
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 2, April 2025, pp. 2455~2467

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i2.pp2455-2467  2455

Journal homepage: http://ijece.iaescore.com

An improved key scheduling for advanced encryption standard

with expanded round constants and non-linear property of

cubic polynomials

Muthu Meenakshi Ganesan, Sabeen Selvaraj
Department of Computer Science, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India

Article Info ABSTRACT

Article history:

Received May 28, 2024

Revised Oct 11, 2024

Accepted Oct 23, 2024

 The advanced encryption standard (AES) offers strong symmetric key

encryption, ensuring data security in cloud computing environments during

transmission and storage. However, its key scheduling algorithm is known to

have flaws, including vulnerabilities to related-key attacks, inadequate

nonlinearity, less complicated key expansion, and possible side-channel

attack susceptibilities. This study aims to strengthen the independence

among round keys generated by the key expansion process of AES—that is,

the value of one round key does not reveal anything about the value of

another round key—by improving the key scheduling process. Data sets of

random, low, and high-density initial secret keys were used to evaluate the

strength of the improved key scheduling algorithm through the National

Institute of Standards and Technology (NIST) frequency test, the avalanche

effect, and the Hamming distance between two consecutive round keys. A

related-key analysis was performed to assess the robustness of the proposed

key scheduling algorithm, revealing improved resistance to key-related

cryptanalysis.

Keywords:

Advanced encryption standard

cloud computing

Cryptography

Cubic polynomials

Key schedule

National institute of standards

and technology

Round constants This is an open access article under the CC BY-SA license.

Corresponding Author:

Sabeen Selvaraj

Department of Computer Science, Faculty of Science and Humanities, SRM Institute of Science and

Technology

Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India

Email: sabeens@srmist.edu.in

1. INTRODUCTION

National Institute of Standards and Technology (NIST) launched the advanced encryption standard

(AES) competition to search for a better secure cryptographic algorithm. Vincent Rijmen and Joan Daemen

developed the Rijndael algorithm. Rijndael evolved into AES following NIST’s 2001 declaration of the

winner [1], [2]. Because of its robust security, effectiveness, and adaptability in safeguarding data while it’s

in transit and at rest, it is extensively utilized in cloud computing [3], [4]. It is a symmetric block cipher that

guarantees trustworthy and efficient information security techniques by supporting 16 bytes data block sizes

and key lengths of 16, 24, and 32 bytes [5]. The three essential components of AES are key expansion,

decryption, and encryption. An XOR operation is performed at each encryption round operation between the

state array of data and the round key obtained during the key expansion procedure to incorporate randomness

and diffusion [6]–[8].

A well-designed key scheduling algorithm (KSA) can prevent computational guessing of the

plaintext or key. Despite the difficulty of executing brute force attacks with larger keys, maintaining security

in the key expansion process requires sticking to the concepts of confusion and diffusion [9], [10].

Encryption garners more research focus due to its direct impact on data security, while key expansion, vital

https://creativecommons.org/licenses/by-sa/4.0/
mailto:sabeens@srmist.edu.in

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2455-2467

2456

for algorithms like AES, is considered an auxiliary component [11], [12]. Finite nonlinearity in the AES key

schedule is the source of AES key expansion weaknesses, including related key attacks. Due to these flaws,

there are significant security vulnerabilities, as adversaries can recover keys, exploit slow diffusion, and

manipulate subkeys [13], [14]. To increase the bit transition between subkeys, KSA should generate subkeys

that are independent of one another and random. Consequently, this study aims to improve the overall

security of the AES encryption technique by designing a new and enhanced version of AES KSA.

Many researchers have conducted extensive research to improve the KSA’s efficiency and

randomness across various encryption algorithms. Hammod et al. [15] suggest an improved approach to the

AES KSA using modified cipher feedback (MCFB) mode. It does this by implementing two processes: shift

rows and substitution bytes, which reduce complexity and increase speed, efficiency, and performance for a

range of key lengths. Reyes et al. [16] used simple operations like XOR and modulo arithmetic to modify the

AES cipher round and KSA to fix low diffusion rates in early rounds. They improved the KSA by adding

byte substitution and round constant addition. In rounds 1 and 3, the modified AES increased diffusion rate

and improved encryption output randomness. Pehlivanoglu et al. [17] explore block ciphers and their key

schedule algorithm, inspired by AES, with desirable properties like good avalanche effect and bit confusion.

Similarly, Cao et al. [18] optimize the AES KSA using three improvement strategies: irreversible

improvement, word shift, and random number strategy, to reduce round-key correlation, improve security,

and ensure efficient operation. Kumar et al. [19] proposed and simulated a new subkey generation algorithm

for AES on the FPGA Virtex 5 XC5VLX50T, enhancing its speed, maintaining word diffusion, and

minimizing time consumption.

De Leon et al. [20] modified the tiny encryption algorithm (TEA), a lightweight encryption method,

to improve security by rotating subkeys and shifting keys, outperforming the original TEA. By adding a

salting algorithm to the subkey, Galas and Gerardo [21] enhanced the security of the corrected block tiny

encryption algorithm, XXTEA, and improved its randomness and avalanche effect. This approach was more

effective than the original approach, which failed the frequency test. The key expansion process of

PRESENT-128 is enhanced by Imdad et al. [22] with improved randomness, avalanche effect, and Hamming

distance between round keys through experimental tests with random, low, and high-density initial secret

keys. Zakaria et al. [23] improved the RECTANGLE key schedule algorithm by increasing randomization

and confusion properties, speed, and throughput.

This article arranges its sections as follows, section 2 provides a comprehensive description of the

standard and improved AES key expansion procedures. This section also describes the statistical tests and

key expansion process assessment parameters to evaluate the robustness of the standard and improved AES

key expansion algorithms. Section 4 concludes with the findings and discussions from section 3.

