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 The advanced encryption standard (AES) offers strong symmetric key 

encryption, ensuring data security in cloud computing environments during 

transmission and storage. However, its key scheduling algorithm is known to 

have flaws, including vulnerabilities to related-key attacks, inadequate 

nonlinearity, less complicated key expansion, and possible side-channel 

attack susceptibilities. This study aims to strengthen the independence 

among round keys generated by the key expansion process of AES—that is, 

the value of one round key does not reveal anything about the value of 

another round key—by improving the key scheduling process. Data sets of 

random, low, and high-density initial secret keys were used to evaluate the 

strength of the improved key scheduling algorithm through the National 

Institute of Standards and Technology (NIST) frequency test, the avalanche 

effect, and the Hamming distance between two consecutive round keys. A 

related-key analysis was performed to assess the robustness of the proposed 

key scheduling algorithm, revealing improved resistance to key-related 

cryptanalysis. 
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1. INTRODUCTION 

National Institute of Standards and Technology (NIST) launched the advanced encryption standard 

(AES) competition to search for a better secure cryptographic algorithm. Vincent Rijmen and Joan Daemen 

developed the Rijndael algorithm. Rijndael evolved into AES following NIST’s 2001 declaration of the 

winner [1], [2]. Because of its robust security, effectiveness, and adaptability in safeguarding data while it’s 

in transit and at rest, it is extensively utilized in cloud computing [3], [4]. It is a symmetric block cipher that 

guarantees trustworthy and efficient information security techniques by supporting 16 bytes data block sizes 

and key lengths of 16, 24, and 32 bytes [5]. The three essential components of AES are key expansion, 

decryption, and encryption. An XOR operation is performed at each encryption round operation between the 

state array of data and the round key obtained during the key expansion procedure to incorporate randomness 

and diffusion [6]–[8]. 

A well-designed key scheduling algorithm (KSA) can prevent computational guessing of the 

plaintext or key. Despite the difficulty of executing brute force attacks with larger keys, maintaining security 

in the key expansion process requires sticking to the concepts of confusion and diffusion [9], [10]. 

Encryption garners more research focus due to its direct impact on data security, while key expansion, vital 
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for algorithms like AES, is considered an auxiliary component [11], [12]. Finite nonlinearity in the AES key 

schedule is the source of AES key expansion weaknesses, including related key attacks. Due to these flaws, 

there are significant security vulnerabilities, as adversaries can recover keys, exploit slow diffusion, and 

manipulate subkeys [13], [14]. To increase the bit transition between subkeys, KSA should generate subkeys 

that are independent of one another and random. Consequently, this study aims to improve the overall 

security of the AES encryption technique by designing a new and enhanced version of AES KSA. 

Many researchers have conducted extensive research to improve the KSA’s efficiency and 

randomness across various encryption algorithms. Hammod et al. [15] suggest an improved approach to the 

AES KSA using modified cipher feedback (MCFB) mode. It does this by implementing two processes: shift 

rows and substitution bytes, which reduce complexity and increase speed, efficiency, and performance for a 

range of key lengths. Reyes et al. [16] used simple operations like XOR and modulo arithmetic to modify the 

AES cipher round and KSA to fix low diffusion rates in early rounds. They improved the KSA by adding 

byte substitution and round constant addition. In rounds 1 and 3, the modified AES increased diffusion rate 

and improved encryption output randomness. Pehlivanoglu et al. [17] explore block ciphers and their key 

schedule algorithm, inspired by AES, with desirable properties like good avalanche effect and bit confusion. 

Similarly, Cao et al. [18] optimize the AES KSA using three improvement strategies: irreversible 

improvement, word shift, and random number strategy, to reduce round-key correlation, improve security, 

and ensure efficient operation. Kumar et al. [19] proposed and simulated a new subkey generation algorithm 

for AES on the FPGA Virtex 5 XC5VLX50T, enhancing its speed, maintaining word diffusion, and 

minimizing time consumption. 

De Leon et al. [20] modified the tiny encryption algorithm (TEA), a lightweight encryption method, 

to improve security by rotating subkeys and shifting keys, outperforming the original TEA. By adding a 

salting algorithm to the subkey, Galas and Gerardo [21] enhanced the security of the corrected block tiny 

encryption algorithm, XXTEA, and improved its randomness and avalanche effect. This approach was more 

effective than the original approach, which failed the frequency test. The key expansion process of 

PRESENT-128 is enhanced by Imdad et al. [22] with improved randomness, avalanche effect, and Hamming 

distance between round keys through experimental tests with random, low, and high-density initial secret 

keys. Zakaria et al. [23] improved the RECTANGLE key schedule algorithm by increasing randomization 

and confusion properties, speed, and throughput.  

