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 Noise in electronic components of computed tomography (CT) detectors 

behaves like a virus that infects visual quality of CT scans and might distort 

clinical diagnosis. Modern CT detector technology incorporates high-quality 

electronic components in conjunction with signal and image processing to 

ensure optimal image quality while retaining benign doses of x-rays. In this 

study, a new strategy in signal and image processing directions is proposed 

by finding the most optimal wavelet base for denoising low-dose CT scan 

data. The process begins by selecting the appropriate wavelet bases for CT 

image denoising, followed by a wavelet decomposition, thresholding, and 

reconstruction. Other methods, such as graph wavelet and learning-based, 

are used to assess the consistency of the outcomes. The wavelet base of 

biorthogonal 5.5 achieves the highest optimum performance for CT image 

denoising. Meanwhile, the Daubechies wavelet base is inconsistent and 

performs poorly compared to the optimum base. This research highlights the 

importance of wavelet properties such as orthogonality, regularity, and the 

number of vanishing moments in selecting an appropriate wavelet basis for 

noise reduction in CT images. 
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1. INTRODUCTION 

Noise is always present in medical images, including those acquired by computed tomography (CT). 

The amount of noise present in the image is determined by the level of radiation dose, with low-dose 

radiation causing considerable noise in CT images. To minimize the risk of radiation exposure, the dose must 

be reduced to the lowest possible level while maintaining diagnostic accuracy, particularly for CT exams that 

may require multiple consecutive scans [1]. Noise on a CT image also depends on the type of CT detector 

used. Integrated electronic detectors (EIDs) generate less noise than analog detectors due to the presence of 

an analog-to-digital converter (ADC) [2]. Medical practitioners used iterative reconstruction and filtered back 

projection techniques to reduce noise or improve the quality of CT images [3]. They also used the projection 

algorithm to minimize radiation doses [4]. Efforts to reduce CT noise continue even ten years after the 

discovery of EIDs, with the development of photon-counting detectors (PCDs). This innovative technology 

offers several advantages, such as a better trade-off between radiation dose and CT image quality than earlier 

techniques [5]. This enables ultrahigh spatial resolution imaging of scanned objects due to smaller detector 

pixels and high dose efficiency [6]. However, it is important to preserve the prominent part of the CT scans 
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with relatively high frequencies to maintain image quality. To achieve this, more advanced techniques like 

wavelet transform may be necessary. 

The development of wavelets began with theoretical work, where the challenge was to formulate the 

phenomenon and solve physical problems. In the next stage, known as the computational stage, several 

wavelet applications were developed, one of which is wavelet denoising. This technique involves the use of 

wavelet decomposition, thresholding, and reconstruction. Wavelet decomposition breaks down the CT 

images into a set of orthonormal wavelet functions that form a wavelet basis, resulting in four sub-images: 

approximation, horizontal details, vertical details, and diagonal details. The sub-image approximation 

contains the low-frequency coefficients for each decomposition level, where the level determines the 

threshold value. In wavelet thresholding, choosing the optimal wavelet base is significant because it directly 

affects the wavelet base’s ability to approximate the CT images with reduced coefficients. To obtain the 

reconstructed images, wavelet reconstruction inverts the denoised image back to the original domain. 

Selection of wavelet bases is a factor that needs consideration. Each wavelet base delivers a different 

performance for any application. Therefore, selecting the most suitable wavelet base for each specific 

application, including wavelet denoising, is the main challenge. For example, we must consider how we can 

be sure that the Haar wavelet used in [7] is the optimal base for CT image denoising.  

Selecting an optimal base requires knowledge of wavelet properties such as orthogonality, 

regularity, and vanishing moment. Orthogonal bases can transform noise from the original domain to the 

transformed domain while keeping the same statistics [8], protect edges from damage [9], improve peak 

signal to noise ratio (PSNR) values by reducing mean squared error (MSE) compared to non-orthogonal 

wavelet bases [10], and provide a sparse representation while keeping the energy intact [11]. Regularity 

refers to the smoothness of a function and measures the concentration of its energy in the frequency domain. 

It can identify a sudden shift in data. The regularity of a wavelet has a significant impact on wavelet 

coefficients in thresholding. It serves a crucial function in wavelet thresholding due to its homogeneity [12]. 

