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 Urban rail systems offer the substantial potential for reducing environmental 

pollution, alleviating traffic congestion, ensuring safety, and maintaining 

punctuality. Nevertheless, the operation of urban rail demands substantial 

electrical energy, and saving energy solutions are crucial to exploiting the full 

advantages of electric trains. This paper proposes the replacement of 

traditional traction motors with permanent magnet synchronous motors 

(PMSMs) due to their superior efficiency, reduced power losses, and compact 

size compared to direct current (DC) motors or other asynchronous three-phase 

motors with equivalent power, developing a backstepping controller for the 

speed loop coupled with a load observer-time-varying disturbance (TVD). The 

simulation results were conducted in MATLAB/Simulink with parameters 

collected from the Nhon-Hanoi urban railway line, Vietnam, verifying the 

proposed algorithms' correctness and effectiveness. 
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1. INTRODUCTION 

In recent years, urban rail systems have met the increasing demands of passenger travel, decreased 

environmental emissions, ensured safety, and enhanced punctual operations. However, these systems consume 

significant amounts of electrical energy [1]. Therefore, numerous energy-saving strategies have been 

implemented, such as energy recovery through regenerative braking using supercapacitors located either at 

substations or on-board, optimizing train schedules for mutual energy exchange among trains, replacing diode 

rectifiers at traction substations with bidirectional active rectifiers, promoting energy-efficient driving, 

deploying efficient traction systems, developing optimal speed profiles, and managing energy intelligently [2]. 

Choosing the appropriate motor type is one of the critical strategies for saving energy. Various 

motor types, such as linear, induction (IM), direct current (DC), and permanent magnet synchronous motor 

(PMSM), are considered for electric trains [3]–[6]. PMSM motors are particularly advantageous because they 

generate high torque, operate quietly, and offer higher efficiency and compactness than other motors of 

similar power [7], [8]. These attributes make PMSM motors energy-efficient and reduce maintenance costs 

[9]–[12]. Given their nature as multi-variable, nonlinear, and sensitive systems to parameter and disturbance 

variations, traditional linear control methods fall short in accurately modelling PMSM systems. Advanced 
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control methods like max-plus control, multiplier control, neuro-fuzzy control, sliding mode control, and 

backstepping control have become widely adopted, addressing various system requirements [13], [14]. The 

backstepping controller is notable for its robust stability, even amidst system noise or parameter variations 

over time [15]–[19]. 

The dynamics of a moving train are influenced by more complex and variable forces than those 

typical of industrial loads. For instance, the train's substantial mass significantly impacts its operation, and 

passenger load variations between trips further complicate load dynamics. Weather variations also affect 

traction and movement due to changes in wind force, rail conditions, and adherence during weather 

conditions like rain, snow, dryness, or storms. Addressing these challenges necessitates a load observer 

capable of estimating time-varying torque disturbances to enhance system performance and counteract 

disturbances [20], [21]. Zhao et al. have also proposed the model-free adaptive discrete-time integral terminal 

sliding mode control (MFA-DITSMC) without a model and a nonlinear disturbance observer (NDO) to 

improve speed control and resist disturbances [22], [23]. In another study, Lan and Lei-Zhou introduced 

backstepping control for speed loop and disturbance load observer design that tracks speed and manages 

disturbances [24]. However, these solutions also introduce increased system complexity and exhibit certain 

limitations. Hence, this paper introduces a backstepping controller (BSC) integrated with a time-varying 

disturbance (TVD) load observer to better estimate load disturbances along the Nhon-Hanoi Station. 

 

 

2. MODELING THE ELECTRIFIED TRAIN 

Modeling electric trains involves modeling the traction motor and the resistive forces acting on the 

train. The traction motors are PMSMs with the field-oriented control (FOC) method, and the mathematical 

equations are represented in the dq coordinate system. The resistive forces include gradient resistance, curve 

radius resistance, and basic resistance. 

 

2.1.  Modeling PMSM motor 

The mathematical equations of 𝑖𝑠𝑑  and 𝑖𝑠𝑞  are expressed as (1): 

 

{
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in which 𝜔𝑒 is the rotor speed, 𝑖𝑠𝑑 and 𝑖𝑠𝑞  are the stator current on the dq-axis, 𝑣𝑠𝑑  and 𝑣𝑠𝑞  are the stator 

voltages on the dq-axis, 𝐿𝑑  and 𝐿𝑞 are the stator inductances on the dq-axis, 𝑇𝑑 =
𝐿𝑑

𝑅𝑠
 và𝑇𝑞 =

𝐿𝑞

𝑅𝑠
 is the time 

constant on the d-q axis, 𝑅𝑠 is the stator resistance, 𝜓𝑝 is the rotor flux linkage. The electromagnetic torque 

on the d-q coordinate system is:  

 

𝑇𝑒 =
3

2
𝑃𝑝[𝜓𝑝𝑖𝑠𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑠𝑑𝑖𝑠𝑞] (2) 

 

where 𝑇𝑒is the electromagnetic torque, 𝑃𝑝is the number of pole pairs. The motion equation of the motor is 

written as (3): 

 
𝐽

𝑃𝑝

𝑑𝜔

𝑑𝑡
= 𝑇𝑒 − 𝑇𝑙 (3) 

 

with 𝑇𝑙  is the load torque, 𝐽=𝐽𝑑𝑐+𝐽𝑒𝑞  is the total moment of inertia of the motor and train, 𝐽𝑒𝑞 =
1

4

𝑀

𝑁
(

𝐷𝑤ℎ

𝜏
)

2

: 

𝐽𝑒𝑞  is the moment of inertia of the train, M is the mass of the train, N is the number of motors,𝐷𝑤ℎis the 

diameter of the wheels, 𝜏 is the transmission ratio. 