This article arranges its sections as follows, section 2 provides a comprehensive description of the 

standard and improved AES key expansion procedures. This section also describes the statistical tests and 

key expansion process assessment parameters to evaluate the robustness of the standard and improved AES 

key expansion algorithms. Section 4 concludes with the findings and discussions from section 3. 

 

 

2. METHOD 

2.1.  Standard AES KSA 

This article considers AES-128 KSA and Figure 1 depicts its detailed key scheduling process. The 

round-key generation process works at the word level (32 bits). So, the procedure starts by dividing the initial 

secret key of length 128 bits into four words (W0, W1, W2, W4). The first four words of the key schedule are 

the same as the four words of the initial secret key. KSA derives the remaining 40 words iteratively through a 

sequence of transformations, as AES-128 encryption and decryption necessitate the generation of 10 round 

keys from the initial secret key. These 40 words are further divided into 10 round keys. In (1)–(10) generate 

the words W3’, W7’, W11’, ... , W39’ [24]. 

 

𝑊3’ =  𝑆𝑢𝑏𝑊𝑜𝑟𝑑 (𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑(𝑊3)) ⨁ 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (1) 

 

𝑊7’ =  𝑆𝑢𝑏𝑊𝑜𝑟𝑑 (𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑(𝑊7)) ⨁ 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (2) 

 

𝑊11’ =  𝑆𝑢𝑏𝑊𝑜𝑟𝑑 (𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑(𝑊11)) ⨁ 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (3) 

 

… … … … … (4)-(9) 

 

𝑊39’ =  𝑆𝑢𝑏𝑊𝑜𝑟𝑑 (𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑(𝑊39)) ⨁ 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (10) 

 

where 𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑 is the circular left shift of one byte, 𝑆𝑢𝑏𝑊𝑜𝑟𝑑 is the substitution method using a built-in 

16 × 16 𝑆 − 𝐵𝑜𝑥 and ⨁ is the XOR operation and 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 are in the form of (𝑅𝐶𝑗, 00,00,00) as 

shown in the Table 1. The subsequent words are generated by simple XOR operation, as follows: 
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W4=W3’ ⨁ W0, W5=W4 ⨁ W1, W6=W5 ⨁ W2, W7=W6 ⨁ W3, W8=W7’ ⨁ W4, W9=W8 ⨁ W5, 

W10=W9 ⨁ W6, W11=W10 ⨁ W7, W12=W11’ ⨁ W8, W13=W12 ⨁ W9, W14=W13 ⨁ W10, W15=W14 

⨁ W11, W16=W15’ ⨁ W12, W17=W16 ⨁ W13, W18=W17 ⨁ W14, W19=W18 ⨁ W15, W20=W19’ ⨁ 

W16, W21=W20 ⨁ W17, W22=W21 ⨁ W18, W23=W22 ⨁ W19, W24=W23’ ⨁ W20, W25=W24 ⨁ W21, 

W26=W25 ⨁ W22, W27=W26 ⨁ W23, W28=W27’ ⨁ W24, W29=W28 ⨁ W25, W30=W29 ⨁ W26, 

W31=W30 ⨁ W27, W32=W31’ ⨁ W28, W33=W32 ⨁ W29, W34=W33 ⨁ W30, W35=W34 ⨁ W31, 

W36=W35’ ⨁ W32, W37=W36 ⨁ W33, W38=W37 ⨁ W34, W39=W38 ⨁ W35, W40=W39’ ⨁ W36, 

W41=W40 ⨁ W37, W42=W41 ⨁ W38, W43=W42 ⨁ W39.  

 

Both the encryption and decryption processes will use these 44 words from the AES 128 key schedule.  