Although a function’s regularity is independent of the number of vanishing moments, the smoothness of 

some wavelets is related to their vanishing moments, such as biorthogonal wavelets. The number of 

vanishing moments determines the existence of the function in the wavelet domain. It is the order of the 

wavelet transform, which is important because the smoothness of the wavelet base is beneficial in reducing 

the approximation error [13]. However, this does not indicate that being higher is better. Too many vanishing 

moments may result in the loss of useful information in the signal and the accumulation of useless 

information, such as noise. The appropriate number of vanishing moments is thus critical to effective wavelet 

base selection. 

This paper presents a discrete wavelet transform for reducing noise in CT images. The objective is 

to select the optimal base among eligible wavelet bases, construct CT image denoising based on the 

fluctuation of neighborhood pixels or coefficients, and support the development of CT detectors installed 

with an image based denoising algorithm involving wavelet transforms and graph theory. This work does not 

utilize vector based multi-wavelets, which means some desirable wavelet properties cannot be used 

simultaneously [14]. The challenge of this research is to investigate the effect of coefficient distribution on 

the performance of wavelet denoising on CT images. Another challenge is to determine the optimal balance 

between denoising and edge preservation. There is an alternative solution to these issues, which involves the 

use of graph wavelet-based denoising [15]. This paper is presented in four sections. Section 2 outlines the 

selection process for the optimal wavelet base for denoising CT images using the proposed algorithm. In 

Section 3, the discussion moves to experimental findings and compares them with graph wavelet transform 

and learning-based methods. Lastly, Section 4 presents the conclusion. 

 

 

2. METHOD  

This section provides the optimal strategy for denoising CT images, including finding the optimal 

wavelet base. The algorithm takes low-dose CT images as input for the initial selection of wavelet bases. 

First, we collect all wavelet bases available in the literature and then determine which ones pass the initial 

selection criteria based on wavelet decomposition and thresholding. We consider wavelet properties for 

image denoising and proceed to the final stage, where we exploit wavelet denoising and reconstruction to 

obtain the optimal base. The following subsections provide detailed explanations of the method. 

 

2.1.  Collecting the data  

CT measurements are required to gather data using the setup illustrated in Figure 1. The process 

starts with scanning the human body using rotary x-rays, followed by signal capture through a detector, 

which compiles multiple-slice images. These images, acquired with low doses of x-rays, undergo image 

processing to enhance their quality. To evaluate the proposed method, 30 slices of CT images from [16] will 
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be used. The selected slices are labeled sequentially, as shown in Figure 2. However, these low-dose CT 

images contain various types of noise. 

The introduction of noise begins with the activation of the CT instrument. One type of noise is 

random noise, which arises when a limited number of x-rays are projected. This noise leads to fluctuations in 

the signal, resulting in unpredictable density variations. Another type is electronic noise, generated by 

interference from electronic components, electrical power supplies, and any devices connected to the power 

supply network. As the signal captured by the X-ray detector is converted to a digital signal for CT image 

generation, numerical computations can introduce rounding noise. After this extensive process, the resulting 

CT images will contain noticeable noise. 

The noises on low-dose CT images are typically unknown, which makes quantitatively assessing 

their quality complicated. Therefore, the rational approach is to use full-dose CT images as reference images 

to objectively evaluate the performance of the proposed method by calculating their PSNR and structural 

similarity index (SSIM) values, which (1) and (2) for each labeled image where the values are available in 

Figure 3 for all labeled images with PSNR in Figure 3(a) and SSIM in Figure 3(b). Because the variability of 

image quality of the 30 labeled low-dose CT images is very high, the doctor can make inaccurate diagnoses 

when facing the low quality. Thus, performing a denoising technique on low-dose CT images is necessary. 

 

 

 
 

Figure 1. CT scan with image processing 

 

 

 
 

Figure 2. The 30 images from [16] 
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where x, y, μ, σ, σ2, c, Maxi, and MSE correspond to the low and full-dose pixel, the pixel average, the 

pixel standard deviation, the pixel variance, parameter corresponds to the dynamic range of the pixel, the 

maximum possible pixel value of the image, and the mean square error between the low and full-dose, 

respectively. 