 

2.2.  Modeling resistance forces against moving trains 

The train's resistance includes forces such as air, friction, curvature, and gradient resistance [25]–[27]. 

 

𝐹𝑟𝑒𝑠 = 𝐹𝑔𝑟𝑎𝑑 + 𝐹𝑟 + 𝑊𝑜 (4) 
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In which: 𝐹𝑔𝑟𝑎𝑑 = 𝑚𝑔 sin 𝑎, 𝑚 (kg) is the mass of the train, 𝑔 ( 𝑚/𝑠2) is the acceleration due to gravity 

sin 𝑎 = sin(𝑎𝑟𝑠𝑖𝑛(𝑖𝑘)) where 𝑖𝑘(
∘

∘∘
) is the slope, α representing the gradient of the track. 𝐹𝑟 =

𝐴

𝑅
, R – 

minimum curve radius, in meters, A – A coefficient determined experimentally. 𝑊0 = 𝑎 + 𝑏𝑣 + 𝑐𝑣2, 𝑣 is the 

velocity (m/s), the resistance coefficientsa (𝑁),b (𝑁𝑠/𝑚), c (𝑁𝑠2/𝑚2) are experimentally provided by the 

manufacturer. 

 

 

3. BACKSTEPPING CONTROL FOR SPEED LOOP 

Figure 1 shows the control structure diagram of the electric train drive system based on the rotor 

flux-oriented control (FOC) combined with control methods in the weak magnetic field area. The control 

structure includes a speed loop, the isd current loop, and the isq current loop. This section primarily focuses on 

the motor's speed loop. 

 

 

α 

R
I 

R
I 

_

_

DC

_

 BSC

Field 
Weakening

PMSM
train 

wheel

TL

F roll

F grad

F
R

_

1/s

OBSERVER

ˆ

 

F arc

   

*

TL

*

sdi

*

sqi

sdu

squ

sdi

sqi



su 

su 

+ −

si 

si 

sai

s bi

s ciabc





dq

dq



DC

AC





 

 

Figure 1. FOC control structure with backstepping control and load observer – TVD 

 

 

Using the concept of backstepping and Lyapunov system stabilization [28]. Considering speed 

deviation:  

 
*e w w= -  (5) 

 

With as the input value and as the actual value, we obtain the derivative of e as (6):  

 

�̇� = �̇�∗ − �̇�       (6) 

 

Choose a Lyapunov function for the deviation e: 

 

𝑉 =
1

2
𝑒2 (7) 

 

Differentiating equation (7) results in: 

 

�̇� = 𝑒�̇�  (8) 

 

From there, select the control parameter Ks > 0 such that: 

 

�̇� = −𝐾𝑠𝑒 (9) 
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From (9) substituting into (8), we obtain the following: 

 

�̇� = −𝐾𝑠𝑒2 ≤ 0           (10) 

 

We can see that the derivative satisfies stability according to Lyapunov. From (9), we can rewrite (6) as (11): 

 

𝑇𝑒 − 𝑇𝑙 + 𝐾𝑠𝑒 − �̇� = 0 (11) 

 

Based on (2), the inferred virtual current control signal 𝑖𝑠𝑞
∗  is:  
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3

2
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  (12) 

 

 

4. DESIGN OF TIME-VARYING DISTURBANCE OBSERVER 

The presence of disturbance in the load torque can reduce control efficiency, so compensation is 

required in the control system to ensure accuracy. The general equation describing the system of the TVD 

observer is presented:  

 

�̇� = 𝑎𝑢 − 𝑑 (13) 

 

With being the measurable signal, the control signal, d the indeterminable disturbance signal. 

To achieve this, from the motion equation at (3) and the electromagnetic torque equation, a time-

varying disturbance observer can be constructed to estimate and then compensate for disturbances in the (12). 

From (13), we design the observer in the following form: 

 

{
�̇̂�𝑙 = 𝑘1(�̂� − 𝜔)

�̇̂� = −�̂�𝑙 + 𝑎. 𝑖𝑞 − 𝑘2(�̂� − 𝜔)
  (14) 

 

With �̂�𝑙,�̂� as the estimated values 𝑇𝑙 , w , 𝑎 =
3

2
𝑃𝑃[𝜓𝑝 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑠𝑑]. 

