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 Polycystic ovary syndrome (PCOS) requires early and precise diagnosis to 

manage and prevent long-term health consequences effectively. In this 

research, a large dataset of healthcare data gathered from various hospitals in 
Kerala, India, was evaluated using multiple machine learning (ML) and deep 

learning (DL) models to identify a highly reliable and accurate prediction of 

PCOS. The six algorithms used for comparison with the proposed DL model 

are support vector classification, random forest, logistic regression, k-nearest 
neighbors, and gaussian naive Bayes; they were selected due to their 

strengths in handling features in large datasets. The highly parameterized 

neural networks were tuned using efficient approaches like Optuna and 

genetic algorithms. The results indicated that the model implemented using 
our proposed combination of DL model and Optuna, outperformed the 

traditional models, achieving 93.55% reliability. This suggests the potential 

for using deep learning for decision-making in diagnosing PCOS. This 

method demonstrates the importance of integrating various data types with 
powerful analytic tools in medical diagnostics to support customized therapy. 
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1. INTRODUCTION 

About 10% of women who are of reproductive age have polycystic ovary syndrome (PCOS), a 

relatively common endocrine condition. Menstrual irregularities as well as androgen excess and chronic 

anovulation are its features including androgen excess through ovarian or adrenal sources and/or androgen-

exacerbated anovulation [1]. PCOS not only affects fertility but also poses a risk for a number of metabolic 

diseases such as type 2 diabetes hypertension and many more cardiovascular diseases [2]. Current diagnostic 

criteria for PCOS are irregular periods, elevated androgens, polycystic ovarian follicles and infertility [3], [4]. 

Significant associations between PCOS reproductive health, metabolic health and cardiovascular risk as well 

as mental health have been reported and therefore need to be managed as a whole [5]. The research studies 

regarding advances in deep learning (DL) and machine learning (ML) outline encouraging potentials for the 

enhancement of medical diagnostic methods. These technologies are capable of analyzing huge and complex 

datasets for possible pattern identification that may not be revealed by simple observation or traditional 

methods [6]. Developing a model for PCOS using ML and DL has the ability to combine different forms of 

data like hormone levels, metabolic states and genetic data to increase efficiency and predictive accuracy [7]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Challenges are that the disease is not uniform in its expression and the variable quality of the data collected. 

Good annotated data is an important factor for training models effectively but such data is difficult to come 

by in the context of PCOS. 

Lim et al. [8] investigated the potential usage of radial pulse wave parameters that are utilized in 

traditional Chinese medicine using ML to classify and predict cases of PCOS. 459 individuals were allocated 

into two groups. It was found that long short-term memory (LSTM) and voting models were the best and 

both recorded the same accuracy rate of 72. 0.174 precision and AUC of 0.715 and 0.722, respectively. All 

these mean that radial pulse wave analysis is useful for the early detection and management of PCOS. 

Yamini et al. [9] performed a PCOS prediction study where they considered different ML models by 

using clinical, hormonal, and biomarkers. The study was conducted using data which included attributes 

obtained from women with PCOS and from women who did not have the condition. It employed several ML 

models of logistic regression (LR), random forest (RF), support vector machine (SVM), naive Bayes (NB) 

classifier, k-nearest neighbors (KNN) and XGBoost to build predictive models. It is also crucial to state that 

among all the models that have been applied, the RF model emerged to be the most accurate with a rate of 

90% accuracy. 

Zad et al. [10] conducted a study where they aimed to predict PCOS using ML algorithms on 

electronic health records from a hospital. The study with a 30,601 dataset size evaluated the prediction of 

PCOS using LR, SVM, gradient boosted trees, and random forests. Hormone levels and obesity contributed 

the most to the prediction of the disease in this study. The model achieved AUC scores of 85%, 81%, 80%, 

and 82% for the different models. This research shows that ML can effectively predict PCOS by examining 

outpatient data which can help in early diagnosis and reducing long term health consequences. 

Na et al. [11] used International Gene Expression Omnibus data for their research. The major aim of 

the research was to discover functional PCOS biomarkers and correlate them with immunological infiltration. 