 

 

  
(a) (b) 

 

Figure 3. Image quality of the 30 low-dose CT images based on (a) PSNR and (b) SSIM 

 

 

2.2.  Selecting the optimal base 

Wavelets possess unique properties that significantly influence their behavior and performance in 

the denoising of CT images. These properties are essential and serve as the primary criteria for selection. 

When choosing wavelet bases, it is important to consider their characteristics and how they relate to the 

specific application. However, it is often unclear why certain bases are used for particular applications. Many 

users apply wavelets without fully understanding or questioning their properties. 

For effective image denoising, the necessary properties include orthogonality, regularity, and 

vanishing moments. Failing to meet these criteria can lead to suboptimal performance. Table 1 outlines the 

properties of each wavelet base. All the bases listed in Table 1 satisfy the orthogonality requirement, with the 

exception of biorthogonal wavelets. Additionally, the Symlet and Coiflet wavelets do not meet the regularity 

requirement. The Haar, Daubechies, Biorthogonal, and Meyer wavelets meet the additional requirements for 

regularity and the number of vanishing moments. However, Meyer wavelets fail to fulfill the compact 

support requirement due to their infinite nature [17]. Thus, to reduce noise in CT images with low-dose  

x-rays, we will utilize the three wavelet families: Haar, Daubechies, and Biorthogonal. 

 

 

Table 1. Wavelet bases and their properties 
Variable Requirements for discrete wavelet transformation (DWT) properties 

Orthogonality Regularity Vanishing moments 

Haar    

Daubechies (Db)    

Symlet (Sym)    

Coiflet (Coif)    

Biorthogonal (Bior)    

Meyer (Meyr)    

 

 

Once the bases are selected, the next step is determining the decomposition level used to transform 

the noisy images to calculate a wavelet coefficient representing a measure of similarity in the frequency 

content between the low-dose CT images and the selected wavelet base by performing discrete wavelet 

transformation (DWT) on the noisy image. The DWT, as shown in Figure 4, provides a multilevel 

decomposition of an image into approximations and detail coefficients at each level by applying low-pass 

and high-pass filtering to the rows and columns of the matrix representation of the image [18]. The output of 

this process produces four images: approximation, horizontal details, vertical details, and diagonal details, as 

shown in Figure 4(a). In this context, decomposition will be performed only on the low-frequency or 

approximation coefficients. Otherwise, the study will move to a wavelet packet, which is out of the context of 

this research. Changing the level of DWT will change the wavelet coefficient, which measures the similarity 

in the frequency content between the low-dose CT images and the selected wavelet base. As the number of 

decomposition levels increases, the quality of the decomposition image decreases. It can be proven by  
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Figure 4(b), which shows the outcome for all low coefficients up to four decomposition levels. The selected 

level in Figure 4(b) will be processed using wavelet denoising through thresholding, which involves selecting 

a wavelet base, followed by an inverse transformation to obtain the reconstructed image. Thus, the first level 

of decomposition is selected, and the coefficient at this level is collected. 

 

 

 

 
(a) 

 

 

 
(b) 

 

Figure 4. Wavelet decomposition in (a) level 1 with approximation, horizontal, vertical, and diagonal 

coefficients and (b) its effect on the approximation coefficients up to level 4 

 

 

After decomposing the noisy images at a selected level, a wavelet thresholding technique is 

employed to reduce noise. In this process, values above the threshold are classified as signals, while those 

below are considered noise. Choosing the appropriate wavelet base is crucial at this stage. By selecting a 

suitable base, only a limited number of non-zero coefficients are used for noise removal. This approach 
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results in a higher PSNR and fewer threshold values compared to the RigrSURE, Universal, and MiniMaxi 

thresholding methods, as demonstrated in Table 2. The results also depend on the images used. However, 

across both factors, wavelet thresholding yielded the highest PSNR and the lowest threshold values. 

