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 The surge in adoption of electric vehicles (EVs) within the transportation 

sector can be attributed to the growing interest in sustainable transportation 

initiatives. It is imperative to position electric vehicle charging stations 
(EVCS) strategically and distribute generations (DGs) to mitigate the effects 

of electric vehicle loads. This research employs the whale optimization 

algorithm (WOA) to optimize the placement of EVCS and DGs alongside 

network reconfiguration. The backward-forward sweep (BFS) power flow 
technique is utilized to compute load flow under varying load conditions. 

The primary objective of this investigation is to minimize power losses and 

enhance the voltage profile within the system. The proposed approach was 

tested on IEEE-33 and 69 bus systems and compared with particle swarm 
optimization (PSO) and genetic algorithm (GA) techniques. The simulation 

outcomes affirm the effectiveness of whale optimization algorithm in 

determining that integrating 3 EVCS with 3 DGs yields optimal outcomes 

following network reconfiguration, resulting in a 56.22% decrease in power 

losses for the IEEE-33 bus system and a 76.13% reduction for the IEEE-69 

bus system. The simulation results indicate that the proposed approach 

enhances system performance across all metrics, showcasing the superior 

performance of WOA compared to PSO and GA in accomplishing set 
objectives. 
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1. INTRODUCTION 

The increasing demand for electric vehicle charging stations (EVCS) has emerged as a primary 

concern in supporting the sustainable growth of electric vehicles. Despite the rapid advancements in electric 

vehicles (EVs) technology, the need for charging infrastructure remains vital due to the limited range of 

electric vehicles compared to their fossil fuel counterparts. Many countries worldwide are adopting battery-

based transportation modes to reduce pollution [1]. Notably, Norway has achieved a 74.8% EVs adoption 

rate, followed by 45% in Iceland and 32.2% in Sweden [2]. Furthermore, several nations are planning to fully 

embrace EVs as the future mode of transportation, with projections estimating around 14 million EVs sales 

by the end of 2023, marking a 35% year-on-year increase [3]. 

Apart from environmental benefits, EVs charging has the potential to significantly impact the 

reliability of the power grid [4]. The augmented demand stemming from electric vehicle charging stations 

(EVCS) diminishes the reserve capacity of substations and the capabilities for transferring loads through 

feeders [5]. Most distribution grids are characterized by a radial configuration featuring low ratios of 

reactance to resistance. The energy landscape has experienced notable transformations in recent years, 

https://creativecommons.org/licenses/by-sa/4.0/
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primarily instigated by the integration of electric vehicles (EVs) and renewable energy sources such as 

distributed generations (DGs) [6], [7]. 

The whale optimization algorithm (WOA) is a newly developed optimization algorithm that draws 

inspiration from the collective behavior exhibited by whales [8]. Though it boasts simplicity and low 

computational cost, it may not utilize data from inapplicable solutions, which could be beneficial for 

addressing problems with dominant non-compatible regions. When compared with the WOA method, several 

other optimization methods have their own advantages and challenges. Genetic methods (GA) are easy to 

implement and computationally efficient, but can be expensive for complex assignment problems [9]. 

Particle swarm optimization (PSO) methods can be parallelized easily and do not require information 

gradients, but may be prone to getting stuck in local optima and require higher computation [10]. 

Based on the above background, it is evident that the need for EVCS to support the growth of 

sustainable EVs is becoming increasingly urgent. The proposed research can contribute to determining the 

optimal position and Tie Switch number for EVCS and DGs, combined with network reconfiguration using 

WOA. This study aims to predict the power losses using the backward-forward sweep (BFS) load flow 

approach. Therefore, this research is proposed with the objective of finding the best solution to integrate 

EVCS and DGs with network reconfiguration using WOA. 

 

 

2. METHOD  

2.1.  Constraints 

The integration of EVCS and DGs coordination problem formulation can be divided into objective 

functions and constrained functions [11]. The objective function in this simulation is to reduce power losses, 

which can be seen in (1). Where 𝑁𝑏𝑟𝑎𝑛𝑐ℎ denotes the total number of branches or channels present within 

the system. 𝑅𝑘 stands for the resistance on branch 𝑘, while 𝐼𝑘 represents the current flowing through branch 𝑘 

[12]. 