They identified the correlation between two biomarkers and the infiltrating immune cell types was high, 

suggesting the two biomarkers might also be implicated in the pathophysiology of PCOS. 

Poorani et al. [12] performed the investigation of classification of PCOS from the relevant 

ultrasound images of ovaries. The present research estimated PCOS in the absence of professional guidance 

from doctors using images of ultrasonic technology. The best CNN algorithm was found to be the algorithm 

that provided the highest accuracy in classifying ultrasound images of PCOS and non-PCOS images. This 

demonstrated the suitability of CNN for early screening of PCOS cases. 

Kaur et al. [13] used a transfer based deep learning technique for detecting PCOS using ultrasound 

images. Their model used the InceptionV3 architecture which was trained before on a general medical image 

dataset. It aimed to classify ultrasound images as PCOS infected or not. The approach used a large dataset of 

ultrasound images which enhanced the training of the model with transfer learning techniques. The model 

exhibited a remarkable classification accuracy of 99.48%, demonstrating the usefulness of transfer learning 

in augmenting the precision of PCOS recognition in ultrasound images. This study shows how advanced deep 

learning techniques can significantly improve the precision of diagnosis and help medical professionals 

identify and treat PCOS early. 

Kumar et al. [14] implemented MobileNet to predict PCOS from ultrasound images. This study is 

relevant because it provides a less time-consuming method to diagnose PCOS and a more accurate method of 

doing it. The use of higher-order neural networks is a good example of when ML is used to assist in the 

medical field, especially in terms of diagnosing complex conditions like PCOS. 

Kapadia et al. [15] conducted a study using multinomial LR to test the prediction risk of PCOS from 

clinical and demographic factors. This study employed the use of data that was sourced from an online 

survey comprising a high number of participants who were unaware if they had PCOS or not. The LR model 

was trained for the classification of the tendency of PCOS occurrence with the current accuracy of 82%. The 

performance of the model also included the mean cross-validation score of 0.75%. 

While there is substantial literature data about the use of ML and DL for the diagnosis and treatment 

of PCOS, there are several important areas of development that could help to improve existing diagnostic 

capabilities and optimize treatment processes. First of all, most of the existing studies investigating the 

applicability of various ML models in the prediction of PCOS are based on simulations, not the real-life use, 

which implies that while several ML-based approaches are confirmed to be rather efficient in terms of PCOS 

prediction, the utilization of these methods in the clinical practice is still quite limited. It is also concluded 

that more data with higher variability concerning the offered details referring to demographic and genetic 

characteristics require to be generated for enhancing the applicability of the models for the prediction. Lastly, 

the focus on individual ML/DL models overlooks the potential benefits of ensemble approaches or hybrid 

systems that could offer improved predictive accuracy and robustness. The contributions this paper makes are 

as follows: i) Curated and refined a comprehensive dataset for enhanced accuracy in PCOS prediction analysis; 

ii) Developed and optimized a deep learning model for high-precision diagnosis and management of PCOS; and 
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iii) Implemented a combination of ML and DL techniques to improve predictive performance and support 

personalized treatment strategies in PCOS care. 

This paper begins with a review of the literature that provides a comprehensive overview of related 

existing studies, followed by the methodology including the dataset description and pre-processing. The 

methodology outlines the application of various ML and DL algorithms for predicting PCOS. The paper then 

presents results with visualizations of the outputs. Finally, it offers avenues for future research directions and a 

summary of the major discoveries made during the study. 

 

 

2. METHOD 

This section outlines detailed steps from data preprocessing to model optimization and comparative 

analysis of predictive performances are discussed to ensure the effectiveness of the diagnostic models. This 

data was gathered to perform the investigation of PCOS with the use of ML approaches. It contains records 

from 541 patients of PCOS and includes many import tant features that are used in the diagnosis of PCOS: 

hormones and metabolic profiles. This dataset description is in Table 1. It has been implemented and curated 

by Prasoon Kottarathil in 2020 and hosted at Kaggle [16] for the use of medical researchers. 