 

 

 
 

Figure 1. AES key expansion process 

 

 

Table 1. Round constants in standard AES KSA 
Round (j) Round_constants (RCj) 

1 0x01 

2 0x02 

3 0x04 
4 0x08 

5 0x10 

6 0x20 
7 0x40 

8 0x80 

9 0x1b 
10 0x36 
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Pseudocode of standard AES KSA 
ASE128KeyExpansion (byte initial_secretkey [16], word w [44]) 

{ 

    word tmp_word; 

    Round_constants=[0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x04, 0x80, 0x1b, 0x36] 

    for (x=0; x<4; x++) 

        w[x]=(initial_secretkey[4*x], initial_secretkey [4*x+1], initial_secretkey [4*x+2], 

initial_secretkey [4*x+3]); 

    for (x=4; x<44; x++) 

    { 

        tmp_word=w[x-1]; 

        if (x mod 4=0) 

     tmp_word=SubWord (RotateWord(tmp_word)) ⊕ Round_constants [x/4]; 

        w[x]=tmp_word ⊕ w[x-4]; 

    } 

} 

 

2.2.  Enhanced AES KSA 

2.2.1. Enhanced key expansion using S-Box based expanded round constants 

The AES key scheduling technique uses an implementation of cyclic rotation, S-box, and XOR with 

round constants to find the temporary words (W3’, W7’, W11’, ..., W39’). All the remaining round keys can 

be produced from the original key using these temporary variables. However, the round constants 

(𝑅𝐶𝑗, 0,0,0) in AES leave three bytes as zeros, as shown in Figure 1, which lessens the amount of confusion 

and diffusion in the round key generation process. Attackers can exploit chosen, known, and related key 

assaults because of this flaw. To put it another way, XORing with zero doesn’t create more confusion, which 

makes it easier for adversaries to deduce parts of the key. As shown in Figure 2, the stretched round constants 

(RCj, S-Box [RCj], S-Box [S-Box [RCj]], S-Box [S-Box [S-Box [RCj]]]) are used in place of the round 

constants (𝑅𝐶𝑗, 0, 0, 0) in the proposed AES KSA. The expanded round constants using S-Box are given in 

Table 2. These expanded round constants are generated by applying S-Box on the round constants RCj 

iteratively. 

 

 

 
 

Figure 2. Enhanced AES key expansion process 
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Table 2. Expanded round constants using S-Box 
Round(j) 1 2 3 4 5 

Round_constants 0x017c10ca 0x0277f5e6 0x04f289a7 0x083004f2 0x10ca7492 
Round(j) 6 7 8 9 10 

Round_constants 0x20b7a9d3 0x4009017c 0x80cdbd7a 0x1baf79b6 0x36056b7f 

 

 

2.2.2. Enhanced key expansion using cubic polynomial function 

AES KSA uses circular left shift of one byte, S-box substitutions, and XOR operation with round 

constants. However, round keys still show some level of correlation, because each round key is generated 

sequentially, with each subsequent round key being derived from the previous one. This operation is 

performed word-wise, meaning that each corresponding word from the previously generated round key is 

XORed with the current word to generate the next word. For instance, W5 (6th word) is generated from W4 

and W1, W6 (7th word) from W5 and W2, and W7 (8th word) from W6 and W3 and so on. So, AES needs 

improvements to reduce correlations between round keys, which makes the key schedule stronger. Such 

improvements can consist of refining the derivation techniques, which include more nonlinear processes. To 

accomplish this, a cubic polynomial function is used in the proposed KSA to introduce chaos between round 

keys. The generic form of this type of polynomial is 𝑓(𝑥): 𝑚𝑥3 + 𝑛𝑥2 + 𝑜𝑥 + 𝑝, where m does not equal 

zero. The behavior of these curves is determined by the values of the real coefficients (𝑚, 𝑛, 𝑜, and 𝑝). A 

cubic polynomial function, for example, has coefficients m=1, n=-3, o=2, and p=-1 as shown in Figure 3. 

The enhanced AES KSA uses these coefficient values because it improves the complexity of the key 

expansion process. These functions can be employed as a powerful substitution technique to improve the 

diffusion and confusion properties of the round key generation mechanisms used in block ciphers. 