 

min 𝐹𝑜𝑏𝑗(𝑥) = ∑ 𝑅𝑘
𝑁𝑏𝑟𝑎𝑛𝑐ℎ
 𝑖=1 ∗ |𝐼𝑘|2 (1) 

 

 Active and reactive power generation and consumption are balanced on each bus in the distribution 

network [7]. Active power balance is achieved when the active power generated at each bus equals the active 

power consume [13]. This principle ensures efficient and stable operation of the network, as outlined (2), (3). 

 

𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + ∑ 𝑃𝐷𝐺  (𝑘)𝑁𝑏𝑢𝑠
𝑘=1 − ∑ 𝑃𝑙𝑜𝑠𝑠

𝑗
 (𝑘, 𝑘 + 1) − ∑ 𝑃𝐷,𝑘 (𝑘)𝑁𝑏𝑢𝑠

𝑘=1 − 𝑃𝐸𝑉𝐶𝑆
𝑘 = 0𝑁𝑏𝑟𝑎𝑛𝑐ℎ

𝑗=1  (2) 

 

𝑄𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + ∑ 𝑄𝐷𝐺  (𝑘)𝑁𝑏𝑢𝑠 
𝑘=1 − ∑ 𝑄𝑙𝑜𝑠𝑠

𝑗
 (𝑘, 𝑘 + 1) − ∑ 𝑄𝐷,𝑘 (𝑘)𝑁𝑏𝑢𝑠

𝑘=1 − 𝑄𝐸𝑉𝐶𝑆
𝑘 = 0𝑁𝑏𝑟𝑎𝑛𝑐ℎ 

𝑗=1  (3) 

 

 In this context, 𝑃𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛  and 𝑄𝑠𝑢𝑏𝑠𝑡𝑎𝑡𝑖𝑜𝑛  denote the power originating from the substation, 

respectively. 𝑁𝑏𝑢𝑠 signifies the total count of buses [14]. The power produced by generators at bus 𝑘 are 

represented by 𝑃𝐷𝐺  (𝑘) and 𝑄𝐷𝐺  (𝑘) respectively. 𝑁𝑏𝑟𝑎𝑛𝑐ℎ stands for the total of branches. The power loss 

between buses 𝑘 and 𝑘 + 1 is symbolized by 𝑃𝑙𝑜𝑠𝑠
𝑗

 𝑎𝑛𝑑 𝑄𝑙𝑜𝑠𝑠
𝑗

 , respectively. The power demand at bus k is 

indicated by 𝑃𝐷,𝑘 (𝑘) and 𝑄𝐷,𝑘  (𝑘). 𝑃𝐸𝑉𝐶𝑆
𝑘  and 𝑄𝐸𝑉𝐶𝑆

𝑘  is the power demand of EVCS load at bus 𝑘. Inequality 

constraints are a mathematical expression that describes a relationship between variables in which one side of 

the equation is greater or less than the other side [15]. The limits of the lowest and maximum permissible 

voltage levels (0.90-1.06 p.u.) (4). 

 

𝑉𝑚𝑖𝑛,𝑘 ≤ 𝑉𝑘 ≤ 𝑉𝑚𝑎𝑥,𝑘, 𝑘 = 1, 2, 3, … , 𝑁𝑏𝑢𝑠  (4) 

 

The amount of active and reactive power injected by DGs must remain within specific limit [16]. 𝑃𝐷𝐺,𝑘
min  is the 

minimum active power limit for DG at bus 𝑘, 𝑃𝐷𝐺,𝑘 is the current active power at bus 𝑘, and 𝑃𝐷𝐺,𝑘
max  is the 

maximum active power limit for DG at bus 𝑘. Similarly, 𝑄𝐷𝐺,𝑘
min  represents the minimum reactive power limit 

for DG at bus 𝑘, 𝑄𝐷𝐺,𝑘 is the current reactive power at bus 𝑘, and 𝑄𝐷𝐺,𝑘
max  is the maximum reactive power limit 

for DG at bus 𝑘. The formula is given by (5), (6). 