Key demographic details include age, weight, height, and blood group, with a derived metric of 

body mass index (BMI) partially available for 242 patients. Clinical parameters cover a range of reproductive 

and metabolic factors, including menstrual cycle characteristics, hormonal profiles (Follicle-stimulating 

hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH), Anti-Müllerian hormone 

(AMH), Prolactin (PRL)), and glucose levels. Fertility-related measures include the number of follicles in the 

ovaries (both left and right) and endometrial thickness. Vital signs, including pulse rate and respiratory rate, 

are uniformly recorded across the cohort. Lifestyle factors that could influence PCOS symptoms or 

management, such as dietary habits (consumption of fast food), physical activity, and specific symptoms like 

gaining weight, hair growth/loss, darkening of the skin, and presence of pimples/acne, are included. 

Hormonal assays, particularly beta-HCG levels, are recorded in two instances (noted as “I beta-HCG” and  

“II beta-HCG”), providing insights into the hormonal milieu potentially affecting PCOS pathophysiology. 

The dataset also addresses cardiovascular health with systolic and diastolic blood pressure readings. FSH/LH 

ratio and waist: hip ratio, present significant amounts of missing data, available for only 9 patients each. This 

limitation underscores the necessity for careful handling of these variables during analysis. 

 
 

Table 1. Data description of PCOS dataset used in research 
Part 1  Part 2 

Attribute Missing value Data type  Attribute Missing value Data type 

Sl. No 0 int64  Waist (inch) 0 int64 

Patient file No. 0 int64  Waist: Hip ratio 532 float64 

PCOS (Y/N) 0 int64  TSH (mIU/L) 0 float64 

Age (yrs) 0 0 int64  AMH (ng/mL) 0 object 

Weight (Kg) 0 float64  PRL (ng/mL) 0 float64 

Height (Cm) 0 float64  Vit D3 (ng/mL) 0 float64 

BMI 299 float64  PRG (ng/mL) 0 float64 

Blood Group 0 int64  RBS (mg/dl) 0 float64 

Pulse rate (bpm) 0 int64  Weight gain (Y/N) 0 int64 

RR (breaths/min) 0 int64  Hair growth (Y/N) 0 int64 

Hb (g/dl) 0 float64  Skin darkening (Y/N) 0 int64 

Cycle (R/I) 0 int64  Hair loss (Y/N) 0 int64 

Cycle length (days) 0 int64  Pimples (Y/N) 0 int64 

Marriage status (Yrs) 1 float64  Fast food (Y/N) 1 float64 

Pregnant (Y/N) 0 int64  Reg.Exercise (Y/N) 0 int64 

No. of abortions 0 int64  BP Systolic (mmHg) 0 int64 

I beta-HCG (mIU/mL) 0 float64  BP Diastolic (mmHg) 0 int64 

II beta-HCG (mIU/mL) 0 object  Follicle No. (L) 0 int64 

FSH (mIU/mL) 0 float64  Follicle No. (R) 0 int64 

LH (mIU/mL) 0 float64  Avg. F size (L) (mm) 0 float64 

FSH/LH 532 float64  Avg. F size (R) (mm) 0 float64 

Hip (inch) 0 int64  Endometrium (mm) 0 float64  
   Unnamed: 44 539 object 

 

 

2.1.  Data processing 

Data preprocessing enhances the quality of data by ensuring that the data fed into the model is clean, 

accurate, and reliable, which is essential for obtaining meaningful results. Steps to preprocess data are shown 

in Figure 1. “Patient File No.”, “Sl No”, and “Unnamed: 44”, are irrelevant columns and are removed. “AMH 

(ng/mL)” and “beta-HCG (mIU/mL)” are converted from object data types to numeric. 
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Figure 1. Preprocessing steps for the dataset 

 

 

Missing values in the “𝐵𝑀𝐼” column are imputed using the formula: 

 

𝐵𝑀𝐼 =
𝑊𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

(𝐻𝑒𝑖𝑔ℎ𝑡(𝑚))
2 (1) 