 

 

Table 2. Comparison of PSNR (in dB) and threshold values between wavelet and other thresholding methods 

for the chosen slice, Haar wavelet, and the base representing Daubechies and biorthogonal wavelets 
Variable Thresholding techniques 

RigrSURE Universal MiniMaxi Wavelet 

Threshold PSNR Threshold PSNR Threshold PSNR Threshold PSNR 

Haar 0.0315 26.913 3.3302 26.908 1.8568 26.908 0.0032 30.573 

Daubechies (Db6) 0.0310 28.856 3.3314 28.856 1.8578 28.856 0.0032 32.761 
Biorthogonal (Bior5.5) 0.0338 29.750 3.3394 29.750 1.8649 29.750 0.0034 33.997 

 

 

In the next section, we will show that these values affect the denoising performance based on the 

PSNR values of the reconstructed CT images. We used various tools such as the spectral graph wavelet 

transform (SGWT) [19], low-dose computed tomography (LDCT) [20], residual encoder-decoder 

convolutional neural network (RED-CNN) [21], conveying path-based convolutional encoder-decoder 

(CPCE) [22], Wasserstein general adversarial network (WGAN) [23], nonlocal network (NLnet) [24], and 

adaptive global context-based long-short residual encoder-decoder (AGC-LSRED) [25] to evaluate the 

performance of the results. We can find the code link and algorithm for SGWT at [19]. The PSNR values for 

the reconstructed CT images of patient L506 using LDCT, RED-CNN, CPCE, WGAN, NLnet, and AGC-

LSRED can be found at [25].  

 

2.3.  Denoising the images 

After collecting the images and selecting the optimal wavelet base, the next step involves processing 

the images on a personal computer to reduce the noise using image processing techniques by performing the 

optimal base to obtain a denoised image with the best performance. Before applying a suitable denoising 

technique, understanding the noise distribution is required. Although the noise distribution in the CT image is 

often unknown, the Poisson and Gaussian distributions are good options. In other medical images, such as 

conventional X-ray scans and magnetic resonance images, various types of noise, including speckle noise and 

salt-and-pepper noise, are present in addition to the former noise. On this step, the noisy image will be 

processed, the reconstructed image will be assessed, and the performance will be compared and validated. 

Preprocessing the pixel values before transforming the image allows for better noise capture. One 

way to achieve this is by converting the image matrix into a graph matrix. The combination of the graph 

approach with the wavelet transform is known as the graph wavelet transform. This process follows a 

specific algorithm that consists of two working domains, which are the spatial and frequency domains. In the 

spatial domain, the first thing to do is calculate the adjacency matrix values for each pixel by identifying its 

neighbors as shown in Figure 5. For a 512×512 image in Figure 5(a), the matrix will be of size 

262144×262144, with 1046528 elements having a value of one and 6.8718×1010 elements having a value of 

zero, creating a sparse matrix as shown in Figure 5(b).  

The second step in the spatial domain is to determine the Laplacian matrix by calculating each 

element using (3). The variables v, r, c, i, and L represent the vertex, row, column, number of vertices, and 

Laplacian matrix, respectively. Refer to Figure 6 for a visual representation. The elements of the Laplacian 

matrix are defined as follows: (a) In Figure 6(a), the element for the first vertex (v1) is equal to 2 because it 

has two edges, located in the first row (r1) and the first column (c1). (b) In Figure 6(b), the element for the 

second vertex (v2) is equal to 3 due to its three edges, found in the first row (r1) and the second column (c2). 

(c) In Figure 6(c), the element for the 514th vertex (v514) is equal to 4 because it has four edges, located in the 

second row (r2) and the second column (c2). The whole element matrix creates a Laplacian matrix with size 

262144×262144, where 1308672 nondiagonal elements and 262144 diagonals have values, and the 

remaining elements are zeros, as illustrated in Figure 7. 

 

L(r, c) = {
d(vi);  if r = c

−1;  if r ≠ c and vr is adjacent to vc 
0;  otherwise

  (3) 

 

The eigenvalue serves as a link between the spatial and frequency domains. It is calculated using 

(4), where L represents the Laplacian matrix depicted in Figure 7, x denotes the eigenvector, and λ 

symbolizes the eigenvalue. Unfortunately, an analytical solution to this equation is not feasible due to the 

large size of the matrix L, which is 262144×262144. This size can disrupt the sparsity structure of the 
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Laplacian matrix. Consequently, the eigenvalues, which are the solutions to this equation, are determined 

using an iterative method. 