2. METHOD

2.1. Standard AES KSA

This article considers AES-128 KSA and Figure 1 depicts its detailed key scheduling process. The

round-key generation process works at the word level (32 bits). So, the procedure starts by dividing the initial

secret key of length 128 bits into four words (W0, W1, W2, W4). The first four words of the key schedule are

the same as the four words of the initial secret key. KSA derives the remaining 40 words iteratively through a

sequence of transformations, as AES-128 encryption and decryption necessitate the generation of 10 round

keys from the initial secret key. These 40 words are further divided into 10 round keys. In (1)–(10) generate

the words W3’, W7’, W11’, ... , W39’ [24].

𝑊3’ = 𝑆𝑢𝑏𝑊𝑜𝑟𝑑 (𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑(𝑊3)) ⨁ 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (1)

𝑊7’ = 𝑆𝑢𝑏𝑊𝑜𝑟𝑑 (𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑(𝑊7)) ⨁ 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (2)

𝑊11’ = 𝑆𝑢𝑏𝑊𝑜𝑟𝑑 (𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑(𝑊11)) ⨁ 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (3)

… … … … … (4)-(9)

𝑊39’ = 𝑆𝑢𝑏𝑊𝑜𝑟𝑑 (𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑(𝑊39)) ⨁ 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 (10)

where 𝑅𝑜𝑡𝑎𝑡𝑒𝑊𝑜𝑟𝑑 is the circular left shift of one byte, 𝑆𝑢𝑏𝑊𝑜𝑟𝑑 is the substitution method using a built-in

16 × 16 𝑆 − 𝐵𝑜𝑥 and ⨁ is the XOR operation and 𝑅𝑜𝑢𝑛𝑑_𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 are in the form of (𝑅𝐶𝑗, 00,00,00) as

shown in the Table 1. The subsequent words are generated by simple XOR operation, as follows:

Int J Elec & Comp Eng ISSN: 2088-8708 

An improved key scheduling for advanced encryption standard with... (Muthu Meenakshi Ganesan)

2457

W4=W3’ ⨁ W0, W5=W4 ⨁ W1, W6=W5 ⨁ W2, W7=W6 ⨁ W3, W8=W7’ ⨁ W4, W9=W8 ⨁ W5,

W10=W9 ⨁ W6, W11=W10 ⨁ W7, W12=W11’ ⨁ W8, W13=W12 ⨁ W9, W14=W13 ⨁ W10, W15=W14

⨁ W11, W16=W15’ ⨁ W12, W17=W16 ⨁ W13, W18=W17 ⨁ W14, W19=W18 ⨁ W15, W20=W19’ ⨁

W16, W21=W20 ⨁ W17, W22=W21 ⨁ W18, W23=W22 ⨁ W19, W24=W23’ ⨁ W20, W25=W24 ⨁ W21,

W26=W25 ⨁ W22, W27=W26 ⨁ W23, W28=W27’ ⨁ W24, W29=W28 ⨁ W25, W30=W29 ⨁ W26,

W31=W30 ⨁ W27, W32=W31’ ⨁ W28, W33=W32 ⨁ W29, W34=W33 ⨁ W30, W35=W34 ⨁ W31,

W36=W35’ ⨁ W32, W37=W36 ⨁ W33, W38=W37 ⨁ W34, W39=W38 ⨁ W35, W40=W39’ ⨁ W36,

W41=W40 ⨁ W37, W42=W41 ⨁ W38, W43=W42 ⨁ W39.

Both the encryption and decryption processes will use these 44 words from the AES 128 key schedule.

Figure 1. AES key expansion process

Table 1. Round constants in standard AES KSA
Round (j) Round_constants (RCj)

1 0x01

2 0x02

3 0x04
4 0x08

5 0x10

6 0x20
7 0x40

8 0x80

9 0x1b
10 0x36

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2455-2467

2458

Pseudocode of standard AES KSA
ASE128KeyExpansion (byte initial_secretkey [16], word w [44])

{

 word tmp_word;

 Round_constants=[0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x04, 0x80, 0x1b, 0x36]

 for (x=0; x<4; x++)

 w[x]=(initial_secretkey[4*x], initial_secretkey [4*x+1], initial_secretkey [4*x+2],

initial_secretkey [4*x+3]);

 for (x=4; x<44; x++)

 {

 tmp_word=w[x-1];

 if (x mod 4=0)

 tmp_word=SubWord (RotateWord(tmp_word)) ⊕ Round_constants [x/4];

 w[x]=tmp_word ⊕ w[x-4];

 }

}

2.2. Enhanced AES KSA

2.2.1. Enhanced key expansion using S-Box based expanded round constants

The AES key scheduling technique uses an implementation of cyclic rotation, S-box, and XOR with

round constants to find the temporary words (W3’, W7’, W11’, ..., W39’). All the remaining round keys can

be produced from the original key using these temporary variables. However, the round constants

(𝑅𝐶𝑗, 0,0,0) in AES leave three bytes as zeros, as shown in Figure 1, which lessens the amount of confusion

and diffusion in the round key generation process. Attackers can exploit chosen, known, and related key

assaults because of this flaw. To put it another way, XORing with zero doesn’t create more confusion, which

makes it easier for adversaries to deduce parts of the key. As shown in Figure 2, the stretched round constants

(RCj, S-Box [RCj], S-Box [S-Box [RCj]], S-Box [S-Box [S-Box [RCj]]]) are used in place of the round

constants (𝑅𝐶𝑗, 0, 0, 0) in the proposed AES KSA. The expanded round constants using S-Box are given in

Table 2. These expanded round constants are generated by applying S-Box on the round constants RCj

iteratively.