 

For “FSH/LH”, the missing values are calculated by dividing the 𝐹𝑆𝐻 column by 𝐿𝐻 column: 

 

𝐹𝑆𝐻/𝐿𝐻 =
𝐹𝑆𝐻(𝑚𝐼𝑈/𝑚𝐿)

𝐿𝐻(𝑚𝐼𝑈/𝑚𝐿)
            (2) 

 

And for “𝑊𝑎𝑖𝑠𝑡: 𝐻𝑖𝑝 𝑅𝑎𝑡𝑖𝑜”, missing values are determined by dividing the “Waist (inch)” by “Hip (inch)”: 

 

𝑊𝑎𝑖𝑠𝑡: 𝐻𝑖𝑝 𝑅𝑎𝑡𝑖𝑜 =
𝑊𝑎𝑖𝑠𝑡(𝑖𝑛𝑐ℎ)

𝐻𝑖𝑝(𝑖𝑛𝑐ℎ)
            (3) 

 

The columns “marriage status (Yrs)”, “II beta-HCG (mIU/mL)” and “AMH (ng/mL)” have their missing values 

filled with the median. Based on their association with PCOS, the target variable, a subset of attributes is chosen 

by measuring the Pearson correlation coefficient [17] values with the target variable. Features that show high 

correlation are selected for further analysis. The Pearson correlation coefficient is calculated using (4). 

 

𝑟𝑥𝑦 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 ∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

                    (4) 

 

where 𝑟𝑥𝑦 is the Pearson correlation coefficient between two variables 𝑥 and 𝑦, 𝑥𝑖 and 𝑦𝑖 are the values of the 

𝑥 and 𝑦 variables for the i-th observation, 𝑥 and 𝑦 are the means of 𝑥 and 𝑦 variables, respectively, and 𝑛 is 

the number of observations. Figure 2 represents the correlation values of all the attributes with the target 

variable PCOS and Figure 3 represents selected attributes and their correlation with the target variable, 

respectively. The correlation matrix for the attributes is represented in Figure 4. These features are chosen 

because they have a significant impact on the development of PCOS based on literature [18]–[20]. 

 

 

 
 

Figure 2. Features before correlation analysis 
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Figure 3. Selected features for model 

 

 

 
 

Figure 4. Correlation matrix after feature selection 

 

 

Standardization ensures that all features have a similar scale which helps in reducing the impact of 

outliers and ensures that the model does not become biased towards features with larger scales. The 

StandardScaler from sklearn [21] transforms a feature x using the formula: 

 

𝑧 =
(𝑥−𝜇)

𝜎
    (5) 

 

where the standard deviation and mean of the feature values are denoted by 𝜎 and µ, respectively. The 

resulting standardized feature 𝑧 has a mean of 0 and a standard deviation of 1. 

 

2.2.  Model architecture 

The effective prediction of PCOS depends on the design of the suggested neural network. The 

proposed model is structured as a Sequential model within the TensorFlow framework, facilitating a linear 

stack of layers [22] as shown in Figure 5. To optimize the model, we employ two distinct yet complementary 
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approaches for hyperparameter tuning: Optuna and genetic algorithms (GA). Both methods are integrated to 

refine the architecture by pinpointing the optimal values of parameters. These methods of optimization have 

proved to be effective in hyperparameter tuning as seen in [23]. 

 

 

 
 

Figure 5. Methodology diagram for proposed deep learning model 

 

 

2.2.1. Dense layers 

Dense layers contain all input neurons which are linked to every neuron in the current layer. The 

typical function of development of these Dense layers is to acquire intricate structures of the high-

dimensional data related to PCOS. Through hyperparameter tuning, the number of neurons in each Dense 

layer is defined, and it is set between 32 and 512. This helps the model to regulate how complex the model’s 

structure will be according to the structure of the given data. Along with rectified linear unit (ReLU), 

hyperbolic tangent (Tanh), exponential linear unit (ELU) are used as activation function allowing the model 

to embody a lot of subtle dependencies of the data [24]. 