 

 𝐿 [

𝑣1

⋮
𝑣𝑛

] = [
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

] [

𝑣1

⋮
𝑣𝑛

] (4) 

 

These eigenvalues are used to determine the wavelet filter as a function of scale. This wavelet filter with a 

scaling function is required to calculate the Chebyshev coefficient. Use this Chebyshev coefficient 

representing the wavelet and the Laplacian matrix representing the graph to transform the low-dose CT 

images by calculating the transform coefficient. Finally, by performing an inverse graph wavelet transform, 

the reconstructed images of the low-dose CT will be obtained. Detailed work on this step is available in [26]. 

 

 

 
(a) 

 

 
(b) 

 

Figure 5. The adjacency matrix corresponds to (a) 512×512 pixel and (b) 262144×262144 matrix elements 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 𝟏 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 0

𝟏 0 0 0 ⋯ 𝟏 0 0 ⋯ 0 0 0 ⋯ 0 0 0 0

0 0 0 𝟏 ⋯ 0 𝟏 0 ⋯ 0 0 0 ⋯ 0 0 0 0

0 0 𝟏 0 ⋯ 0 0 𝟏 ⋯ 0 0 0 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 𝟏 0 0 ⋯ 0 0 0 ⋯ 𝟏 0 0 ⋯ 0 0 0 0

0 0 𝟏 0 ⋯ 0 0 0 ⋯ 𝟏 0 0 ⋯ 0 0 0 0

0 0 0 𝟏 ⋯ 0 0 0 ⋯ 0 𝟏 0 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 𝟏 0 0 ⋯ 0 0 0 ⋯ 𝟏 0 0 0

0 0 0 0 ⋯ 0 𝟏 0 ⋯ 0 0 0 ⋯ 0 𝟏 0 0

0 0 0 0 ⋯ 0 0 𝟏 ⋯ 0 0 0 ⋯ 0 0 𝟏 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 0 0 0 ⋯ 𝟏 0 0 ⋯ 0 𝟏 0 0

0 0 0 0 ⋯ 0 0 0 ⋯ 0 𝟏 0 ⋯ 𝟏 0 0 0

0 0 0 0 ⋯ 0 0 0 ⋯ 0 0 𝟏 ⋯ 0 0 0 𝟏

0 0 0 0 ⋯ 0 0 0 ⋯ 0 0 0 ⋯ 0 0 𝟏 0 ]
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(a) (b) (c) 

 

Figure 6. The way to determine Laplacian matrix correspond to the (a) first, (b) second, and (c) 514th vertex 

 

 

𝐋 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟐 −𝟏 0 ⋯ 0 0 −𝟏 0 ⋯ 0 0 0 0 ⋯ 0 0 0

−𝟏 𝟑 −𝟏 ⋯ 0 0 0 −𝟏 ⋯ 0 0 0 0 ⋯ 0 0 0

0 −𝟏 𝟑 ⋯ 0 0 0 0 ⋯ 0 0 0 0 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ 𝟑 −𝟏 0 0 ⋯ 0 0 −𝟏 0 ⋯ 0 0 0

0 0 0 ⋯ −𝟏 𝟐 0 0 ⋯ 0 0 0 −𝟏 ⋯ 0 0 0

−𝟏 0 0 ⋯ 0 0 𝟑 −𝟏 ⋯ 0 0 0 0 ⋯ 0 0 0

0 −𝟏 0 ⋯ 0 0 −𝟏 𝟒 ⋯ 0 0 0 0 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ 0 0 0 0 𝟒 −𝟏 0 0 ⋯ 0 −𝟏 0

0 0 0 ⋯ 0 0 0 0 −𝟏 𝟑 0 0 ⋯ 0 0 −𝟏

0 0 0 ⋯ −𝟏 0 0 0 ⋯ 0 0 𝟐 −𝟏 ⋯ 0 0 0

0 0 0 ⋯ 0 −𝟏 0 0 ⋯ 0 0 −𝟏 𝟑 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 0 0 0 0 ⋯ 0 0 0 0 ⋯ 𝟑 −𝟏 0

0 0 0 ⋯ 0 0 0 0 ⋯ −𝟏 0 0 0 ⋯ −𝟏 𝟑 −𝟏

0 0 0 ⋯ 0 0 0 0 ⋯ 0 −𝟏 0 0 ⋯ 0 −𝟏 𝟐 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