 

𝑃𝐷𝐺,𝑘
min ≤ 𝑃𝐷𝐺,𝑘 ≤ 𝑃𝐷𝐺,𝑘

max   (5) 

 

𝑄𝐷𝐺,𝑘
min ≤ 𝑄𝐷𝐺,𝑘 ≤ 𝑄𝐷𝐺,𝑘

max    (6) 
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The active and reactive power injected by EVCS must also remain within certain limits [17]. 𝑃𝐸𝑉𝐶𝑆,𝑘
min  is the 

minimum active power limit for EVCS at bus 𝑘, 𝑃𝐸𝑉𝐶𝑆,𝑘  is the current active power at bus 𝑘, and 𝑃𝐸𝑉𝐶𝑆,𝑘
max  is 

the maximum active power limit for EVCS at bus 𝑘. For reactive power, 𝑄𝐸𝑉𝐶𝑆,𝑘
min  represents the minimum 

reactive power limit for EVCS at bus 𝑘, 𝑄𝐸𝑉𝐶𝑆,𝑘 is the current reactive power at bus 𝑘, and 𝑄𝐸𝑉𝐶𝑆,𝑘
max  is the 

maximum reactive power limit for EVCS at bus 𝑘. The formula is given by (7), (8). 

 

𝑃𝐸𝑉𝐶𝑆,𝑘
min ≤ 𝑃𝐸𝑉𝐶𝑆,𝑘 ≤ 𝑃𝐸𝑉𝐶𝑆,𝑘

max    (7) 

 

𝑄𝐸𝑉𝐶𝑆,𝑘
min ≤ 𝑄𝐸𝑉𝐶𝑆,𝑘 ≤ 𝑄𝐸𝑉𝐶𝑆,𝑘

max    (8) 

 

2.2.  Whale optimization algorithm 

WOA has been theoretically considered a global optimization algorithm due to its exploration/ 

exploitation capabilities, utilizing a hypercube mechanism to define the search space around the best solution 

[8]. The WOA algorithm assumes whales that are looking for prey are considered the best solution candidates 

at this time [18]. Key parameters in WOA include �⃗� is a convergence factor with random values between 2 to 

0, 𝑟 ⃗⃗⃗ is a random value between 0 to 1 and 𝐴 ⃗⃗⃗⃗  with 𝐶 ⃗⃗⃗⃗  which are variation coefficients represented in (9), (10). 

 

𝐴 ⃗⃗⃗⃗ = 2𝑎 ⃗⃗⃗ ⃗ ·  𝑟 ⃗⃗⃗ −  �⃗�  (9) 
 

𝐶 ⃗⃗⃗⃗ = 2 �⃗⃗⃗�  (10) 

 

These whales move in different directions in the search for prey, and each whale's move is 

considered a step in the search for the best solution [19]. Parameters probability 𝑝 for position updates with 

random values between 0 and 1, and a constant 𝑏 for the spiral shape, which is set to 1. Additionally, the 

random value 𝑙 ranges between -1 to 1, and the spiral equation 𝐷‘⃗⃗ ⃗⃗  is used to update positions, transitioning 

whales from their current position �⃗�(𝑡) to the next position �⃗�(𝑡 + 1), with �⃗�𝑏𝑒𝑠𝑡(𝑡) representing the global 

best position. If coefficients 𝐴 is < 1, the formula (11) to (14) is used to update the new position. 

 

 𝐷‘⃗⃗ ⃗⃗ = 𝐶 ⃗⃗⃗⃗ ∣ �⃗�𝑏𝑒𝑠𝑡(𝑡) − �⃗�(𝑡) ∣, if p ≤ 0.5 (11) 
 

X⃗⃗⃗ (t + 1) = X⃗⃗⃗best – A⃗⃗⃗ · D⃗⃗⃗, if p ≤ 0.5 (12) 
 

D‘⃗⃗⃗⃗ =∣ X⃗⃗⃗best(t) − X⃗⃗⃗(t) ∣, if p ≥ 0.5 (13) 
 

X⃗⃗⃗(t +  1) = D′⃗⃗ ⃗⃗  ·  ebl  · cos(2πl) +  X⃗⃗⃗(t), if p ≥ 0.5  (14) 

 

Humpback whales move randomly based on each other's positions. Random values above or below 

1 are used to keep search agents away from reference whales. During exploration phase, agent positions are 

based on randomly chosen agents rather than the best one found. Emphasize exploration if 𝐴 is ≥ 1 for global 

search in WOA algorithm [8]. 