Figure 2. Enhanced AES key expansion process

Int J Elec & Comp Eng ISSN: 2088-8708 

An improved key scheduling for advanced encryption standard with... (Muthu Meenakshi Ganesan)

2459

Table 2. Expanded round constants using S-Box
Round(j) 1 2 3 4 5

Round_constants 0x017c10ca 0x0277f5e6 0x04f289a7 0x083004f2 0x10ca7492
Round(j) 6 7 8 9 10

Round_constants 0x20b7a9d3 0x4009017c 0x80cdbd7a 0x1baf79b6 0x36056b7f

2.2.2. Enhanced key expansion using cubic polynomial function

AES KSA uses circular left shift of one byte, S-box substitutions, and XOR operation with round

constants. However, round keys still show some level of correlation, because each round key is generated

sequentially, with each subsequent round key being derived from the previous one. This operation is

performed word-wise, meaning that each corresponding word from the previously generated round key is

XORed with the current word to generate the next word. For instance, W5 (6th word) is generated from W4

and W1, W6 (7th word) from W5 and W2, and W7 (8th word) from W6 and W3 and so on. So, AES needs

improvements to reduce correlations between round keys, which makes the key schedule stronger. Such

improvements can consist of refining the derivation techniques, which include more nonlinear processes. To

accomplish this, a cubic polynomial function is used in the proposed KSA to introduce chaos between round

keys. The generic form of this type of polynomial is 𝑓(𝑥): 𝑚𝑥3 + 𝑛𝑥2 + 𝑜𝑥 + 𝑝, where m does not equal

zero. The behavior of these curves is determined by the values of the real coefficients (𝑚, 𝑛, 𝑜, and 𝑝). A

cubic polynomial function, for example, has coefficients m=1, n=-3, o=2, and p=-1 as shown in Figure 3.

The enhanced AES KSA uses these coefficient values because it improves the complexity of the key

expansion process. These functions can be employed as a powerful substitution technique to improve the

diffusion and confusion properties of the round key generation mechanisms used in block ciphers.

Figure 3. Graphical representation of f(x)

In AES KSA, for each word generation, each corresponding word from the previously generated

round key is XORed with the current word to generate the next word. The proposed KSA applies the f(x)

mod 256(⊗) operation on each current word which directly participates in the XOR operation with the

corresponding word from the previous key. For instance, the word W5 is generated equal to (f(W4) mod 256

⨁ W1) instead of W4 ⨁ W1. In the proposed KSA, the key schedule is generated as follows:

W4=W3’ ⨁ W0, W5=f(W4) mod 256 ⨁ W1, W6=f(W5) mod 256 ⨁ W2, W7=f(W6) mod 256 ⨁ W3,

W8=W7’ ⨁ W4, W9=f(W8) mod 256 ⨁ W5, W10=f(W9) mod 256 ⨁ W6, W11=f(W10) mod 256 ⨁ W7,

W12=W11’ ⨁ W8, W13=f(W12) mod 256 ⨁ W9, W14=f(W13) mod 256 ⨁ W10, W15=f(W14) mod 256

⨁ W11, W16=W15’ ⨁ W12, W17=f(W16) mod 256 ⨁ W13, W18=f(W17) mod 256 ⨁ W14, W19=f(W18)

mod 256 ⨁ W15, W20=W19’ ⨁ W16, W21=f(W20) mod 256 ⨁ W17, W22=f(W21) mod 256 ⨁ W18,

W23=f(W22) mod 256 ⨁ W19, W24=W23’ ⨁ W20, W25=f(W24) mod 256 ⨁ W21, W26=f(W25) mod 256

⨁ W22, W27=f(W26) mod 256 ⨁ W23, W28=W27’ ⨁ W24, W29=f(W28) mod 256 ⨁ W25, W30=f(W29)

mod 256 ⨁ W26, W31=f(W30) mod 256 ⨁ W27, W32=W31’ ⨁ W28, W33=f(W32) mod 256 ⨁ W29,

W34=f(W33) mod 256 ⨁ W30, W35=f(W34) mod 256 ⨁ W31, W36=W35’ ⨁ W32, W37=f(W36) mod 256

⨁ W33, W38=f(W37) mod 256 ⨁ W34, W39=f(W38) mod 256 ⨁ W35, W40=W39’ ⨁ W36, W41=f(W40)

mod 256 ⨁ W37, W42=W41 ⨁ W38, W43=f(W42) mod 256 ⨁ W39.

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2455-2467

2460

The output of the word to be XORed with corresponding words from the previous key is determined

by the cubic polynomial function’s modulus of 256. Once it has generated all the words or round keys, it

completes the key scheduling process. As shown in Figure 2, the function (f(x) mod 256) is denoted by the

symbol ⊗. The relationship between the input (x) of the operation (⊗) and its output is shown in Figure 4. A

complex relationship can be seen by analyzing the backtracking of the input (𝑥) value from the f(x) mod 256

(⊗) operation output, which has several bends and oscillations as illustrated in Figure 4. There are irregular

shifts in the outputs due to the nonlinear relationship between inputs (x) and the outputs of ⊗; this reduces

the correlation between words and round keys in the key schedule. Due to this non-linear behavior, attackers

often find it challenging to infer the input key from the round keys, as the same output may not always

correspond to the same input in the operation. It depends on the real coefficient values used in the cubic

polynomial function. The backtracking process is more intricate and unpredictable, which makes the function

more resilient to cryptographic attacks.

Figure 4. Relationship between input (x) and ⊗ operation

Pseudocode of enhanced AES KSA
EnhancedAES128KeyExpansion (byte initial_secretkey [16], word w [44], int m, int n, int o,

int p)

{

word tmp_word;

Round_constants=(0x017c10ca, 0x0277f5e6, 0x04f289a7, 0x083004f2, 0x10ca7492, 0x20b7a9d3,

0x4009017c, 0x80cdbd7a, 0x1baf79b6, 0x36056b7f);

for (x=0; x<4; x++)

w[x]=(initial_secretkey [4*x], initial_secretkey [4*x+1], initial_secretkey [4*x+2],

initial_secretkey [4*x+3]);

for (x=4; x<44; x++)

{

 tmp_word=w[x-1];

 if (x mod 4=0)

 {

 tmp_word =SubWord (RotateWord(tmp_word)) ⊕ Round_constants[x/4];

 w[x]=tmp_word ⊕ w[x-4];

 }

 else

 {

 for (y=0; y<4; y++)

 {

 tmp_word[y]=(m*tmp_word[y]^3+n*tmp_word[y]^2+o*tmp_word[y]+p) % 256

 }

 tmp_word=[tmp_word [0], tmp_word [1], tmp_word [2], tmp_word [3]];

 w[k]=tmp_word ⊕ w[k-4];

 }

}

}

Int J Elec & Comp Eng ISSN: 2088-8708 

An improved key scheduling for advanced encryption standard with... (Muthu Meenakshi Ganesan)

2461

2.3. Evaluation

This section discusses the evaluation method to measure the strength of the enhanced AES KSA.

