𝑜

′𝑟 characterize the start and end duration of route 𝑟. Suppose 𝑀 is a large enough number. The 

concise formulation for MVRPTW is stated as (7)-(26). 

Minimize, 

 

∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑟

(𝑖,𝑗)∈𝐴𝑟∈𝑅 − 𝛼 ∑ ∑ 𝑔𝑖𝑦𝑖
𝑟

𝑖∈𝑁𝑟∈𝑅   (7) 

 

With constraints 

 
∑ 𝑥𝑖𝑗

𝑟
𝑗∈𝑉 = 𝑦𝑖

𝑟 , ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅  (8) 

 

∑ 𝑦𝑖
𝑟

𝑟∈𝑅 ≤ 1, ∀𝑖 ∈ 𝑁  (9) 

 

∑ 𝑥𝑖ℎ
𝑟

𝑖∈𝑉 − ∑ 𝑥ℎ𝑗
𝑟

𝑗∈𝑉 = 0, ∀ℎ ∈ 𝑁, ∀𝑟 ∈ 𝑅  (10) 

 

∑ 𝑥𝑜𝑖
𝑟

𝑖∈𝑉 = 1, ∀𝑟 ∈ 𝑅  (11) 

 

∑ 𝑥𝑖𝑜
𝑟

𝑖∈𝑉 = 1, ∀𝑟 ∈ 𝑅  (12) 

 

∑ 𝑥𝑖𝑗 = 1, 𝑖 ∈ 𝑁, 𝑖 ≠ 0, 𝑖 ≠ 𝑗𝑗∈𝑁    (13) 

 

∑ 𝑥𝑖𝑗 = 1, 𝑗 ∈ 𝑁, 𝑗 ≠ 0, 𝑖 ≠ 𝑗𝑖∈𝑁   (14) 

 

∑ 𝑞𝑖𝑦𝑖
𝑟

𝑖∈𝑁 ≤ 𝑄,     ∀𝑟 ∈ 𝑅  (15) 

 

𝑞𝑦𝑖
𝑟 ≤ ∑ 𝑞𝑖

𝑟𝑥𝑖𝑗
𝑟  , 𝑟 ∈ 𝑅𝑖∈𝑁   (16) 

 

𝑡𝑖
𝑟 + 𝑠𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗

𝑟 ) ≤ 𝑡𝑗
𝑟 ,     ∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ≠ 𝑗,    ∀𝑟 ∈ 𝑅  (17) 

 

𝑎𝑖𝑦𝑖
𝑟 ≤ 𝑡𝑖

𝑟 ≤ 𝑏𝑖𝑦𝑖
𝑟 ,     ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑅  (18) 

 

𝑡𝑜
𝑟 ≥ 𝛽 ∑ 𝑠𝑖𝑦𝑖

𝑟
𝑖∈𝑁 ,     ∀𝑟 ∈ 𝑅  (19) 

 

𝑡𝑖
𝑟 ≤ 𝑡𝑜

𝑟 + 𝑡𝑚𝑎𝑥 ,     ∀𝑖 ∈ 𝑁,     ∀𝑟 ∈ 𝑅  (20) 

 

𝑡𝑜
𝑠 + 𝑀(1 − 𝑧𝑟𝑠) ≥ 𝑡𝑜

′𝑟 + 𝛽 ∑ 𝑠𝑖𝑦𝑖
𝑠

𝑖∈𝑁 ,     ∀𝑟, 𝑠 ∈ 𝑅,     𝑟 < 𝑠  (21) 

 

∑ ∑ 𝑧𝑟𝑠𝑠∈𝑅|𝑟<𝑠𝑟∈𝑅 ≥ |𝑅| − 𝐾  (22) 

 

𝑥𝑖𝑗
𝑟 ∈ {0, 1},     ∀(𝑖, 𝑗) ∈ 𝐴,   ∀𝑟 ∈ 𝑅  (23) 

 

𝑦𝑖
𝑟 ∈ {0, 1},     ∀𝑖 ∈ 𝑁,   ∀𝑟 ∈ 𝑅  (24) 