 

𝐷 ⃗⃗ ⃗⃗  = |𝐶 ⃗⃗⃗⃗  · �⃗� rand – �⃗�(t) | (15) 
 

�⃗� (t + 1) = �⃗�𝑟𝑎𝑛𝑑 – 𝐴 · �⃗⃗⃗� (16) 

 

The WOA algorithm commences with a collection of randomized solutions. During each iteration, 

the search agents enhance their positions by considering the chosen random search agents and the most 

optimal solution identified thus far. The adaptive modification of the search vector A enables the WOA 

algorithm to shift smoothly between exploration and exploitation. This is achieved by diminishing A, with 

specific iterations dedicated to exploration (|A| ≥ 1) and others dedicated to exploitation (|A| < 1) [8], [20]. 

 

2.3.  Test system 

The data for the study consists of the IEEE-33 bus and 69 bus distribution systems. The test systems 

for distribution in 33 and 69 bus, have experienced a surge in popularity among researchers and practitioners, 

emerging as a widely adopted tool to investigate various problems encountered in conventional distribution 

systems [21]. A diagram in Figure 1 shows the IEEE-33 Bus system with 33 buses, 32 closed branches, and 5 

open branches [22]. 
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The IEEE 69 bus distribution system while enhancing the test benchmark to closely reflect real 

operational limitations [20]. Figure 2 shows the IEEE-69 Bus systems single line diagram, a radial 

distribution system with 69 buses, 68 closed branches, and five open branches. This diagram provides 

overview of the network's topology [23]. 

The data variables observed in the study were the influence due to network reconfiguration [24]. The 

addition of EVCS and DGs which varied with the simulated load increase in MATLAB software [25]. The 

variables observed in this study are:  

a. Power loss (KW) 

b. Voltage profile (p.u) 

c. EVCS, DGs and Network Reconfiguration allocation, including: 

Case 1: Base case/Existing 

Case 2: EVCS allocation without DGs 

Case 3: DGs allocation without EVCS 

Case 4: Integration of EVCS and DGs allocations 

Case 5: Network reconfiguration 

Case 6: EVCS allocation without DGs after network reconfiguration 

Case 7: DGs allocation without EVCS after network reconfiguration 

Case 8: Integration of EVCS and DGs allocations after network reconfiguration 

 

 

 
 

Figure 1. Single line diagram of IEEE-33 bus system 

 

 

 
 

Figure 2. Single line diagram of IEEE-69 bus system 

 

 

3. RESULTS AND DISCUSSION 

3.1.  IEEE-33 Bus system simulation 

In the voltage profile of the IEEE-33 Bus simulation, as the follow parameters in Table 1 there is a 

significant voltage variation between different buses for fixed conditions. Whenever an EVCS is co-located 

with a DG, the system voltage profile will improve. The graphical form of the simulated voltage profile of all 

scenarios of IEEE-33 bus base load fixed conditions can be seen in Figure 3. 

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Optimizing electric vehicle charging station placement integrates … (Ferry Rahmat Astianta Bukit) 

4933 

Table 1. Simulation parameters 
Parameter Fixed Non-fixed 

Value Unit Value Unit 

Bus type 33 and 69 bus 33 and 69 bus 

Voltage level 12, 66 kV 12, 66 kV 

Power rating 100 MVA 100 MVA 

No. EVCS 3 - 3 - 

No. DGs 3 - 3 - 

Power factor (pf) 0,90 - 0,90 - 

Population 100 - 100 - 

Iteration 100 - 100 - 

No. max switch open 5 - 5 - 

Initial switch open 33, 34, 35, 36, 37 and 69, 70, 71, 72, 73 - 33, 34, 35, 36, 37 and 69, 70, 71, 72, 73 - 

Capacity DGs min 350 kW 100 kW 

Capacity DGs max 350 kW 550 kW 

No. EV min 30 - 30 - 

No. EV max 30 - 50 - 

Base load percentage 100 - 100 - 

EVCS rating 50 kW 50 kW 

 

 

 
 

Figure 3. Voltage profile of all IEEE-33 bus scenarios with WOA 

 

 

In Figure 3, the value of the voltage profile decreases as the additional load from the EVCS. 

However, the minimum voltage value still meets the constraints with a value of 0.90943 p.u at bus 18.  