 

2.2.2. Dropout layers  

Incorporated within the architecture are dropout layers, which serve as a regularization technique to 

reduce overfitting [25]. During training, the proportion of neurons is randomly dropped (i.e., their output is 

set to zero) according to a rate determined again by hyperparameter optimization, ranging from 0.0 to 0.5. 

This introduces sparsity in the neuron activation and forces the model to learn robust features that generalize 

well to unseen data. 

 

2.2.3. Compiling the model 

Adam optimizer is chosen for its adaptive learning rate capabilities, which aids in faster 

convergence. Given that the PCOS prediction job is binary in nature, the loss function of choice is binary 

cross-entropy. The performance metric selected is accuracy, which provides a direct measure of model 

success in classifying the PCOS condition. 

 

2.2.4. Early stopping 

To further mitigate the risk of overfitting, an EarlyStopping callback is employed to monitor the 

validation loss for a set number of epochs, specified with patience of five, and halts the training process if no 

improvement is observed, ensuring that it retains its predictive power on new, unseen data.  

 

2.3.  Dynamic parameter optimization 

To fine-tune the predictive model for PCOS, two distinct and advanced hyperparameter optimization 

techniques were independently utilized: Optuna and genetic algorithms (GA). Each technique independently 

assesses the impact of the following parameters on model performance and optimizes the same set of 

hyperparameters. The activation functions for the dense layers, identifying which function leads to the highest 

validation accuracy. Activation functions are essential because they add non-linearities to the model, which 

helps it learn intricate patterns that are beyond the scope of linear models. In this study, we examine three 

distinct activation functions. 
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The ReLU activation function is defined as 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) preserves the linear behavior for 

positive inputs and sets negative inputs to zero. This feature streamlines computations and helps in 

overcoming the vanishing gradient problem. The ELU enhances ReLU by allowing negative values when 

inputs are less than zero. It is defined as 𝑓(𝑥) = 𝑥 for 𝑥 > 0 and 𝑓(𝑥) = 𝛼(𝑒𝑥 − 1) for 𝑥 ≤ 0. This process 

helps in mitigating the “dying ReLU problem” and helps in achieving balanced activation levels that lead to 

quicker convergence. The Tanh function is defined by 𝑓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) = 2 − 1. It outputs values between  

-1 and 1. This centers the output range around zero, which can enhance the learning efficiency by 

normalizing the data’s meaning close to zero. This normalization is useful for optimization of the 

backpropagation process. The performance of this method is compared with other strategies to determine the 

most effective optimization approach for the proposed model. This comparison helps in identifying the 

optimal method that could lead to improvements in model accuracy and efficiency. 

 

2.3.1. Optuna optimization 

Optuna is an advanced framework designed for hyperparameter optimization, renowned for its 

capability to efficiently navigate complex parameter spaces [26]. In contrast to traditional approaches like 

grid or random search, Optuna employs Bayesian optimization methods. These methods utilize historical 

evaluation data to inform and steer the search process towards the most promising areas of the parameter 

space, enhancing the likelihood of finding optimal settings more efficiently. Optuna is an advanced 

framework that has been developed for hyperparameter optimization and is well-known for being able to 

efficiently move through complicated parameter spaces [26]. 

 

2.3.2. Bayesian optimization 

This model is less expensive to evaluate and is used to predict the performance of different 

hyperparameter configurations based on historical data. The Gaussian process is characterized by mean 

function (µ(𝑥)) that predicts the expected outcome for a given parameter set and covariance Function 

(𝑘(𝑥, 𝑥′)) that describes the relationship between points in the input space. The predictive distribution at any 

new point 𝑥, given observed data 𝐷, is normally distributed as (6): 

 

𝑓(𝑥|𝐷) ∼ 𝑁 (µ(𝑥), 𝜎2(𝑥))    (6) 
 

where, 
 

µ(𝑥) = µ0(𝑥) + 𝐾(𝑋, 𝑥)𝑇 [𝐾(𝑋, 𝑋) + 𝜎2𝑛 𝐼] − 1 (𝑦 − µ0(𝑋)    (7) 