High density, low density, and random density input key sets were used for the evaluation process. The

high-density key (HDK), with its large number of ‘1’ bits and a small number of ‘0’ bits (at most two), poses

a challenge to algorithms with extreme biases towards the ‘1’ bits. On the other hand, the low-density key

(LDK), with its large number of ‘0’ bits and a small number of ‘1’ bits (at most two), poses a challenge to

algorithms with extreme biases towards the ‘0’ bits. Random density keys (RDK) consist of random

sequences of ‘0’ and ‘1’ bits, serving as a baseline for more typical key distributions. The following tests

were used to evaluate the proposed and standard AES KSAs: frequency test, avalanche effect, bit difference

between successive subkeys, and related key analysis.

2.3.1. Frequency test

The indeterminacy of round keys generated from KSA in block ciphers can be evaluated using the

frequency test, which is intended to evaluate the randomness of random number generators (RNGs). By

assessing the distribution of ‘0’ and ‘1’ bits in the binary sequence of round keys, the test determines if it

displays the essential randomness for secure encryption operations [25]. Passing the test indicates an equal

distribution of 0s and 1s, revealing the strength of the KSA; failure implies potential bias or non-randomness.

To conduct the frequency test, the following steps a through step d are followed:

a. Converting the binary sequence pattern (ε) into ±1: This procedure converts the sequence into values -1

and +1. The formula 𝑋𝑖 = 2𝜖𝑖 − 1 represents a conversion of this type. That is, if 𝜖𝑖 = 0, then 𝑋𝑖 = -1,

and if 𝜖𝑖 = 1, then 𝑋𝑖 = 1.

b. The overall computation of Sum (Sn):

𝑋1 + 𝑋2+. . . + 𝑋𝑛 = 𝑆𝑛

where n is the total number of bits.

c. Determine the test statistic estimator (𝑆𝑜𝑏𝑠):

𝑆𝑜𝑏𝑠 =
|𝑆𝑛|

⎷𝑛

d. P-value assessment: The p-value is computed and investigated using the complementary error function

(𝑒𝑟𝑓𝑐) as given below.

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑒𝑟𝑓𝑐 (
𝑆𝑜𝑏𝑠

⎷2
) (11)

To evaluate the strength of both existing and proposed KSA, 10,000 initial random secret keys were

generated and stored in a single file. Using these initial secret keys 10 round keys were generated and stored

in 10 different files for existing and proposed KSAs. Every file is examined separately. The outcomes of the

proposed and existing ones were compared. The frequency test evaluates the randomness of a bit sequence by

calculating the p-value using (11) and analyzing the outcomes. If the p-value is more than or equal to 0.01, a

sequence is considered pseudo-random; if not, it is considered non-random [25].

2.3.2. Avalanche effect of round keys

In cryptography, the phenomenon known as the “avalanche effect (AE)” occurs when an alteration

of a single bit in the input (plaintext in encryption or secret key in KSA) causes a noticeably different output

(ciphertext in encryption or round keys in KSA). The AE test for the KSA can be carried out by comparing

two key schedules generated before and after complementing one bit of the original secret key [26]–[28]. To

do this, it is necessary to find the Hamming distance (number of bits flipped) between the two Key schedules,

generated before flipping any bits of the original secret key and after flipping a single bit of the original

secret key—the next bit of the original key changes with each iteration to determine the AE. The computation

of the average AE for the existing and proposed KSA is given below.

𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒 𝐸𝑓𝑓𝑒𝑐𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠 𝑓𝑙𝑖𝑝𝑝𝑒𝑑 𝑋 100

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑡𝑠
 (12)

2.3.3. Bit difference between round keys

The Hamming distance between two successive subkeys was calculated using the XOR function in

this test to assess their correlation. The statistical relationship between the round keys becomes extremely

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2455-2467

2462

complicated when the reliable KSA offers a bit difference of more than 50% [22], [27]. To evaluate this, 100

RDK, 100 LDK, and 100 HDK were used. Since the AES KSA algorithm generates 10 round keys from an

initial secret key, in each round, the keys generated from the existing and proposed algorithms are also

written to separate files, and these 10 round keys, including the initial secret key, i.e., 11 separate files for

both algorithms, were taken for testing. The Hamming distance between two successive file contents was

determined iteratively. This test was performed for both existing and proposed KSA with all three types of

keys, and average Hamming distances between round keys were used to measure the correlation between

round keys.

2.3.4. Related key analysis

The related key analysis identifies key schedule vulnerabilities and evaluates cryptographic

protection. It prevents key recovery by attackers and enhances cryptographic design by exposing weaknesses.