 

𝑧𝑟𝑠 ∈ {0, 1},     ∀𝑟, 𝑠 ∈ 𝑅,     𝑟 < 𝑠  (25) 

 

𝑧𝑟𝑠 ∈ {0, 1},     ∀𝑟, 𝑠 ∈ 𝑅,     𝑟 < 𝑠  (26) 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 592-603 

598 

It is always preferable to visit as many consumers as possible, according to objective function (7). Be 

mindful that the constant 𝛼 must be set to a value that supports the model in order for it to be considered 

valid. The constraints (13) and (19) determine the fleet size and the vehicle capacity, respectively. The 

restrictions (10)–(12) are flow conservation limitations. Visits to clients must adhere to their time window, as 

indicated in (15). Every two clients who make consecutive trips on the same route must have a matching visit 

time (14), and the same is true for trips taken by the same vehicle on two separate occasions (18). Finally, 

each route's setup time must always be taken into account (16), (18). 

 

3.2.  Methods for optimization based-on active constraints 

This study looked at a set of techniques where the search direction of the active constraint coat is set 

to fall between an orthogonal 𝑍 matrix and a conventional constraint matrix. As a result, if �̂�𝑥 = �̂� is the 

latest active constraints 𝑛 − 𝑠, 𝑍 is a 𝑛 × 𝑠 matrix that looks like this: 

 

�̂�𝑍 = 0 (27) 

 

The key tasks that need to be accomplished in each iteration (by generating an appropriate descent direction, 

𝑝) are as:  

a. Calculate the reduced gradient 𝑔𝐴 = 𝑍𝑇𝑔. 

b. Develop approximations for the reduction of Hessian 𝐺𝐴 = 𝑍𝑇𝐺𝑍. 

c. Acquire approximations for systems of equations: 

 

𝑍𝑇𝐺𝑍𝑝𝐴 = −𝑍𝑇𝑔 

𝐺𝐴𝑝𝐴 = −𝑔𝐴 (28) 

 

d. Identify the direction to get 𝑝 = 𝑍𝑝𝐴. 

e. Find the closest approximation to 𝑎∗ using a line search where:  

 

𝑓(𝑥 + 𝛼∗𝑝) = min
𝛼

{𝑥+𝛼𝑝 feasible}

𝑓(𝑥 + 𝛼𝑝) 

 

Along with having full column ranks, 𝑍 is only (algebraically) constrained by (27) in the example above, 

therefore 𝑍 can take on a few forms. In specifically, the 𝑍 parallel to the method itself has the following 

form:  

 

𝑍 = [
−𝑊

𝐼
0

] = [
−𝑏−1𝑆

𝐼
0

]

}𝑚               

}𝑠                 
}𝑛 − 𝑚 − 𝑠

  (29) 

 

This is a straightforward explanation that will be utilized for exposition in the following section, however it 

should be noted that it is computationally limited to the factorizations of 𝐵 that are triangular (LU) and 𝑆. 

There is undoubtedly some incompleteness in the 𝑍 matrix calculation.  

There is a good reason why 𝑍, whose column is orthonormal (𝑍𝑇𝑍 = 𝐼), is suggested. The 𝑍 

transformation is key benefit is that it doesn't introduce redundant conditions into the problem reduction (see 

the aforementioned steps a to d, in particular (28)). In programs where 𝑍 is accumulated as a dense matrix, 

this technique has been applied. The matrix [𝐵 𝑆] can be expanded to the expansively distributed/sparse 

linear constraints using the LDV factorization: 

 
[𝐵 𝑆] = [𝐿 𝑂]𝐷𝑉 

 

where 𝐿 is a triangle, 𝐷 is a diagonal, and 𝐷1 2⁄ 𝑉 is normal, and 𝐿 and 𝑉 are accumulated as products. 

Despite this, this factorization will always be significantly denser than B's LU factorization if S has a large 

number of columns. As a result, it is dependent on how 𝑍 is used in (29). Be advised that 𝐵 must be treated 

with the utmost care because to 𝐵−1 unwanted appearance. 