The reduction in value can be overcome by the addition of DGs with a minimum state of 0.95717 p.u and 

will decrease slightly in the integration of EVCS with DGs to 0.94413 p.u at bus 33. where the best state 

occurs when the integration of EVCS with DGs is carried out after network reconfiguration with a value of 

0.95732 p.u at bus 31. 

The WOA demonstrates the fastest convergence compared to PSO and GA as shown in Figure 4. 

Under fixed conditions, WOA achieves the lowest loss value within 20 iterations, indicating its high 

efficiency in finding optimal solutions in fewer iterations. PSO achieves the lowest loss value within 65 

iterations. Although slower than WOA, PSO still shows good convergence and can reach optimal solutions 

relatively quickly. GA achieves the lowest loss value within 75 iterations, which is the slowest compared to 

WOA and PSO. However, GA still demonstrates the ability to converge to optimal solutions, albeit requiring 

more iterations.  

Figure 5 shows that from all cases, it is confirmed that case-8 is the condition with the smallest 

power loss, so it is confirmed that the integration of EVCS and DGs with network reconfiguration is the 

optimal solution. In the base case, WOA yields the lowest active and reactive power losses of 202.68 kW and 

135.14 kVar, respectively. However, when EVCS are introduced, WOA's performance deteriorates, with 

active and reactive power losses rising to 299.07 kW and 205.99 kVar. Conversely, PSO and GA exhibit 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 4929-4939 

4934 

higher losses in with EVCS integration, achieving 354.82 kW and 234.83 kVar for PSO and 354.82 kW  

and 234.83 kVar for GA, respectively. The addition of DG further reduces losses across algorithms, with 

WOA recording 74.24 kW and 48.49 kVar, PSO with 85.37 kW and 54.52 kVar, and GA with 78.37 kW and 

50.52 kVar. However, when DG and EVCS are combined, WOA outperforms the other algorithms, showing 

active and reactive power losses of 112.01 kW and 72.16 kVar, respectively. Network reconfiguration 

enhances performance, with reductions in losses observed across all scenarios and algorithms. The 

combination of DG and EVCS with reconfiguration yields the lowest losses across all algorithms, with WOA 

achieving 87.72 kW in active power loss and 60.67 kVar in reactive power loss. 

 

 

 
 

Figure 4. Convergence characteristics simulation IEEE-33 bus 

 

 

 
 

Figure 5. Comparison of performance of optimization methods across IEEE-33 bus scenarios 
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Table 2 presents a comparison of the results obtained using different techniques, namely PSO fixed, 

GA fixed, and WOA fixed, in addition to the proposed WOA non-fixed technique. For the "Best solution" for 

each technique, Case-8 is reported, which indicates that the best solution has been achieved for this case. This 

statement is in line with the goals that the integration of EVCS and DGs with network reconfiguration can 

produce the smallest power loss value. Regarding the number of tie switches, each technique shows different 

choices, with the proposed WOA achieving the highest reduction of 56.22% has better than PSO and GA to 

minimize power losses. The proposed non-fixed WOA only as a proof of whether the algorithm can find the 

minimum capacity to produce the optimal power loss value.  

Similarly, in the condition of providing load variation to test whether the voltage profile condition 

can be improved in the case of integration of EVCS and DGs with network reconfiguration, Table 3 presents 

a comparison of the results obtained using the WOA technique with different load variations (100%, 125%, 

150%, and 200% load) for the IEEE-33 bus system. In terms of the location of EVCS and DG, as the load 

increases, the location shifts, which indicates adaptability to changing load conditions. 

 

 

Table 2. Comparisons results with other techniques IEEE-33 bus 
IEEE-33 BUS PSO fixed GA fixed WOA fixed 

(Proposed) 

WOA non-fixed 

(Proposed) 

Best solution Case-8 Case-8 Case-8 Case-8 

EV and DGs location 19, 2, 4 and 33, 7, 

31 

2, 3, 19 and 25, 16, 11 2, 2, 2 and 17, 32, 2 2, 2, 2 and 15, 2, 31 

Tie switch number 37, 11, 14, 7, 32 28, 9, 32, 7, 14 7, 9, 14, 37, 32 14, 32, 37, 10, 7 

Existing Ploss (KW) 202.677+ j135.141 

Ploss (KW) 153.052+ j95.496 151.759+ j94.777 87.724+ j60.677 66.400+ j45.645 

% Reduction in Ploss 26.07% 26.67% 56.22% 66.93% 

Total DGs Size (KW) 1050+j508.54 1650+j799.131 

Total number EV (unit) and 

EVCS size (KW) 