To perform related key analysis, given an original key 𝐾 and plaintext 𝑋 with a predetermined difference Δ,

the related key K’ is generated as 𝐾’ = 𝐾 ⊕ 𝛥 and the related plaintext X’ is generated as 𝑋’ = 𝑋 ⊕ 𝛥,

where ⊕ denotes the bitwise XOR operation. To find the ciphertext C, encrypt the plaintext X with the key

K using 𝐶 = 𝐸𝐾(𝑋). For the related ciphertext C’, encrypt the related plaintext X’ with the related key K’

using 𝐶’ = 𝐸𝐾′(𝑋’). If the output difference distribution (𝐶 ⊕ 𝐶’) is not uniform, an attacker could use this

irregularity to deduce the key for encrypting messages with the input difference between input differences

(𝑋 ⊕ 𝑋’). The Hamming distance 𝑑𝐻 measures the bit difference between C and C′ [29], [30]. The mean

Hamming distance (μ𝑑) between ciphertexts is calculated as (13):

μ𝑑 =
1

𝑁
 ∑ 𝑑𝐻(𝐶𝑖 , 𝐶′𝑖)

𝑁
𝑖=1 (13)

where 𝑁 is the number of bytes in 𝐶 ⊕ 𝐶’. The variance of the Hamming distance (σd
2) is calculated as the

average of the squared differences between each Hamming distance, 𝑑𝐻(Ci, Ci′) and the mean Hamming

distance 𝜇𝑑, given by (14):

σd
2=

1

𝑁
∑ (𝑑𝐻(𝐶𝑖 , 𝐶′𝑖) − μ𝑑)𝑁

𝑖−1
2 (14)

The variance of the Hamming distance is used to assess the uniformity in the distribution of the output

differences 𝐶 ⊕ 𝐶’. Low variance indicates consistent and uniform behavior, reducing the likelihood of

exploitable patterns in related key analysis. To find the mean Hamming distance between ciphertexts and

related ciphertexts, 1000 random keys and plaintexts were used. The mean Hamming distance was calculated

by averaging the Hamming distances between N bytes of ciphertexts Ci and their corresponding related

ciphertexts Ci’ using (13) and its variance was calculated using (14). The overall mean Hamming distance

and the variance were calculated by taking the average of individual Hamming distances and their variances

respectively from 1000 different trials.

2.3.5. Execution time

Execution time is a crucial factor in evaluating the efficiency of an algorithm, as faster execution

leads to improved user experience and more efficient resource utilization. To get the execution time, one

must record the start and completion times of the algorithm and subtract the start from the completion time

[31]. The execution time for both KSAs was calculated and compared in this way.

3. RESULTS AND DISCUSSION

3.1. Frequency test

Table 3 displays the frequency test p-values for 10 round keys generated by the standard AES KSA

and the enhanced AES KSA. The standard version of AES KSA has an average p-value of 0.510392174, but

the improved AES KSA has an average p-value of 0.529139941. The average p-values are greater than 0.01

for the round key sequences generated by the standard AES KSA and Enhanced AES KSA passes the

frequency test. So, the test results reveal that the subkey sequences generated by both methods have nearly

identical ratios of 1 to 0 s.

3.2. Avalanche effect of round keys

Three secret keys—one for each type—RDK, LDK, and HDK—were used to test the AE of both

methods. These results were obtained by applying formula (12). The subsequent bit of the initial key is

complemented with each iteration to produce a new AE value. In this way, the AE for each round key is

Int J Elec & Comp Eng ISSN: 2088-8708 

An improved key scheduling for advanced encryption standard with... (Muthu Meenakshi Ganesan)

2463

calculated and the average values of test results are given in Table 4. As per the results of this study shown in

Figure 5, for the enhanced AES KSA, the average values of AE of three types of initial secret keys are

RDK-36.74%, LDK-35.81%, and HDK-32.09%. Meanwhile, the standard AES KSA has these results:

RDK-34.23%, LDK-33.16%, and HDK-29.14%. In all rounds, these test results indicate that the enhanced

AES KSA can provide better diffusion (avalanche effect) than the standard AES KSA. As a result, the

improved KSA is better at spreading information, with average avalanche effects of 35%, whereas the

standard AES KSA has 32%. The improved AES KSA does not affect the encryption method’s avalanche

effect as shown in Table 5, which remains almost constant at 49.90% compared to the original’s 49.55%.

Table 3. P-value of frequency test
Round No. p-value of Standard AES KSA p-value of improved AES KSA

1 0.699960939 0.085747474

2 0.270757927 0.873590856
3 0.386377309 0.908520539

4 0.569206199 0.780009098

5 0.195663552 0.735631866
6 0.170129707 0.702581781

7 0.611909882 0.007640417

8 0.59221195 0.816866208
9 0.711782429 0.330036882

10 0.895921851 0.05077429
Average p-value 0.510392174 0.529139941

 Table 4. Average avalanche effect of round keys
RDK LDK HDK

Round
No.

Standard AES
KSA

Enhanced AES
KSA

Standard AES
KSA

Enhanced AES
KSA

Standard AES
KSA

Enhanced AES
KSA

1 10.30273438 10.58959961 5.859375 7.574462891 4.680461712 4.983108108

2 20.82519531 19.81201172 18.33496094 16.00952148 15.72353604 14.78744369
3 30.28564453 29.06494141 29.16259766 28.49121094 24.23986486 21.80461712

4 37.72583008 37.24365234 38.03100586 36.18774414 32.43947072 33.28406532

5 41.07666016 43.27392578 39.87426758 43.64624023 37.15512387 37.76745495
6 40.34423828 44.39697266 40.46630859 45.03173828 36.00788288 40.5053491

7 39.16015625 45.73364258 40.30151367 45.13549805 36.00788288 40.625

8 41.20483398 45.75805664 40.00244141 45.703125 36.04307432 42.07488739
9 40.27099609 45.75195313 39.58129883 45.35522461 35.11402027 42.0678491

10 41.12548828 45.77026367 39.9597168 44.95239258 34.03716216 43.00394144

Average 34.23217773 36.73950195 33.15734863 35.80871582 29.14484797 32.09037162

Figure 5. Avalanche effect of round keys

Table 5. Average avalanche effect of cipher text
Standard AES KSA Enhanced AES KSA

49.55% 49.90%

0

5

10

15

20

25

30

35

40

RDK LDK HDK

A
v
al

an
ch

e
E

ff
ec

t
(%

)

Type of secret keys

Avalanche effect of round keys

Standard AES KSA Enhanced AES KSA

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2455-2467

2464

3.3. Bit difference between round keys

Tables 6 and 7 provide the Hamming distance between two successive round keys and the percentage

of the Hamming distances between two subkeys for standard AES KSA and enhanced AES KSA, respectively.