Figure 7. Laplacian matrix with size 262144×262144 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Thresholding evaluation 

Thresholding is a technique used to eliminate certain coefficients from a noisy image. Coefficients 

that fall below a specified threshold value are removed, as they are assumed to represent noise. While 

different methods exist for determining the threshold value, they all operate under the assumption that noise 

follows a Gaussian distribution, which requires noise level estimation. When using DWT, the noise level is 

estimated by calculating the median of the absolute values of the wavelet coefficients. This estimation yields 

a threshold value (T) for wavelet denoising, which is derived from the calculations represented in (5). It is 

important to adapt this threshold for various methods, including stein's unbiased estimate of risk (SURE), 

universal, and MiniMaxi thresholding. 

 

𝑇 =
𝑚𝑒𝑑𝑖𝑎𝑛(𝑎𝑏𝑠(𝑐𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛))

0.6745
 √2 log 𝑛   (5) 

 

Wavelet thresholding is a method used to reduce noise in images. This process involves removing 

wavelet coefficients that fall below a predetermined threshold. These coefficients are obtained through 

wavelet decomposition, where larger coefficients indicate important image content and smaller coefficients 

typically represent noise. The threshold value is determined based on the characteristics of these coefficients. 

By adjusting the relevant coefficients appropriately using wavelet thresholding, we can effectively reduce 

noise in the data. The coefficients derived from the noisy image provide a clearer representation. However, 

when a single global threshold is applied, wavelet thresholding can estimate noise levels in a specific 

orientation. The accuracy of this estimation may decline at higher noise levels due to diagonal edges present 

in the approximation coefficients. To preserve local regularity in the image, it is essential to consider the 

vanishing moments and regularity properties of the wavelet basis when thresholding these coefficients. 

513 
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Using biorthogonal wavelets leads to better results when the wavelets have higher vanishing 

moments. This is particularly effective because the presence of sparsely spaced transients in a noisy image 

allows for more efficient representation. Biorthogonal wavelets, which consist of two scaling functions and 

two wavelet functions, offer improved regularity compared to orthogonal wavelets, such as the Daubechies 

wavelet. This enhanced regularity results in a smoother reconstructed image. Additionally, biorthogonal 

wavelet filters are symmetric and exhibit linear phase characteristics, which are essential for image 

processing. This symmetry helps prevent the introduction of visual distortions in the image. The use of a 

biorthogonal wavelet with many vanishing moments results in fewer significant wavelet coefficients, 

allowing for more coefficients to be reduced during the denoising process. However, it's important to note 

that using an analysis filter with fewer vanishing moments than a synthesis filter can adversely affect the 

denoising results. Furthermore, the DWT with a biorthogonal wavelet does not conserve energy, as energy is 

not preserved during the analysis stage. 

A comparison of threshold values using wavelet thresholding is presented in Figure 8, where the 

values for wavelet across all suitable bases outperform the Universal and MiniMaxi in Figure 8(a) and 

SURE in Figure 8(b), which means it will reduce wavelet coefficients less than other methods. This implies 

that using wavelet thresholding for denoising medical images is beneficial. After applying thresholding to 

remove noise from the wavelet coefficients, all the coefficients are reduced to form a denoised image. The 

next step is to reconstruct the denoised image by transforming it back to its original form using the inverse 

DWT. 

 

 

 
(a) 

 

 
(b) 

 

Figure 8. Threshold value for (a) universal and MiniMaxi (b) SURE and wavelet 
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3.2.  Graph-based amelioration 

A graph wavelet transform is necessary because the sparse representation produced by wavelet 

decomposition cannot be sufficiently addressed by wavelet thresholding alone. This can be demonstrated by 

comparing the results of wavelet thresholding with those obtained from the graph-based wavelet transform, 

as illustrated in Table 3. This table also evaluates the best performance of denoised image reconstruction 

across various methods, including learning-based approaches applied to all slice numbers. The results 

indicate that the graph wavelet transform outperforms all other methods for CT images across all L506 slices. 