90 and 4500+j2179.5 110 and 

5500+j2663.77 

Execution time (s) 512.7346 612.7745 463.6473 436.3494 

 

 

Table 3. Comparisons WOA under load variations IEEE-33 bus 
WOA IEEE-33 BUS 100% load 125% load 150% load 200% load 

EVCS and DGs location 2, 2, 2 and 17, 32, 2 2, 2, 2 and 31, 2, 18 2, 2, 2 and 32, 33, 31 2, 2, 2 and 31, 2, 32 

Tie switch number 7, 9, 14, 37, 32 32, 7, 10, 28 14 14, 7, 9, 28, 32 9, 14, 32, 37, 7 

Existing Ploss (KW) 202.677+ j135.141 329.855+ j220.0803 496.3505+ j331.3961 975.7124+ j652.4997 

Ploss (KW) 87.724+ j60.677 144.142+ j109.7742 197.9762+ j143.1467 467.1251+ j349.2957 

% Reduction in Ploss 56.22% 54.47% 59.09% 50.44% 

Existing minimum voltage (p.u) 0.91306 0.88885 0.86335 0.80742 

Minimum voltage (p.u) 0.95732 0.94117 0.92073 0.88753 

 

 

3.2.  IEEE-69 Bus system simulation 

In the voltage profile of the IEEE 69 Bus simulation, as the follow parameters in Table 1 there is a 

significant voltage variation between different buses for fixed conditions. The graphical form of the 

simulated voltage profile of all scenarios of IEEE-69 bus base load fixed conditions can be seen in Figure 6. 

Its figure the value of the voltage profile decreases as the additional load from the EVCS. However, the 

minimum voltage value still meets the constraints with a value of 0.90895 p.u at bus 65. The reduction in 

value can be overcome by the addition of DGs with a minimum state of 0.96076 p.u and will decrease 

slightly in the integration of EVCS with DGs to 0.94759 p.u at bus 65. where the best state occurs when the 

integration of EVCS with DGs is carried out after network reconfiguration with a value of 0.9695 p.u at bus 

61. The voltage profiles decrease as DGs penetration increases and that network reconfiguration also helps 

reduce power losses. 

Figure 7 shows under fixed conditions, WOA achieves the lowest loss value within 30 iterations, 

indicating its high efficiency in finding optimal solutions in fewer iterations. Particle swarm optimization 

(PSO) achieves the lowest loss value within 50 iterations. Although slower than WOA, PSO still shows good 

convergence and can reach optimal solutions relatively quickly. Genetic algorithm (GA) achieves the lowest 

loss value within 60 iterations, which is the slowest compared to WOA and PSO. With the same conditions 

as the previous IEEE-33 bus simulation in IEEE-69 bus, the factors that affect the performance of the 

algorithm in obtaining the solution are due to the randomness of the system value so that each algorithm 

obtains different results. Based on the IEEE-69 bus simulation, it is concluded that the WOA algorithm itself 

is still capable of handling problems with medium complexity and is better than PSO or GA which are 

usually often used in solving light to medium numerical problems. 
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Figure 6. Voltage profile of All IEEE-69 bus scenarios with WOA 

 

 

 
 

Figure 7. Convergence characteristics simulation IEEE-69 bus 

 

 

Figure 8 shows the IEEE-69 bus simulation data indicates that the integration of EVCS and DGs 

with network reconfiguration provides the optimal solution. In the base case, all optimization algorithms 

yield identical results, with WOA, PSO, and GA showing active power losses of 234.96 kW and reactive 

power losses of 102.15 kVar. However, when EVCS is introduced, slight increases in losses are observed 

across all algorithms. The addition of DGs decreases losses, with WOA achieving 67.11 kW and 34.51 kVar, 

PSO with 69.11 kW and 36.35 kVar, and GA with 78.74 kW and 38.75 kVar. Combining DGs and EVCS 

leads to increased losses, with WOA, PSO, and GA showing losses of 83.73 kW and 42.41 kVar, 108.18 kW 

and 49.88 kVar, and 115.82 kW and 59.68 kVar, respectively. However, network reconfiguration 

significantly reduces losses across all scenarios and algorithms, with WOA achieving the lowest losses of 

47.41 kW in active power and 40.07 kVar in reactive power, followed closely by PSO and GA. Therefore, it 

is confirmed that the integration of EVCS and DGs with network reconfiguration is the optimal solution. 
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The data presented in Table 4 compares the results of different optimization techniques applied to 

the IEEE-69 bus system. The techniques compared include PSO, GA, and WOA in both fixed and non-fixed 

scenarios. The analysis shows that the non-fixed WOA proposed method achieved the best results, with a 

significant 76.13% reduction in power losses.  