Based on these test results as shown in Figure 6, the overall average values of bit difference between subkeys

for enhanced AES KSA are RDK-59.28%, LDK-59.87%, and HDK-58.60%. Meanwhile, the standard AES

KSA has these results: RDK-49.91%, LDK-50.16%, and HDK-50.60%. Results show that the enhanced version

of AES KSA consistently yields higher bit differences between two successive subkeys, suggesting potentially

enhanced security through greater variability in generated subkeys.

Table 6. Bit difference between round keys of standard AES KSA
Round No.(i) RDK LDK HDK

k(i) ⊕ k(i+1) Hamming distance % of Bit diff. Hamming distance % of Bit diff. Hamming distance % of Bit diff.

k1⊕k2 6303 49.2421875 6055 47.3046875 7184 56.125

k2⊕k3 6408 50.0625 7417 57.9453125 6405 50.0390625

k3⊕k4 6447 50.3671875 6493 50.7265625 6264 48.9375

k4⊕k5 6436 50.28125 6549 51.1640625 6394 49.953125

k5⊕k6 6393 49.9453125 6365 49.7265625 6457 50.4453125

k6⊕k7 6331 49.4609375 6208 48.5 6057 47.3203125

k7⊕k8 6348 49.59375 6083 47.5234375 6486 50.671875

k8⊕k9 6412 50.09375 6115 47.7734375 6519 50.9296875

k9⊕k10 6420 50.15625 6750 52.734375 6988 54.59375

k10⊕k11 6381 49.8515625 6175 48.2421875 6010 46.953125

Average 6387.9 49.90546875 6421 50.1640625 6476.4 50.596875

Table 7. Bit difference between round keys of enhanced AES KSA
Round No.(i) RDK LDK HDK

k(i) ⊕ k(i+1) Hamming Distance % of Bit Diff. Hamming Distance % of Bit Diff. Hamming Distance % of Bit Diff.

k1⊕k2 7599 59.3671875 7599 59.3671875 7496 58.5625

k2⊕k3 7651 59.7734375 7961 62.1953125 6810 53.203125

k3⊕k4 7602 59.390625 7349 57.4140625 7717 60.2890625

k4⊕k5 7598 59.359375 8164 63.78125 7249 56.6328125

k5⊕k6 7639 59.6796875 7272 56.8125 8097 63.2578125

k6⊕k7 7665 59.8828125 8030 62.734375 7124 55.65625

k7⊕k8 7506 58.640625 7099 55.4609375 8028 62.71875

k8⊕k9 7532 58.84375 7931 61.9609375 7274 56.828125

k9⊕k10 7535 58.8671875 7245 56.6015625 8082 63.140625

k10⊕k11 7556 59.03125 7988 62.40625 7135 55.7421875

Average 7588.3 59.28359375 7663.8 59.8734375 7501.2 58.603125

Figure 6. Average bit difference between round keys

49.90546875

50.1640625

50.596875

59.28359375

59.8734375

58.603125

44 46 48 50 52 54 56 58 60 62

RDK

LDK

HDK

Bit difference between round keys (%)

T
y
p

e
o

f
se

cr
et

 k
ey

s

Average bit difference between round keys

Enhanced AES KSA Standard AES KSA

Int J Elec & Comp Eng ISSN: 2088-8708 

An improved key scheduling for advanced encryption standard with... (Muthu Meenakshi Ganesan)

2465

3.4. Related key analysis

The related key analysis, shown in Table 8 and illustrated in Figure 7, reveals that the enhanced

AES key scheduling provides stronger security than the standard version. The enhanced key schedule

achieves a higher byte-level mean Hamming distance of 4.1837, indicating greater separation between related

ciphertexts, compared to 3.9198 for the standard AES. Also, the enhanced AES exhibits a lower mean

Hamming distance variance of 1.686 versus 2.0865 for the standard key schedule, reflecting more uniform

behavior. The reduced variance ensures consistent output differences, minimizing exploitable patterns. In

conclusion, the enhanced AES key scheduling boosts security and resists related key attacks.

Table 8. Related key analysis based on 𝜇𝑑 and σd
2

Related key analysis measures AES with enhanced key scheduling AES with standard key scheduling

Byte-level mean Hamming distance 4.1837 3.9198
Variance of mean Hamming distance 1.686 2.0865

Figure 7. Related key analysis

3.5. Execution time

Both the standard and improved AES KSAs were implemented in Python and executed on an Intel

(R) CoreTM i7-11255U, 4.7 GHz CPU, to measure the execution time for comparison. Both algorithms were

executed 150 times with different keys, and the execution times were measured for each run and then

averaged. As a result, the improved AES KSA requires 0.0008364 s to generate 10 round keys whereas the

standard AES KSA requires 0.0007690 s. The proposed KSA was improved using powerful nonlinear

substitution techniques without significantly increasing the execution time. The enhanced KSA’s security

improvements for the avalanche effect and non-correlated round key generation negate the insignificant time

difference of 0.0000674 s.

4. CONCLUSION

The round keys generated by the modified KSA are more random and better uncorrelated due to

expanded round constants and robust nonlinear cubic polynomials with modulus operations. Both standard

and improved KSA show similar NIST frequency test p-values, indicating nearly identical 1 to 0 s ratios in

their subkey sequences. The improved KSA shows better performance with an average avalanche effect of

35% (vs. 32% for standard AES KSA) and an average bit difference between round keys of 59% (vs. 50% for

standard AES KSA), enhancing round-key independence. Additionally, the related key analysis, indicates that

AES with enhanced key scheduling has a Byte-level mean Hamming distance (4.1837 vs. 3.9198) and its

lower variance (1.686 vs. 2.0865), demonstrating improved resistance and consistency against related key

attacks. However, as a security cost trade-off, creating round keys adds 0.0000674s to the overall processing

time. Future work will improve security and speed efficiency in cloud data storage by optimizing round

functions and enhancing the AES encryption method’s avalanche effect.