 

 

 
 

Figure 3. Graphical representation of f(x) 

 

 

In AES KSA, for each word generation, each corresponding word from the previously generated 

round key is XORed with the current word to generate the next word. The proposed KSA applies the f(x) 

mod 256(⊗) operation on each current word which directly participates in the XOR operation with the 

corresponding word from the previous key. For instance, the word W5 is generated equal to (f(W4) mod 256 

⨁ W1) instead of W4 ⨁ W1. In the proposed KSA, the key schedule is generated as follows: 

 

W4=W3’ ⨁ W0, W5=f(W4) mod 256 ⨁ W1, W6=f(W5) mod 256 ⨁ W2, W7=f(W6) mod 256 ⨁ W3, 

W8=W7’ ⨁ W4, W9=f(W8) mod 256 ⨁ W5, W10=f(W9) mod 256 ⨁ W6, W11=f(W10) mod 256 ⨁ W7, 

W12=W11’ ⨁ W8, W13=f(W12) mod 256 ⨁ W9, W14=f(W13) mod 256 ⨁ W10, W15=f(W14) mod 256 

⨁ W11, W16=W15’ ⨁ W12, W17=f(W16) mod 256 ⨁ W13, W18=f(W17) mod 256 ⨁ W14, W19=f(W18) 

mod 256 ⨁ W15, W20=W19’ ⨁ W16, W21=f(W20) mod 256 ⨁ W17, W22=f(W21) mod 256 ⨁ W18, 

W23=f(W22) mod 256 ⨁ W19, W24=W23’ ⨁ W20, W25=f(W24) mod 256 ⨁ W21, W26=f(W25) mod 256 

⨁ W22, W27=f(W26) mod 256 ⨁ W23, W28=W27’ ⨁ W24, W29=f(W28) mod 256 ⨁ W25, W30=f(W29) 

mod 256 ⨁ W26, W31=f(W30) mod 256 ⨁ W27, W32=W31’ ⨁ W28, W33=f(W32) mod 256 ⨁ W29, 

W34=f(W33) mod 256 ⨁ W30, W35=f(W34) mod 256 ⨁ W31, W36=W35’ ⨁ W32, W37=f(W36) mod 256 

⨁ W33, W38=f(W37) mod 256 ⨁ W34, W39=f(W38) mod 256 ⨁ W35, W40=W39’ ⨁ W36, W41=f(W40) 

mod 256 ⨁ W37, W42=W41 ⨁ W38, W43=f(W42) mod 256 ⨁ W39. 
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The output of the word to be XORed with corresponding words from the previous key is determined 

by the cubic polynomial function’s modulus of 256. Once it has generated all the words or round keys, it 

completes the key scheduling process. As shown in Figure 2, the function (f(x) mod 256) is denoted by the 

symbol ⊗. The relationship between the input (x) of the operation (⊗) and its output is shown in Figure 4. A 

complex relationship can be seen by analyzing the backtracking of the input (𝑥) value from the f(x) mod 256 

(⊗) operation output, which has several bends and oscillations as illustrated in Figure 4. There are irregular 

shifts in the outputs due to the nonlinear relationship between inputs (x) and the outputs of ⊗; this reduces 

the correlation between words and round keys in the key schedule. Due to this non-linear behavior, attackers 

often find it challenging to infer the input key from the round keys, as the same output may not always 

correspond to the same input in the operation. It depends on the real coefficient values used in the cubic 

polynomial function. The backtracking process is more intricate and unpredictable, which makes the function 

more resilient to cryptographic attacks. 

 

 

 
 

Figure 4. Relationship between input (x) and ⊗ operation 

 

 

Pseudocode of enhanced AES KSA 
EnhancedAES128KeyExpansion (byte initial_secretkey [16], word w [44], int m, int n, int o, 

int p) 

{ 

word tmp_word; 

Round_constants=(0x017c10ca, 0x0277f5e6, 0x04f289a7, 0x083004f2, 0x10ca7492, 0x20b7a9d3, 

0x4009017c, 0x80cdbd7a, 0x1baf79b6, 0x36056b7f); 

for (x=0; x<4; x++) 

w[x]=(initial_secretkey [4*x], initial_secretkey [4*x+1], initial_secretkey [4*x+2], 

initial_secretkey [4*x+3]); 

for (x=4; x<44; x++) 

{ 

    tmp_word=w[x-1]; 

    if (x mod 4=0) 

   { 

        tmp_word =SubWord (RotateWord(tmp_word)) ⊕ Round_constants[x/4]; 

        w[x]=tmp_word ⊕ w[x-4]; 

   } 

  else 

  { 

    for (y=0; y<4; y++) 

    { 

      tmp_word[y]=(m*tmp_word[y]^3+n*tmp_word[y]^2+o*tmp_word[y]+p) % 256 

    }  

      tmp_word=[tmp_word [0], tmp_word [1], tmp_word [2], tmp_word [3]]; 

      w[k]=tmp_word ⊕ w[k-4]; 

  }  

} 

} 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

An improved key scheduling for advanced encryption standard with... (Muthu Meenakshi Ganesan) 

2461 

2.3.  Evaluation 

This section discusses the evaluation method to measure the strength of the enhanced AES KSA. 