 

3.3.  Summary of the procedure 

Building upon the previous discussions regarding the optimization challenges associated with the 

vehicle routing problem for multi-product and multi-supplier (VRP-MPMS), we introduce an effective 

algorithm designed to address these complexities. This algorithm integrates advanced mathematical 
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modelling techniques with computational methods to optimize vehicle routing while adhering to critical 

constraints such as capacity limits and time windows. By establishing a clear framework that defines 

essential components, including decision variables, objective functions, and constraint, this approach 

facilitates a systematic solution process. With the assumption of: 

a. [𝐵 𝑆 𝑁]𝑥 = 𝑏, 𝑙 ≤ 𝑥 ≤ 𝑢 is content 𝑥. 

b. The function 𝑓(𝑥) and vector 𝑔(𝑥) = [𝑔𝐵 𝑔𝑆 𝑔𝑁]𝑇. 

c. The number of super basis variables, 𝑠(0 ≤ 𝑠 ≤ 𝑛 − 𝑚). 

d. Factorization, LU, on the base matrix 𝐵 𝑚 × 𝑚. 

e. The quasi-Newton method to the 𝑠 × 𝑠 matrix is 𝑍𝑇𝐺𝑍.  

f. The vector gradient ℎ = 𝑔𝑆 − 𝑆𝑇𝜋. 

g. A 𝑟𝑟 vector meets 𝐵𝑇𝜋 = 𝑔𝐵. 

h. The positive convergence tolerances for TOLDJ and TOLRG are both modest. 

The model is solved via the generalized reduced gradient method, starting with the Lagrange 

function and proceeding according to the procedure. After that, the algorithm will work as follows: 

Step 1. If ‖ℎ‖ > TOLRG, step 3. 

Step 2. ("PRICE", i.e., add one superbase and Lagrange multiplier calculation). 

a. Govern 𝜆 = 𝑔𝑁 − 𝑁𝑇𝜋. 

b. Choose 𝜆𝑞1
< −TOLDJ(𝜆𝑞2

> +TOLDJ), the 𝜆's is the greatest element whose higher bounds 

correspond to the variables. If not, STOP; the essential conditions for an ideal solution have been 

satisfied according to Kuhn-Tucker. If this is not the case; 

− Addition 𝑎𝑞 as the new 𝑆 column. 

− Choice 𝑞 = 𝑞1 or 𝑞2 on the basis of |𝜆𝑞1
| = max (|𝜆𝑞1

|, |𝜆𝑞2
|). 

− Add a new, pertinent column to R. 

− Insert 𝜆1 as a new ℎ element. 

c. S is multiplied by 1. 

Step 3. (Direction of search, 𝑝 = 𝑍𝑝𝑠). 

a. Finish 𝑅𝑇𝑅𝑝𝑆 = −ℎ. 

b. Finish LU 𝑝𝐵 = −𝑆𝑝𝑆. 

c. Make 𝑝 = [
𝑝𝐵

𝑝𝑆

0
]. 

Step 4. (Test Ratio, "CHUZR"). 

a. If 𝛼max = 0, go to step 7. 

b. If 𝛼max ≥ 0, maximise 𝛼 value of 𝑥 + 𝛼𝑝 is viable. 

Step 5. (Line search). 

a. Find 𝛼, an 𝛼∗ for which 𝐹(𝑥 + 𝛼∗𝑝) = min0<𝜃≤𝛼max
𝑓(𝑥 + 𝜃𝑝) 

b. Convert 𝑥 to 𝑥 + 𝛼𝑝 and 𝑓 and 𝑔 to their new 𝑥 values. 