REFERENCES
[1] R. Riyaldhi, Rojali, and A. Kurniawan, “Improvement of advanced encryption standard algorithm with shift row and S.Box

modification mapping in mix column,” Procedia Computer Science, vol. 116, pp. 401–407, 2017, doi: 10.1016/j.procs.2017.10.079.

0 1 2 3 4 5

Mean Hamming Distance

Variance of Mean Hamming Distance

Divergence measure

A
n
al

y
si

s
M

et
ri

cs

Related key analysis

AES with Standard Key Scheduling AES with Enhanced Key Scheduling

  ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 2455-2467

2466

[2] Y. Zhang, A. Chen, and B. Chen, “A unified improvement of the AES algorithm,” Multimedia Tools and Applications, vol. 81,

no. 13, pp. 18875–18895, May 2022, doi: 10.1007/s11042-022-12742-1.
[3] Y. Alemami, A. M. Al-Ghonmein, K. G. Al-Moghrabi, and M. A. Mohamed, “Cloud data security and various cryptographic

algorithms,” International Journal of Electrical and Computer Engineering, vol. 13, no. 2, pp. 1867–1879, Apr. 2023, doi:

10.11591/ijece.v13i2.pp1867-1879.
[4] I. A. Awan, M. Shiraz, M. U. Hashmi, Q. Shaheen, R. Akhtar, and A. Ditta, “Secure framework enhancing AES algorithm in

cloud computing,” Security and Communication Networks, vol. 2020, pp. 1–16, Sep. 2020, doi: 10.1155/2020/8863345.

[5] J. S. Baladhay and E. M. De Los Reyes, “AES-128 reduced-round permutation by replacing the mixcolumns function,”
Indonesian Journal of Electrical Engineering and Computer Science, vol. 33, no. 3, pp. 1641–1652, Mar. 2024, doi:

10.11591/ijeecs.v33.i3.pp1641-1652.

[6] H. M. Mohammad and A. A. Abdullah, “Enhancement process of AES: a lightweight cryptography algorithm-AES for
constrained devices,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 20, no. 3, pp. 551–560, Jun.

2022, doi: 10.12928/TELKOMNIKA.v20i3.23297.

[7] M. Sawka and M. Niemiec, “A sponge-based key expansion scheme for modern block ciphers,” Energies, vol. 15, no. 19,
pp. 1–18, Sep. 2022, doi: 10.3390/en15196864.

[8] I. Sultan, M. Y. Lone, M. Nazish, and M. T. Banday, “A secure key expansion algorithm for present,” IEEE Sensors Journal,

vol. 23, no. 20, pp. 25367–25376, Oct. 2023, doi: 10.1109/JSEN.2023.3267386.
[9] P. Kulkarni, R. Khanai, D. Torse, N. Iyer, and G. Bindagi, “Neural crypto-coding based approach to enhance the security of images

over the untrusted cloud environment,” Cryptography, vol. 7, no. 2, pp. 1–17, May 2023, doi: 10.3390/cryptography7020023.

[10] Y. Harmouch and R. El Kouch, “The benefit of using chaos in key schedule algorithm,” Journal of Information Security and
Applications, vol. 45, pp. 143–155, Apr. 2019, doi: 10.1016/j.jisa.2019.02.001.

[11] A. Dmukh, D. Trifonov, and A. Chookhno, “Modification of the key schedule of the 2-GOST block cipher and its implementation

on FPGA,” Journal of Computer Virology and Hacking Techniques, vol. 18, no. 1, pp. 49–59, Mar. 2022, doi: 10.1007/s11416-
021-00406-x.

[12] Y. Wei, T. Ye, W. Wu, and E. Pasalic, “Generalized nonlinear invariant attack and a new design criterion for round constants,”
IACR Transactions on Symmetric Cryptology, vol. 2018, no. 4, pp. 62–79, 2018, doi: 10.13154/tosc.v2018.i4.62-79.

[13] R. Saha, G. Geetha, G. Kumar, and T. H. Kim, “RK-AES: an improved version of AES using a new key generation process with

random keys,” Security and Communication Networks, vol. 2018, pp. 1–11, Nov. 2018, doi: 10.1155/2018/9802475.
[14] H. M. Hussien, Z. Muda, and S. M. Yasin, “New key expansion function of Rijndael 128-bit resistance to the related-key attacks,”

Journal of Information and Communication Technology, vol. 17, no. 3, pp. 409–434, 2018, doi: 10.32890/jict2018.17.3.2802.

[15] D. N. Hammod, M. H. Al-Rawi, and H. S. Abdulah, “An enhancement method based on modifying CFB mode for key generation
in AES algorithm,” Engineering and Technology Journal, vol. 34, no. 6B, pp. 759–768, Jun. 2016, doi: 10.30684/etj.34.6b.5.

[16] E. M. De Los Reyes, A. M. Sison, and R. P. Medina, “Modified AES cipher round and key schedule,” in 2018 International

Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Oct. 2018, pp. 146–146, doi:
10.1109/iciibms.2018.8549995.