High density, low density, and random density input key sets were used for the evaluation process. The  

high-density key (HDK), with its large number of ‘1’ bits and a small number of ‘0’ bits (at most two), poses 

a challenge to algorithms with extreme biases towards the ‘1’ bits. On the other hand, the low-density key 

(LDK), with its large number of ‘0’ bits and a small number of ‘1’ bits (at most two), poses a challenge to 

algorithms with extreme biases towards the ‘0’ bits. Random density keys (RDK) consist of random 

sequences of ‘0’ and ‘1’ bits, serving as a baseline for more typical key distributions. The following tests 

were used to evaluate the proposed and standard AES KSAs: frequency test, avalanche effect, bit difference 

between successive subkeys, and related key analysis. 

 

2.3.1. Frequency test 

The indeterminacy of round keys generated from KSA in block ciphers can be evaluated using the 

frequency test, which is intended to evaluate the randomness of random number generators (RNGs). By 

assessing the distribution of ‘0’ and ‘1’ bits in the binary sequence of round keys, the test determines if it 

displays the essential randomness for secure encryption operations [25]. Passing the test indicates an equal 

distribution of 0s and 1s, revealing the strength of the KSA; failure implies potential bias or non-randomness. 

To conduct the frequency test, the following steps a through step d are followed: 

a. Converting the binary sequence pattern (ε) into ±1: This procedure converts the sequence into values -1 

and +1. The formula 𝑋𝑖 = 2𝜖𝑖 − 1 represents a conversion of this type. That is, if 𝜖𝑖 = 0, then 𝑋𝑖 = -1, 

and if 𝜖𝑖 = 1, then 𝑋𝑖 = 1. 

b. The overall computation of Sum (Sn): 

 

𝑋1 + 𝑋2+. . . + 𝑋𝑛 = 𝑆𝑛  

 

where n is the total number of bits. 

c. Determine the test statistic estimator (𝑆𝑜𝑏𝑠): 

 

𝑆𝑜𝑏𝑠 =
|𝑆𝑛|

⎷𝑛
 

 

d. P-value assessment: The p-value is computed and investigated using the complementary error function 

(𝑒𝑟𝑓𝑐) as given below. 

 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑒𝑟𝑓𝑐 (
𝑆𝑜𝑏𝑠

⎷2
) (11) 

 

To evaluate the strength of both existing and proposed KSA, 10,000 initial random secret keys were 

generated and stored in a single file. Using these initial secret keys 10 round keys were generated and stored 

in 10 different files for existing and proposed KSAs. Every file is examined separately. The outcomes of the 

proposed and existing ones were compared. The frequency test evaluates the randomness of a bit sequence by 

calculating the p-value using (11) and analyzing the outcomes. If the p-value is more than or equal to 0.01, a 

sequence is considered pseudo-random; if not, it is considered non-random [25]. 

 

2.3.2. Avalanche effect of round keys 

In cryptography, the phenomenon known as the “avalanche effect (AE)” occurs when an alteration 

of a single bit in the input (plaintext in encryption or secret key in KSA) causes a noticeably different output 

(ciphertext in encryption or round keys in KSA). The AE test for the KSA can be carried out by comparing 

two key schedules generated before and after complementing one bit of the original secret key [26]–[28]. To 

do this, it is necessary to find the Hamming distance (number of bits flipped) between the two Key schedules, 

generated before flipping any bits of the original secret key and after flipping a single bit of the original 

secret key—the next bit of the original key changes with each iteration to determine the AE. The computation 

of the average AE for the existing and proposed KSA is given below. 