 

𝜎2 (𝑥) = 𝑘(𝑥, 𝑥)  − 𝐾(𝑋, 𝑥)𝑇 [𝐾(𝑋, 𝑋) + 𝜎2𝑛 𝐼] − 1𝐾(𝑋, 𝑥)    (8) 

 

Here, µ0 is the prior mean, K represents the kernel matrix, 𝑋 are the observed points, y are the observed 

targets, and 𝜎2 is the noise term. The expected improvement (EI) criterion is employed to decide which new 

points to evaluate. EI measures the expected amount by which a proposed set of parameters is predicted to 

improve over the current best-known value 𝑓𝑏𝑒𝑠𝑡. It is defined as (9): 

 

𝐸𝐼(𝑥) = 𝔼[𝑚𝑎𝑥(𝑓(𝑥)  −  𝑓𝑏𝑒𝑠𝑡, 0)]   (9) 
 

For a Gaussian process 𝐺𝑃(µ, 𝜎2), the expected improvement can be expressed as (10): 

 

𝐸𝐼(𝑥) = (µ(𝑥) − 𝑓𝑏𝑒𝑠𝑡 − 𝜉)𝛷(𝑍) + 𝜎(𝑥)𝜙(𝑍) (10) 

 

where 𝑍 = µ(𝑥)−𝑓𝑏𝑒𝑠𝑡−𝜉, and 𝜉 is a small positive number facilitating the trade-off between exploration 

and exploitation. 𝛷 and 𝜙 are the cumulative distribution function and probability density function of the 

standard normal distribution, respectively. This mechanism balances exploration of untested areas and 

exploitation of known good areas, thereby facilitating rapid convergence to the optimal solution. 

 

2.3.3. Genetic algorithm 

The genetic algorithm (GA) is a hyperparameter optimization method [27] implemented to adjust 

the model’s architecture. This algorithm iterates over multiple generations to evolve an optimal set of 

hyperparameters based on a predefined fitness function. The primary constants of the GA used in this study 

are defined in Table 2. 

The fitness of each individual, measured as the accuracy of the model on a validation set, directs the 

selection process toward more promising hyperparameter sets. Optuna and GA optimize the model’s 

architecture by experimenting with the same set of hyperparameters. Each method’s results are critically 
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evaluated, comparing the highest validation accuracy achieved to determine the optimal hyperparameter 

configuration for the PCOS prediction model. 

 

 

Table 2. Genetic algorithm parameters 
Primary Constant Function Value 

Population size Defines the number of individual solutions in the population. A larger population size allows for a 

more diverse genetic pool, while a smaller size ensures a more computationally efficient process. 

10 

Mutation rate Governs the probability of random alterations in the hyperparameters. Mutation introduces genetic 

diversity and helps to avoid local optima by enabling explorative steps in the hyperparameter space. 

0.2 

Crossover rate Determines how often two individuals in the population will be combined to produce offspring. It 

represents the balance between preserving successful characteristics and introducing new ones. 

0.5 

Number of generations Total generations to run 10 

 

 

2.4.  Model training and evaluation 

The dataset underwent a standard 70/15/15 split for training, testing and validation respectively. 

During training, a batch size of 32 was utilized, with a maximum of 50 epochs. Validation loss was 

monitored throughout the training process. Subsequently, binary cross-entropy loss and accuracy were 

applied to the test set as evaluation measures, offering a thorough analysis of the predictive power of the 

model. Following optimization, the optimal model architecture and hyperparameters were determined and 

used for training the final model. Evaluation of the final model’s performance was based on its accuracy on 

the validation set. 

 

2.5.  Comparison of machine learning models 

Logistic regression (LR), support vector classification (SVC), random forest classifier (RF), naive 

Bayes and k-nearest neighbors (KNN) are tested in addition to the DL model. They are trained and evaluated 

using the same training and test sets, and their predictive performance is assessed through a series of metrics. 