Prove stability according to the Lyapunov equation:  
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With 
 

 
1
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Therefore, we have: 
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Let's assume �̇� limit >0 , k1 relatively large value, k2>0 

 
1
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From the above equations, the following is obtained: 
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�̇� =
1

𝑘1
�̃��̇� + �̃��̃� + �̃�(−�̃� − 𝑘2�̃�) (22) 

 

�̇� =
1

𝑘1
�̃��̇� − 𝑘2�̃�2 ≤ 0𝐵𝑒𝑐𝑎𝑢𝑠𝑒

1

𝑘1
�̃��̇� ≈ 0  (23) 

 

 

5. RESULTS AND DISCUSSION  

The Nhon – Ha noi line has a total length of 12.5 km with 12 stations, including 4 underground and 

8 above-ground stations. The total travel time from Nhon to Ha Noi station for a four-carriage train is  

890.4 seconds (excluding stoppage time). During this journey, the total estimated stoppage time is  

285 seconds. This study selects the route from Hà Noi station to Van Mieu station for simulation with a  

60 km/h speed, operating 3 phases: Accelerating, coasting, and braking. The simulation parameters collected 

from the Metro Nhon – Hanoi are shown in Table 1 and Table 2. 

 

 

Table 1. Parameters of the PMSM motor 
Parameters  Value 

Rated power Pđm 185 kW 
Rated voltage Uđm 525 V 

Rated torque Mđm 836 Nm 

Stator resistance Rs 39.224 mΩ 
Axis Inductance d Ld 1.997 mΩ 

Axis Inductance q Lq 5.499 mΩ 

Magnet field 𝜓 0.5968 Wb 

Number of poles Zp 3 
Frequency f 120 Hz 

 

 

Table 2. Parameters of the train 
Parameters Unit Value 

Train Setup 2M2T  

Loaded train mass (M) [kg] 192.000 

Number of motors (N)  12 

Maximum speed (vmax) [km/h] 60 
Base speed (vb) [km/h] 40 

Acceleration when running (0-40 km/h) [𝑚/𝑠2] 0.83 

Acceleration when running (0-80 km/h) [𝑚/𝑠2] ≥ 0.5 

Maximum deceleration during normal braking [𝑚/𝑠2] ≥ 1 

Maximum deceleration during emergency braking [𝑚/𝑠2] ≥ 1.25 

Resistance coefficient a [KN] 0.0115070 
Resistance coefficient b [kg/s] 0.0003494 

Resistance coefficient c [kg/m] 0.00005497 

Wheel diameter (Dwh) [m] 0.84 
Transmission ratio (i)  9.5:1 

Gearbox efficiency (𝜂𝑚𝑒𝑐ℎ)  0.9 

Motor efficiency (𝜂𝑒𝑚)  0.95 

Train inertia (Jeq) 
[kg. 

2m ] 
31.272 

 

 

Figure 2 shows that the speed loop circuit using the backstepping controller effectively controls the 

speed, maintaining stability without oscillation. This demonstrates the controller's high precision, even when 

speed changes and time-varying disturbances occur. In Figures 3(a) and 3(b), during the phase from  

0 to 18 seconds, when the speed is within the rated range, the torque is constant, and the power is gradually 

increasing due to the high-power demand in the initial stage. After this phase, the torque curve forms a 

hyperbola when the motor operates in the flux-weakening region, and the power curve remains constant. 

From the 20th to the 40th second, during the coasting phase, the source is disconnected, and both the torque 

and power curves return to zero. During the braking phase, as the train approaches the station, both torque 

and power are negative, indicating that the traction motor works as a generator during braking, returning 

energy to the grid. 

In Figure 4, the initial phase from 0-the 2nd second, there is a slight deviation between the estimated 

and actual torque. However, after this period, the estimated torque closely follows the actual torque. This 

demonstrates the high accuracy and stability of the disturbance observer, even when the load torque changes 

over time. Towards the end, around the 55th to 58th second, there is a small discrepancy between the load and 

estimated torque. This is because the electric train is transitioning to a stop state, experiencing a decrease in 
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speed and encountering resistance forces, causing the observer to lag in adaptation. Overall, the Time-

varying Disturbance observer can accurately estimate the load torque during stable operation, requiring only 

a short time to adjust its estimation in response to rapid changes or significant noise. This highlights the 

importance of designing an observer capable of quickly adapting to dynamic changes in operation, especially 

in applications requiring high accuracy and rapid response, like urban electric trains. 

 

 

 
 

Figure 2. The speed response using backstepping 
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Figure 3. Power, torque responses of electrified train drive system (a) power response and (b) torque response 
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Figure 4. The comparison of the observed torque with the actual torque 

 

 

6. CONCLUSION  

This study proposed a backstepping control method for the speed loop while integrating a  

time-varying disturbance observer to enhance the ability to monitor load variations and the system's stability. 

We observed stable speed control and precise tracking of reference signals by employing the backstepping 

control method for the speed loop. This is crucial in electric train applications where high precision control 

directly affects schedules and passenger safety. The time-varying disturbance observer, with its ability to 

detect and adjust to changes over time, helps the control system respond to continuous disturbances. 

Combined with the backstepping control method, it allows the system to maintain good performance even in 

the presence of factors causing disturbances, such as changes in load due to fluctuating passenger numbers or 

other external factors.  
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