 

𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑓𝑙𝑖𝑝𝑝𝑒𝑑 𝑋 100

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠
 (12) 

 

2.3.3. Bit difference between round keys 

The Hamming distance between two successive subkeys was calculated using the XOR function in 

this test to assess their correlation. The statistical relationship between the round keys becomes extremely 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2455-2467 

2462 

complicated when the reliable KSA offers a bit difference of more than 50% [22], [27]. To evaluate this, 100 

RDK, 100 LDK, and 100 HDK were used. Since the AES KSA algorithm generates 10 round keys from an 

initial secret key, in each round, the keys generated from the existing and proposed algorithms are also 

written to separate files, and these 10 round keys, including the initial secret key, i.e., 11 separate files for 

both algorithms, were taken for testing. The Hamming distance between two successive file contents was 

determined iteratively. This test was performed for both existing and proposed KSA with all three types of 

keys, and average Hamming distances between round keys were used to measure the correlation between 

round keys. 

 

2.3.4. Related key analysis 

The related key analysis identifies key schedule vulnerabilities and evaluates cryptographic 

protection. It prevents key recovery by attackers and enhances cryptographic design by exposing weaknesses. 

To perform related key analysis, given an original key 𝐾 and plaintext 𝑋 with a predetermined difference Δ, 

the related key K’ is generated as 𝐾’ = 𝐾 ⊕ 𝛥 and the related plaintext X’ is generated as 𝑋’ = 𝑋 ⊕ 𝛥, 

where ⊕ denotes the bitwise XOR operation. To find the ciphertext C, encrypt the plaintext X with the key 

K using 𝐶 = 𝐸𝐾(𝑋). For the related ciphertext C’, encrypt the related plaintext X’ with the related key K’ 

using 𝐶’ = 𝐸𝐾′(𝑋’). If the output difference distribution (𝐶 ⊕ 𝐶’) is not uniform, an attacker could use this 

irregularity to deduce the key for encrypting messages with the input difference between input differences 

(𝑋 ⊕ 𝑋’). The Hamming distance 𝑑𝐻  measures the bit difference between C and C′ [29], [30]. The mean 

Hamming distance (μ𝑑) between ciphertexts is calculated as (13): 

 

μ𝑑 =
1

𝑁
 ∑ 𝑑𝐻(𝐶𝑖 , 𝐶′𝑖)

𝑁
𝑖=1  (13) 

 

where 𝑁 is the number of bytes in 𝐶 ⊕ 𝐶’. The variance of the Hamming distance (σd
2) is calculated as the 

average of the squared differences between each Hamming distance, 𝑑𝐻(Ci, Ci′) and the mean Hamming 

distance 𝜇𝑑, given by (14): 

 

σd
2=

1

𝑁
∑ (𝑑𝐻(𝐶𝑖 , 𝐶′𝑖)  − μ𝑑)𝑁

𝑖−1
2 (14) 

 

The variance of the Hamming distance is used to assess the uniformity in the distribution of the output 

differences 𝐶 ⊕ 𝐶’. Low variance indicates consistent and uniform behavior, reducing the likelihood of 

exploitable patterns in related key analysis. To find the mean Hamming distance between ciphertexts and 

related ciphertexts, 1000 random keys and plaintexts were used. The mean Hamming distance was calculated 

by averaging the Hamming distances between N bytes of ciphertexts Ci and their corresponding related 

ciphertexts Ci’ using (13) and its variance was calculated using (14). The overall mean Hamming distance 

and the variance were calculated by taking the average of individual Hamming distances and their variances 

respectively from 1000 different trials. 

 

2.3.5. Execution time 

Execution time is a crucial factor in evaluating the efficiency of an algorithm, as faster execution 

leads to improved user experience and more efficient resource utilization. To get the execution time, one 

must record the start and completion times of the algorithm and subtract the start from the completion time 

[31]. The execution time for both KSAs was calculated and compared in this way. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Frequency test 

Table 3 displays the frequency test p-values for 10 round keys generated by the standard AES KSA 

and the enhanced AES KSA. The standard version of AES KSA has an average p-value of 0.510392174, but 

the improved AES KSA has an average p-value of 0.529139941. The average p-values are greater than 0.01 

for the round key sequences generated by the standard AES KSA and Enhanced AES KSA passes the 

frequency test. So, the test results reveal that the subkey sequences generated by both methods have nearly 

identical ratios of 1 to 0 s. 