LR is selected for its foundational simplicity and high interpretability, particularly valuable in clinical 

settings where decision-making relies on transparent model insights [28]. SVC is renowned for its 

proficiency in navigating the challenges of high-dimensional spaces, crafting intricate decision boundaries 

where linear separability is not feasible [29]. RF contributes a layer of robustness to overfitting, leveraging an 

ensemble of decision trees to enhance predictive reliability and maintain interpretability [30]. Naive Bayes 

offers computational efficiency, especially advantageous when dealing with categorical variables that are 

prevalent in medical datasets [31]. Lastly, KNN algorithm demonstrates its merit in datasets that manifest 

complex, non-linear decision boundaries [32]. 

 

2.6.  Performance analysis 

For evaluating model performance, several metrics are employed. Accuracy measures the proportion 

of correct predictions among all predictions, offering a broad view of model effectiveness. The F1 Score 

strikes a balance between prediction precision and recall by acting as the harmonic mean of precision and 

recall. While recall evaluates the capacity to recognize every true positive, precision shows the accuracy of 

positive predictions. When these indicators are taken into account together, accuracy and the coverage of 

positive cases are guaranteed, offering a thorough evaluation of the model’s performance. The equations for 

these metrics are given in (11)-(14). Here, TP represents true positives, TN denotes true negatives, FP 

signifies false positives, and FN indicates false negatives. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 (11) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (12) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃 + 𝐹𝑁𝑇𝑃+ 𝐹𝑁
 (13) 

 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (14) 

 

The models’ performance is also assessed using the receiver operating characteristic (ROC) curve. A 

reference line charts the sensitivity (true positive rate) against the 1-specificity (false positive rate) for 

various levels of threshold setting [33]. 
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3. RESULTS AND DISCUSSION  

In this section, we delve into the performance evaluation of our DL model for PCOS alongside a 

comparative analysis with various machine learning models. We highlight each model’s advantages and 

disadvantages through this thorough examination, as well as provide insight into how well-suited each is for 

PCOS prediction tasks. 

 

3.1.  Assessment of the deep learning model’s performance 

Our research into the predictive modeling of PCOS has been marked by a strategic deployment of 

deep learning techniques, optimized to achieve high performance. The Optuna optimization framework 

guided us to a deep learning model configuration that exhibited an accuracy of 93.55%. The resultant 

configuration of the proposed model is presented in Table 3. This model is distinct in its architecture, 

featuring 224 input layer units and two hidden layers with 160 and 96 units respectively. Tanh activation 

function is employed by the first hidden layer, and ReLU activation function is used by the second hidden 

layer, a structure that enables nuanced handling of the non-linear intricacies of medical diagnosis data. A 

considered dropout rate of 9.417% contributes to the model’s resilience against overfitting, optimizing its 

performance on unseen data. 

 

 

Table 3. Configuration of the proposed deep learning model for prediction of PCOS using Optuna as the 

hyperparameter optimization technique 
Parameter Value 

Input layer units 224 

Input activation function Exponential linear unit (ELU) 

Number of hidden layers 2 

Units in hidden layer 0 160 

Activation function of hidden layer 0 Hyperbolic tangent (Tanh) 

Units in hidden layer 1 96 

Activation function of hidden layer 1 Rectified linear unit (RELU) 

Dropout rate 9.417% 

Learning rate 0.000372 

Accuracy 93.55% 

 

 

Comparisons using a GA for hyperparameter optimization, as shown in Table 4, yielded a slightly 

less accurate model with 91.4% accuracy. Despite its high complexity, the GA model’s performance was 

marginally lower, highlighting Optuna’s effectiveness in exploring the hyperparameter space to fine-tune 

deep learning models for PCOS prediction in particular. 