Step 6. (Reduced slope calculation, ℎ̅ = 𝑍𝑇𝑔). 

a. Process 𝑈𝑇𝐿𝑇𝜋 = 𝑔𝐵. 

b. New slope determination, ℎ̅ = 𝑔𝑆 − 𝑆𝑇𝜋. 

c. Utilizing 𝛼, 𝑝𝑆 and 𝑅𝑇𝑅, adjust 𝑅 for gradient ℎ̅ − ℎ. 

d. Set ℎ̅ − ℎ. 

e. If 𝛼max = 0, proceed to step 7. 

Step 7. Here, 𝛼 < 𝛼max reaches limits and for 𝑝(0 < 𝑝 ≤ 𝑚 + 𝑠), the 𝑝 column variable of [𝐵 𝑆] also 

reaches limits. 

a. If limit is reached by base variable (0 < 𝑝 ≤ 𝑚), 

− the 𝑝-th column replaced with 𝑞-th column of [
𝐵

𝑋𝐵
T] and [

𝑆
𝑋𝑆

𝑇] 

− 𝑈𝑇𝐿𝑇𝜋𝑝 = 𝑒𝑝 

− Changes to 𝐿, 𝑈, 𝑅 and 𝜋 also variation in 𝐵  

− determine gradient ℎ = 𝑔𝑆 − 𝑆𝑇𝜋; 

− Go to (c). 

b. Otherwise superbase limit is reached (𝑚 < 𝑝 ≤ 𝑚 + 𝑠). Determine 𝑞 = 𝑝 − 𝑚. 

c. Create the 𝑞-th variable in nonbasis 𝑆 at the appropriate limit as follows: 

− Eliminate 𝑞th column [
𝑆

𝑋𝑆
𝑇] and [

𝑅
ℎ𝑇]; 

− Add 𝑅 to the triangular matrix. 

Subtract 𝑠 by one and return to step 1. 
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3.4.  Simulation 

In this section, we present the simulation results obtained from our proposed hybrid approach for 

solving the vehicle routing problem for multi-product and multi-supplier (VRP-MPMS) with relaxed time 

windows. The simulations were conducted using Fortran language in mathematical programming system 

(MPS) format, which allows for efficient modelling and solving of optimization problems. The aim is to 

evaluate the effectiveness of our model by comparing the outcomes with established benchmarks. Through a 

series of iterative tests, we assess various performance metrics, including transportation costs, vehicle 

utilization, and adherence to capacity constraints. The results obtained from these simulations will provide 

insights into the practical applicability of our proposed solution in real world scenarios. 

 

EXIT -- OPTIMAL SOLUTION FOUND. 

NO. OF ITERATIONS                     238      OBJECTIVE VALUE       5.1600000000000E+02 

NORM OF X                       2.395E+03      NORM OF PI                      4.081E+01 

PROBLEM NAME   VRP                   OBJECTIVE VALUE    5.1600000000E+02 

STATUS         OPTIMAL SOLN          ITERATION  238 

 

Table 1 illustrates the route for vehicle 1, which departs from the depot and sequentially visits  

client 1, client 2, client 3, and client 4, continuing in this manner. Similarly, for route 1, vehicle 2 departs 

from the depot and follows a path to client 3, then from client 1 to client 2, and so forth. Table 2 details the 

travel routes for vehicles using route 1, starting from the depot to customer 3. From customer 1, the vehicle 

returns to the depot via route 2. Using route 3, the vehicle travels from customer 4 to customer 7. Finally, 

route 4 depicts the vehicle's journey from customer 6 to customer 5. Table 3 presents the starting times for 

each node (customer). 

 

 

Table 1. Result of binary variables 𝑥 
  Customer 

Vehicle Customer 0 1 2 3 4 5 6 7 8 

1 0  1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1 0.00000  1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000  1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000  1.00000 0.00000 0.00000 0.00000 0.00000 

4 1.00000 0.00000 0.00000 0.00000  0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000  1.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  1.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  1.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000  

2 0  0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1 0.00000  1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 1.00000 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000  1.00000 0.00000 1.00000 0.00000 0.00000 

4 0.00000 1.00000 0.00000 0.00000  0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000  0.00000 1.00000 0.00000 

6 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000  0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  1.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000  