 

3.2.  Avalanche effect of round keys 

Three secret keys—one for each type—RDK, LDK, and HDK—were used to test the AE of both 

methods. These results were obtained by applying formula (12). The subsequent bit of the initial key is 

complemented with each iteration to produce a new AE value. In this way, the AE for each round key is 
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calculated and the average values of test results are given in Table 4. As per the results of this study shown in 

Figure 5, for the enhanced AES KSA, the average values of AE of three types of initial secret keys are  

RDK-36.74%, LDK-35.81%, and HDK-32.09%. Meanwhile, the standard AES KSA has these results:  

RDK-34.23%, LDK-33.16%, and HDK-29.14%. In all rounds, these test results indicate that the enhanced 

AES KSA can provide better diffusion (avalanche effect) than the standard AES KSA. As a result, the 

improved KSA is better at spreading information, with average avalanche effects of 35%, whereas the 

standard AES KSA has 32%. The improved AES KSA does not affect the encryption method’s avalanche 

effect as shown in Table 5, which remains almost constant at 49.90% compared to the original’s 49.55%. 

 

 

Table 3. P-value of frequency test 
Round No. p-value of Standard AES KSA p-value of improved AES KSA 

1 0.699960939 0.085747474 

2 0.270757927 0.873590856 
3 0.386377309 0.908520539 

4 0.569206199 0.780009098 

5 0.195663552 0.735631866 
6 0.170129707 0.702581781 

7 0.611909882 0.007640417 

8 0.59221195 0.816866208 
9 0.711782429 0.330036882 

10 0.895921851 0.05077429 
Average p-value 0.510392174 0.529139941 

 

 

 Table 4. Average avalanche effect of round keys  
RDK LDK HDK 

Round 
No. 

Standard AES 
KSA 

Enhanced AES 
KSA 

Standard AES 
KSA 

Enhanced AES 
KSA 

Standard AES 
KSA 

Enhanced AES 
KSA 

1 10.30273438 10.58959961 5.859375 7.574462891 4.680461712 4.983108108 

2 20.82519531 19.81201172 18.33496094 16.00952148 15.72353604 14.78744369 
3 30.28564453 29.06494141 29.16259766 28.49121094 24.23986486 21.80461712 

4 37.72583008 37.24365234 38.03100586 36.18774414 32.43947072 33.28406532 

5 41.07666016 43.27392578 39.87426758 43.64624023 37.15512387 37.76745495 
6 40.34423828 44.39697266 40.46630859 45.03173828 36.00788288 40.5053491 

7 39.16015625 45.73364258 40.30151367 45.13549805 36.00788288 40.625 

8 41.20483398 45.75805664 40.00244141 45.703125 36.04307432 42.07488739 
9 40.27099609 45.75195313 39.58129883 45.35522461 35.11402027 42.0678491 

10 41.12548828 45.77026367 39.9597168 44.95239258 34.03716216 43.00394144 

Average 34.23217773 36.73950195 33.15734863 35.80871582 29.14484797 32.09037162 

 

 

  
 

Figure 5. Avalanche effect of round keys 

 

 

Table 5. Average avalanche effect of cipher text 
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3.3.  Bit difference between round keys 

Tables 6 and 7 provide the Hamming distance between two successive round keys and the percentage 

of the Hamming distances between two subkeys for standard AES KSA and enhanced AES KSA, respectively. 

Based on these test results as shown in Figure 6, the overall average values of bit difference between subkeys 

for enhanced AES KSA are RDK-59.28%, LDK-59.87%, and HDK-58.60%. Meanwhile, the standard AES 

KSA has these results: RDK-49.91%, LDK-50.16%, and HDK-50.60%. Results show that the enhanced version 

of AES KSA consistently yields higher bit differences between two successive subkeys, suggesting potentially 

enhanced security through greater variability in generated subkeys. 

 

 

Table 6. Bit difference between round keys of standard AES KSA 
Round No.(i) RDK LDK HDK 

k(i) ⊕ k(i+1) Hamming distance % of Bit diff. Hamming distance % of Bit diff. Hamming distance % of Bit diff. 

k1⊕k2 6303 49.2421875 6055 47.3046875 7184 56.125 

k2⊕k3 6408 50.0625 7417 57.9453125 6405 50.0390625 

k3⊕k4 6447 50.3671875 6493 50.7265625 6264 48.9375 

k4⊕k5 6436 50.28125 6549 51.1640625 6394 49.953125 

k5⊕k6 6393 49.9453125 6365 49.7265625 6457 50.4453125 

k6⊕k7 6331 49.4609375 6208 48.5 6057 47.3203125 

k7⊕k8 6348 49.59375 6083 47.5234375 6486 50.671875 

k8⊕k9 6412 50.09375 6115 47.7734375 6519 50.9296875 

k9⊕k10 6420 50.15625 6750 52.734375 6988 54.59375 

k10⊕k11 6381 49.8515625 6175 48.2421875 6010 46.953125 

Average 6387.9 49.90546875 6421 50.1640625 6476.4 50.596875 

 