 

3.2.  Comparative evaluation with machine learning models 

Examining the metrics in Table 4 alongside the ROC-AUC curves in Figure 6, we establish a 

nuanced understanding of each model’s ability to identify PCOS cases effectively. Figure 7 shows the 

comparison between classification metrics and AUC scores for all the models. SVC stands out as a high-

performing traditional machine learning model, with the highest accuracy, precision, recall, and F1-Score 

among non-deep learning algorithms. This superior performance is attributed to its proficiency in managing 

high-dimensional data and finding the most distinct decision boundary, as reflected in its high AUC of 0.97, 

which is on par with the deep learning model optimized with Optuna. This consistency between the table 

metrics and ROC curve indicates a strong capacity for correctly classifying both positive and negative cases. 

KNN and LR present as competent models with accuracies over 92%, supported by their balanced precision 

and recall. KNN benefits from detecting local data structures, while Logistic Regression’s strengths lie in 

capturing linear correlations. However, these models fall slightly short compared to the deep learning 

models, suggesting that while they perform well, they may not fully grasp the intricate complexities of the 

PCOS dataset. 

The Gaussian naive Bayes, despite its moderate performance and the lowest accuracy next to 

random forest, displays a high recall, suggesting it is adept at identifying true PCOS cases but prone to false 

positives, due to its assumption of feature independence. The model’s AUC of 0.91, while reasonable, 

highlights how limited its assumption is when dealing with intricate medical data. The random forest 

classifier lags in performance with the lowest accuracy and F1-Score, and an AUC of 0.86, implicating 

possible overfitting or a failure to capture essential feature interactions. Its lower position in both Table 5 and 

the ROC curve analysis points towards its less effective handling of the PCOS prediction task within this 

specific dataset. Our proposed deep learning models optimized with both GA and Optuna demonstrate high 

accuracy, precision, recall, and F1-Scores, reflecting their effectiveness for this application. The Optuna-
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optimized model slightly edges out the GA-optimized model, implying Optuna’s optimization strategy 

generalizes better and shows strong discrimination capabilities. 

 

 

Table 4. Configuration of the proposed deep learning model for prediction of PCOS using genetic algorithm 

as the hyperparameter optimization technique 
Parameter Value 

Input layer units 187 

Input activation function Exponential linear unit (ELU) 

Number of hidden layers 1 

Units in hidden layer 0 76 

Activation function of hidden layer Rectified linear unit (RELU) 

Dropout rate 20% 

Learning rate 0.002649 

Accuracy 91.4% 

 

 

 
 

Figure 6. ROC curves for comparative analysis of model performances 

 

 

Table 5. Model performance of algorithms for PCOS prediction 
Model Name Accuracy Precision Recall F1-Score 

SVC 93.25% 0.93 0.91 0.92 

KNeighbors 92.02% 0.92 0.90 0.91 

Gaussian NB 90.79% 0.89 0.91 0.90 

Random forest 87.73% 0.87 0.84 0.86 

Logistic regression 92.02% 0.92 0.90 0.91 

Proposed model (Using GA) 91.4% 0.90 0.90 0.90 

Proposed model (Using Optuna) 93.55% 0.91 0.90 0.90 
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Figure 7. Comparative analysis of model performances based on classification metrics and AUC 

 

 

4. CONCLUSION  

In this study, we systematically developed a model and identified the most effective approach for 

predicting PCOS on a PCOS dataset from Kerala hospitals. Our exploration began with the meticulous 

preparation of the data by extensive preprocessing and feature engineering, followed by the application of 

both conventional machine learning models and advanced deep learning techniques that were carefully 

optimized for accuracy. SVC and the deep learning model developed by the Optuna were among the features 

that were distinguished by high performance among those that were tested. The high-performance deep 

learning model was also built using the Optuna framework and achieved 93.55 accuracy. This value shows 

that the model is accurate in diagnosing PCOS patients since it has a robust architecture, and hyper 

parameters are more powerful. The use of the publicly available dataset for this study was of significant 

benefit in that it increased the replicability and hence the transparency of this research.  

Implementing the model in a clinical setting to validate its effectiveness in real-world scenarios 

would prove be a vital step towards practical application of the model. Longitudinal studies could be utilized 

to assess the models’ ability to track PCOS over time. This can aid in the development of personalized 

treatment plans for patients. 
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