3 0  0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 

1 0.00000  1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000  0.00000 0.00000 0.00000 0.00000 1.00000 

4 0.00000 0.00000 0.00000 0.00000  0.00000 0.00000 1.00000 0.00000 

5 0.00000 0.00000 0.00000 1.00000 0.00000  0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000  0.00000 0.00000 

7 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  0.00000 

8 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000  

4 0  1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1 0.00000  1.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000  0.00000 0.00000 0.00000 1.00000 0.00000 

4 0.00000 0.00000 0.00000 1.00000  0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000  0.00000 0.00000 1.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000  0.00000 0.00000 

7 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000  
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Our computational experiments demonstrate that the proposed hybrid approach effectively reduces 

transportation costs while satisfying vehicle capacity constraints and relaxed time windows. Specifically, our 

results show that this method outperforms traditional routing approaches by achieving a more significant 

reduction in overall transportation expenses. Moreover, the hybrid model not only ensures adherence to 

vehicle capacity limits but also allows for flexibility in scheduling, making it a viable solution for solving the 

VRP-MPMS with relaxed time windows. These findings underscore the advantages of our approach in 

enhancing logistics efficiency and improving service delivery in complex supply chain environments. 

 

 

Table 2. Result of binary variables 𝑧 
  Route 

Vehicle Route 0 1 2 3 4 5 6 7 8 

1 0  0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1 1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 0.00000  0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 

4 0.00000 1.00000 0.00000 0.00000  0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 1.00000 0.00000 0.00000  0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  1.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  1.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000  

2 0  0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1 1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 1.00000 0.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000  0.00000 1.00000 1.00000 0.00000 0.00000 

4 0.00000 1.00000 0.00000 0.00000  0.00000 0.00000 0.00000 0.00000 
5 0.00000 0.00000 0.00000 1.00000 0.00000  0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000  0.00000 0.00000 

7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  1.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000 0.00000  

3 0  0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1 1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000  0.00000 0.00000 0.00000 0.00000 1.00000 

4 0.00000 0.00000 0.00000 0.00000  0.00000 0.00000 1.00000 0.00000 

5 0.00000 0.00000 0.00000 1.00000 0.00000  0.00000 0.00000 0.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000  0.00000 0.00000 

7 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  0.00000 

8 0.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000  

4 0  1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1 0.00000  1.00000 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 

2 0.00000 1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3 0.00000 0.00000 0.00000  0.00000 0.00000 0.00000 1.00000 0.00000 

4 0.00000 0.00000 0.00000 1.00000  0.00000 0.00000 0.00000 0.00000 

5 0.00000 0.00000 0.00000 0.00000 0.00000  0.00000 0.00000 1.00000 

6 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000  0.00000 0.00000 

7 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000  0.00000 

8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000  

 

 

Table 3. Start time from each node variables 𝑡 
 Customer 

Vehicle 1 2 3 4 5 6 7 8 

1 39.74026 69.48052 40.00000 20.64935 20.00000 10.25974 10.00000 19.87013 

2 40.00000 40.00000 60.00000 20.00000 10.00000 30.00000 10.00000 20.00000 

3 0.00000 0.00000 30.00000 0.00000 0.00000 59.87013 110.00000 100.12987 

4 60.25974 10.51948 0.00000 99.35065 110.00000 19.87013 0.00000 0.00000 

 

 

4. CONCLUSION 

This paper considers a company which operates a fleet of vehicles so as to deliver multiple products 

from various suppliers to a set of customers with no strict time to be fulfilled in deliveries. The objective is to 

optimize the routing of these vehicles to minimize the total transportation cost, which includes travel 

distance, vehicle utilization, and delivery time deviations, while ensuring that customer demand is met and 

relaxed time windows are respected. The model of the problem was formulated as a combinatorial problem. 

A hybridization approach was proposed for the exact part, a generalized reduced gradient method was 

developed in a way to get “near” integer feasible solution. Then a feasible neighborhood search was 

proposed, based on minimizing the deterioration of the objective function. 
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