[17] M. K. Pehlivanoğlu, M. T. Sakalli, N. Duru, and F. B. Sakalli, “The new approach of AES key schedule for lightweight block

ciphers,” IOSR Journal of Computer Engineering, vol. 19, no. 03, pp. 21–26, May 2017, doi: 10.9790/0661-1903042126.
[18] Z. Cao, G. Yi, B. Wu, J. Li, and D. Xiao, “Analysis and improvement of AES key expansion algorithm,” in 2022 International

Conference on Artificial Intelligence and Computer Information Technology, AICIT 2022, Sep. 2022, pp. 1–5, doi:

10.1109/AICIT55386.2022.9930239.
[19] T. Manoj Kumar and P. Karthigaikumar, “FPGA implementation of an optimized key expansion module of AES algorithm for

secure transmission of personal ECG signals,” Design Automation for Embedded Systems, vol. 22, no. 1–2, pp. 13–24, Jun. 2018,

doi: 10.1007/s10617-017-9189-5.
[20] R. M. de Leon, A. M. Sison, and R. P. Medina, “A modified tiny encryption algorithm using key rotation to enhance data security

for internet of things,” in 2019 International Conference on Information and Communications Technology, ICOIACT 2019, Jul.

2019, pp. 56–60, doi: 10.1109/ICOIACT46704.2019.8938456.
[21] E. M. Galas and B. D. Gerardo, “Implementing randomized salt on round key for corrected block tiny encryption algorithm

(XXTEA),” in 2019 IEEE 11th International Conference on Communication Software and Networks, ICCSN 2019, Jun. 2019,

pp. 795–799, doi: 10.1109/ICCSN.2019.8905270.
[22] M. Imdad, S. N. Ramli, and H. Mahdin, “An enhanced key schedule algorithm of PRESENT-128 block cipher for random and

non-random secret keys,” Symmetry, vol. 14, no. 3, pp. 1–22, Mar. 2022, doi: 10.3390/sym14030604.

[23] A. A. Zakaria, A. H. Azni, F. Ridzuan, N. H. Zakaria, and M. Daud, “Modifications of key schedule algorithm on RECTANGLE
block cipher,” in Communications in Computer and Information Science, vol. 1347, 2021, pp. 194–206, doi: 10.1007/978-981-33-

6835-4_13.

[24] T. M. Kumar, K. R. Balmuri, A. Marchewka, P. B. Divakarachari, and S. Konda, “Implementation of speed-efficient key-
scheduling process of aes for secure storage and transmission of data,” Sensors, vol. 21, no. 24, pp. 1–17, Dec. 2021,

doi: 10.3390/s21248347.

[25] A. Rukhin, J. Soto, and J. Nechvatal, “A statistical test suite for random and pseudorandom number generators for cryptographic
applications,” Gaithersburg, MD, 2010, doi: 10.6028/NIST.SP.800-22r1a.

[26] S. Afzal, M. Yousaf, H. Afzal, N. Alharbe, and M. R. Mufti, “Cryptographic strength evaluation of key schedule algorithms,”

Security and Communication Networks, vol. 2020, pp. 1–9, May 2020, doi: 10.1155/2020/3189601.
[27] N. Kapalova, K. Algazy, A. Haumen, and K. Sakan, “Statistical analysis of the key scheduling of the new lightweight block

cipher,” International Journal of Electrical and Computer Engineering, vol. 13, no. 6, pp. 6817–6826, Dec. 2023, doi:

10.11591/ijece.v13i6.pp6817-6826.
[28] G. Yi and Z. Cao, “An algorithm of image encryption based on AES and rossler hyperchaotic modeling,” Mobile Networks and

Applications, Sep. 2023, doi: 10.1007/s11036-023-02216-5.

[29] D. Gerault, P. Lafourcade, M. Minier, and C. Solnon, “Computing AES related-key differential characteristics with constraint
programming,” Artificial Intelligence, vol. 278, p. 103183, Jan. 2020, doi: 10.1016/j.artint.2019.103183.

[30] C. Boura, P. Derbez, and M. Funk, “Related-key differential analysis of the AES,” IACR Transactions on Symmetric Cryptology,

vol. 2023, no. 4, pp. 215–243, Dec. 2023, doi: 10.46586/tosc.v2023.i4.215-243.
[31] F. Thabit, S. Alhomdy, and S. Jagtap, “Security analysis and performance evaluation of a new lightweight cryptographic algorithm for

cloud computing,” Global Transitions Proceedings, vol. 2, no. 1, pp. 100–110, Jun. 2021, doi: 10.1016/j.gltp.2021.01.014.

Int J Elec & Comp Eng ISSN: 2088-8708 

An improved key scheduling for advanced encryption standard with... (Muthu Meenakshi Ganesan)

2467

BIOGRAPHIES OF AUTHORS

Muthu Meenakshi Ganesan received her B.Sc. degree in computer science from

Madurai Kamaraj University in 2004 and her MCA degree from Alagappa University in 2007.

She earned her M.Phil. degree in computer science from Mother Teresa Women’s University

in 2012. From 2012 to 2022, she worked as an assistant professor at various arts and science

colleges. She is pursuing her Ph.D. in computer science at the SRM Institute of Science and

Technology in Kattankulathur, Tamil Nadu, India. Her research interests include cloud

computing and cryptography. She can be contacted at mg0480@srmist.edu.in.

Sabeen Selvaraj works in the Department of Computer Science, Faculty of

Science and Humanities, SRM Institute of Science and Technology, Kattankulathur. He

received his Ph.D. in computer science from Anna University in 2012, his MCA in 2002, and

his M.Tech. in computer science and engineering in 2015. With 22 years of teaching

experience, he has worked at several engineering colleges, including Mohamed Sathak

Engineering College, Noorul Islam College of Engineering, Jaya Engineering College, and

Sidharth Institute of Engineering and Technology. He is a life member of ISTE, and his

research interests include data mining, IoT, machine learning, cloud computing, and

cryptography. He has published numerous papers in international journals and has guided over

100 postgraduate projects. He can be contacted at sabeens@srmist.edu.in.

https://orcid.org/0009-0006-6013-6825
https://www.webofscience.com/wos/author/record/KYC-7308-2024
https://orcid.org/0000-0003-4201-6329
https://scholar.google.com/citations?view_op=list_works&hl=en&user=SLeQM68AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56202489200
https://www.webofscience.com/wos/author/record/HHN-3602-2022