The Objective values obtained after reconstructing the denoised images using all the methods are 

presented in Figure 9, for 30 numbers of CT slice images. Based on the PSNR and SSIM presented in  

Figures 9(a) and 9(b), respectively, we conclude that the most suitable base for wavelet denoising application 

to low-dose CT images is Biorthogonal 5.5. For visual assessment, Figure 10 shows a comparison between 

Bior5.5 and Db6 with scan 8 and its region of interest in Figure 10(a), where Bior5.5 achieves better than 

Db6 by comparing Figure 10(b) with Figure 10(c). Db6 was chosen to represent the Daubechies wavelet 

family since it has the best PSNR values within the family. Scan 8 was chosen because it produces the 

highest PSNR values for both wavelet thresholding and graph wavelet transform. Figure 11 shows that 

Bior5.5 graph wavelet transform is better than Bior5.5 wavelet thresholding in denoising the low-dose image 

with respect to the full dose in Figures 11(a) by comparing Figure 11(b) with Figure 11(c). 

 

 

Table 3. Comparison of the best PSNR (in dB) for all the methods and L506 slices reconstructed CT images 
Measured 

performance 

Methods 

LDCT RED-CNN CPCE WGAN NLnet AGC-LSRED Wavelet Graph wavelet 

PSNR 27.24 [25] 32.93 [25] 33.04 [25] 30.80 [25] 33.06 [25] 33.17 [25] 34.06 35.47 

 

 

 
(a) 

 

 
(b) 

 

Figure 9. Comparison of (a) PSNR and (b) SSIM for all methods and the 30 reconstructed images 
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(a) (b) (c) 

 

Figure 10. L506 CT image with scan labeled 8 in (a) region of interest (RoI) (b) Db6 and (c) Bior5.5 

 

 

   
(a) (b) (c) 

 

Figure 11. L506 CT image with scan labeled 8 in (a) full dose (b) Bior5.5 wavelet (c) Bior5.5 graph wavelet 

 

 

3.2.  Statistical validation 

A Wilcoxon rank-sum test was performed to validate the results of this paper. This test assumed that 

the 30 data points, which represent reconstructed images obtained from image denoising using the Db6 and 

Bior5.5 wavelet transform, are independent. P-values were calculated to compare the 30 data samples with 

the null hypothesis of equal medians against the alternative hypothesis of unequal medians. Table 4 

demonstrates that only the graph wavelet transform satisfies the hypothesis for both the peak signal-to-noise 

ratio (PSNR) and SSIM. A result of h=1 indicates rejection of the null hypothesis, while h=0 indicates a 

failure to reject it at the 5% significance level. However, wavelet thresholding did not meet the statistical 

criteria across all quality measures for both parameters. In contrast, methods utilizing SURE, Universal, and 

MiniMaxi thresholding support the hypothesis only when assessing SSIM. Overall, these findings suggest 

that the graph wavelet transform is the optimal choice for denoising low-dose CT images. 

 

 

Table 4. Statistically validating the results for Db6 and Bior5.5 
Measured performance Model to be statistically validated: Db6 and Bior5.5 Wilcoxon rank-sum test 

RigrSURE Universal MiniMaxi Wavelet Graph wavelet 

PSNR 0 0 0 0 1 h 

9.05×10−2 9.19×10−2 9.19×10−2 4.04×10−1 3.02×10−11 p 

SSIM 1 1 1 0 1 h 
1.80×10−2 1.76×10−2 1.76× 10−2 6.36×10−1 2.97×10−11 p 

 

 

4. CONCLUSION 

The experiment demonstrates that selecting the appropriate wavelet basis is essential for denoising 

low-dose CT images, yielding the best results as measured by PSNR and SSIM. We evaluated various 

methods, including the thresholding technique, to determine the most effective wavelet basis. Our analysis 

includes comparing wavelet thresholding techniques, graph wavelets, and learning-based methods for 

reconstructing denoised CT images. Based on the PSNR and SSIM performance metrics, the graph-based 

wavelet denoising technique provides superior image quality, effectively addressing the noise issues in low-

dose CT images when compared to RigrSURE, Universal, MiniMaxi, and conventional wavelet thresholding 
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methods. Future research could explore the potential of applying learning-based techniques to graph 

wavelets, rather than limiting the approach to either wavelet or graph methods alone. 
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