Table 5 compares the performance of the whale optimization algorithm (WOA) under various load 

variations for the IEEE-69 bus system. As the load increases from 100% to 200%, the placement of electric 

vehicle charging stations (EVCS) and distributed generators (DGs) changes accordingly. Notably, at 100% 

load, EVCS and DGs are located at nodes 3, 28, 36 and 60, 61, 64, while at 200% load, they shift to nodes 2, 

2, 2 and 2, 28, 4. Similarly, the tie switch numbers alter with load variations. Despite the increase in load, 

WOA consistently achieves a significant reduction in power losses, ranging from 65.06% to 76.13%, 

demonstrating its effectiveness in optimizing the system under varying load conditions. 

 

 

 
 

Figure 8. Comparison of performance of optimization methods across IEEE-69 bus scenarios 

 

 

Table 4. Comparisons WOA under load variations IEEE-33 bus 
IEEE-69 BUS PSO fixed GA fixed WOA fixed  

(Proposed) 

WOA non-fixed 

(Proposed) 

Best Solution Case-8 Case-8 Case-8 Case-8 

EV and DGs Location 28, 47, 5 and 59, 61, 2 29, 2, 36 and 51, 59, 27 3, 28, 36 and 60, 61, 64 2, 2, 2 and 61, 2, 27 

Tie Switch Number 70, 12, 56, 69, 62 69, 61, 56, 13, 70 61, 70, 55, 12, 69 61, 19, 55, 12, 69 

Existing Ploss (KW) 224.9606+ j102.147 

Ploss (KW) 55.954+ j41.0745 62.0442+ j58.7458 47.4094+ j40.0745 40.9285+ j43.1065 

% Reduction in Ploss 72.73% 68.24% 76.13% 78.23% 

Total DGs Size (KW) 1050+j508.54 1200+j581.19 

Total Number EV (unit) 

and EVCS Size (KW) 

90 and 4500+j2179.5 114 

and5700+j2760.63 

Execution Time (s) 1527.4631 1863.6383 1001.5101 1092.3372 

 

 

Table 5. Comparisons under load variations IEEE-69 bus 
WOA IEEE-69 BUS 100% load 125% load 150% load 200% load 

EVCS and DGs Location 3, 28, 36 and 60, 61, 64 53, 47, 47 and 61, 60, 65 2, 2, 2 and 2, 2, 3 2, 2, 2 and 2, 28, 4 

Tie Switch Number 61, 70, 55, 12, 69 70, 14, 61, 69, 58 24, 44, 48, 3, 15 53, 14, 60, 5, 70 

Existing Ploss (KW) 224.9606+ j102.147 368.9939+ j167.0894 560.4328+j253.0384 1130.1818+j506.9546 

Ploss (KW) 47.4094+ j40.0745 114.3148+j97.6085 177.2092+j138.1335 282.9246+j197.0004 

% Reduction in Ploss 76.13% 65.17% 65.06% 72.83% 

Existing minimum voltage (p.u) 0.90901 0.88315 0.85557 0.79356 

Minimum voltage (p.u) 0.9695 0.95646 0.90009 0.89384 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 5, October 2024: 4929-4939 

4938 

4. CONCLUSION  

 Findings from simulation results on IEEE 33-bus and 69-bus test systems show the advantages of 

optimal allocation of EVCS, DGs and network reconfiguration, especially under varying loading conditions. 

In simulations to minimize power losses with network reconfiguration and placement of EVCS and DGs, the 

WOA algorithm performed better than PSO and GA. The optimal placement of EVCS, DGs as well as 

network reconfiguration can improve the voltage profile and reduce 56.22% and 76.13% of power losses at 

IEEE-33 and 69 buses, respectively. 
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