 

Table 7. Bit difference between round keys of enhanced AES KSA 
Round No.(i) RDK LDK HDK 

k(i) ⊕ k(i+1) Hamming Distance % of Bit Diff. Hamming Distance % of Bit Diff. Hamming Distance % of Bit Diff. 

k1⊕k2 7599 59.3671875 7599 59.3671875 7496 58.5625 

k2⊕k3 7651 59.7734375 7961 62.1953125 6810 53.203125 

k3⊕k4 7602 59.390625 7349 57.4140625 7717 60.2890625 

k4⊕k5 7598 59.359375 8164 63.78125 7249 56.6328125 

k5⊕k6 7639 59.6796875 7272 56.8125 8097 63.2578125 

k6⊕k7 7665 59.8828125 8030 62.734375 7124 55.65625 

k7⊕k8 7506 58.640625 7099 55.4609375 8028 62.71875 

k8⊕k9 7532 58.84375 7931 61.9609375 7274 56.828125 

k9⊕k10 7535 58.8671875 7245 56.6015625 8082 63.140625 

k10⊕k11 7556 59.03125 7988 62.40625 7135 55.7421875 

Average 7588.3 59.28359375 7663.8 59.8734375 7501.2 58.603125 

 

 

  
 

Figure 6. Average bit difference between round keys 
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3.4.  Related key analysis 

The related key analysis, shown in Table 8 and illustrated in Figure 7, reveals that the enhanced 

AES key scheduling provides stronger security than the standard version. The enhanced key schedule 

achieves a higher byte-level mean Hamming distance of 4.1837, indicating greater separation between related 

ciphertexts, compared to 3.9198 for the standard AES. Also, the enhanced AES exhibits a lower mean 

Hamming distance variance of 1.686 versus 2.0865 for the standard key schedule, reflecting more uniform 

behavior. The reduced variance ensures consistent output differences, minimizing exploitable patterns. In 

conclusion, the enhanced AES key scheduling boosts security and resists related key attacks. 

 

 

Table 8. Related key analysis based on 𝜇𝑑  and σd
2 

Related key analysis measures AES with enhanced key scheduling AES with standard key scheduling 

Byte-level mean Hamming distance 4.1837 3.9198 
Variance of mean Hamming distance 1.686 2.0865 

 

 

  
 

Figure 7. Related key analysis 

 

 

3.5.  Execution time 

Both the standard and improved AES KSAs were implemented in Python and executed on an Intel 

(R) CoreTM i7-11255U, 4.7 GHz CPU, to measure the execution time for comparison. Both algorithms were 

executed 150 times with different keys, and the execution times were measured for each run and then 

averaged. As a result, the improved AES KSA requires 0.0008364 s to generate 10 round keys whereas the 

standard AES KSA requires 0.0007690 s. The proposed KSA was improved using powerful nonlinear 

substitution techniques without significantly increasing the execution time. The enhanced KSA’s security 

improvements for the avalanche effect and non-correlated round key generation negate the insignificant time 

difference of 0.0000674 s. 

 

 

4. CONCLUSION 

The round keys generated by the modified KSA are more random and better uncorrelated due to 

expanded round constants and robust nonlinear cubic polynomials with modulus operations. Both standard 

and improved KSA show similar NIST frequency test p-values, indicating nearly identical 1 to 0 s ratios in 

their subkey sequences. The improved KSA shows better performance with an average avalanche effect of 

35% (vs. 32% for standard AES KSA) and an average bit difference between round keys of 59% (vs. 50% for 

standard AES KSA), enhancing round-key independence. Additionally, the related key analysis, indicates that 

AES with enhanced key scheduling has a Byte-level mean Hamming distance (4.1837 vs. 3.9198) and its 

lower variance (1.686 vs. 2.0865), demonstrating improved resistance and consistency against related key 

attacks. However, as a security cost trade-off, creating round keys adds 0.0000674s to the overall processing 

time. Future work will improve security and speed efficiency in cloud data storage by optimizing round 

functions and enhancing the AES encryption method’s avalanche effect. 
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