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 Crop yield prediction helps farmers make informed decisions regarding the 

optimal timing for crop cultivation, taking into account environmental factors 

to enhance predictive accuracy and maximize yields. The existing methods 
require a massive amount of data, which is complex to acquire. To overcome 

this issue, this paper proposed a seasonal auto-regressive integrated moving 

average-bidirectional long short-term memory (SARIMA-BiLSTM) for 

coconut yield prediction. The collected dataset is preprocessed through a label 
encoder and min-max normalization is employed to change non-numeric 

features into numerical features and enhance model performance. The 

preprocessed features are selected through an adaptive strategy-based whale 

optimization algorithm (AS-WOA) to avoid local optima issues. Then, the 
selected features are given to the SARIMA-BiLSTM to predict the coconut 

yields. The proposed SARIMA-BiLSTM is adaptable to handling a 

widespread of various seasonal patterns and captures spatial features. The 

SARIMA-BiLSTM performance is estimated through the coefficient of 
determination (R2), mean absolute error (MAE), mean squared error (MSE), 

and root mean square error (RMSE). SARIMA-BiLSTM attains 0.84 of R2, 

0.056 of MAE, 0.081 of MSE, and 0.907 of RMSE which is better when 

compared to existing techniques like multilayer stacked ensemble, 
convolutional neural network and deep neural network (CNN-DNN) and 

autoregressive moving average (ARIMA). 
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1. INTRODUCTION 

The coconut is a significant crop which plays a crucial role in economies of numerous countries, 

including India, the Philippines, and Indonesia [1]. Generally, it is known as the tree of heaven, because all 

parts of the plants are useful and the main source of income for farmers [2]. Worldwide, it is grown in 93 

countries in 12 million hectares areas with a yearly production of 59.98 million nuts. India has secured the 

third position globally, producing an impressive 10.56 million coconuts annually [3], [4]. Accurately 

predicting coconut yields is crucial in mitigating potential disasters during different stages of crop growth, 

impacting yield levels significantly. Monitoring consecutive time series data throughout growth periods is 

essential for effective coconut yield prediction [5], [6]. The yield is a complex which varies through factors 

https://creativecommons.org/licenses/by-sa/4.0/
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like variety and age. The matured nuts are taken as yield since it contains solid endosperm which is utilized 

for yield prediction [7], [8]. Temperature is a significant factor in a growth of coconut nuts and huge 

temperature damages the root growth [9]–[11]. Real-time and deep learning (DL) techniques are employed to 

enhance the early detection and enhance the coconut yield which offers better yield prediction [12], [13]. 

Remote sensing plays a prominent role in calculating crop damages and predicting crop yield. By applying 

these methods, the production of hybrid coconuts and local tall at dual leaf clipping levels is effectively 

predicted [14]–[16]. Iniyan and Jebakumar [17] developed a mutual information feature selection (MIFS) for 

crop yield prediction using multilayer stacked ensemble regression (MSER). The developed model intricated 

the prediction procedure of crop yield on soybean and crop which obtained better performance according to 

phenotype factors. Several non-linear and linear techniques are employed in the model for predicting crop 

yield. However, crop data necessitates numerous preprocessing to fitting baseline supplies that are not 

initiated for yield prediction.  

Oikonomidis et al. [18] introduced a hybrid convolutional neural network and deep neural network 

(CNN-DNN) for crop yield prediction. It was effective for prediction due to its outliers with huge variance in 

different areas which were employed to create yield estimation. The feature selection utilized feature 

engineering techniques which were employed to obtain efficient performance. The introduced model required 

a significant capability of data and it cannot consider the time-series data. Peng et al. [19] suggested an 

incorporated technique on BiLSTM-sine cosine algorithm (SCA) for solar radiation prediction. Initially, 

complete ensemble empirical mode decomposition through adaptive noise (CEEMDAN) was applied for 

prediction. The auto-correlation function (ACF) and the partial auto-correlation function (PACF) were 

utilized to identify radiation pattern of decomposed sub-modes. However, the developed model required a 

vast amount of captured data which is complex to obtain. Prasert and Rungreunganun [20] presented a 

coconut yield prediction through auto-regressive integrated moving average (ARIMA). Its autonomous 

variables offered enhanced accuracy without any individual variables by designating appropriate factors to 

produce the prediction model. However, huge attention was required to fascinate and inspire farmers in 

coconut production. Novarianto [21] implemented an aerial photography technique through drones for 

determining data effectiveness by integrating standard sample population in local tall coconut. The 

population density of every area is established through various factors and palms are expired and the results 

of pests are not appropriate for coconut production. The existing techniques have limitations such as 

requiring extensive data processing and unable to handle time-series data. These methods necessitate 

significant preprocessing to fit baseline models that are not initiated for yield prediction and they struggled to 

fascinate and motivate farmers in coconut production. Moreover, they are unable to handle a widespread of 

various seasonal patterns and captures spatial features because of local optima issues. To overcome this issue, 

this research proposed seasonal auto-regressive integrated moving average-bidirectional long short-term 

memory seasonal auto-regressive integrated moving average-bidirectional long short-term memory 

(SARIMA-BiLSTM) for coconut yield prediction which is adoptable to handle various seasonal patterns and 

spatial features. Additionally, adaptive strategy-based whale optimization algorithm (AS-WOA) is used for 

feature selection process which avoids local optima issues and enhances the convergence rate. The paper 

contribution is as:  

a. The dataset is preprocessed using label encoding and min-max normalization which ensures non-numeric 

data is transformed effectively thereby contributing to enhance the model performance. The label encoder 

is used to convert categorical features into numerical features and min-max normalization is applied to 

scale the features.  

b. The preprocessed features are then selected using AS-WOA, which enhances the convergence rate and 

effectively mitigates the risk of getting trapped in local optima thereby ensuring optimal feature selection.  

c. The selected features are then fed into SARIMA-BiLSTM model which is adaptable and capable of 

handling a wide range of seasonal patterns and effectively captures spatial features which leads accurate 

and reliable predictions. 

This research paper is prepared as section 2 defines proposed methodology. Section 3 defines the 

results and discussion. The conclusion of this paper is given in section 4. 

 

 

2. PROPOSED METHOD 

The SARIMA-BiLSTM is proposed in this manuscript for predicting coconut yield in Kerala. The 

collected dataset is preprocessed through label encoder and min-max normalization which is employed to 

change non-numeric features into numerical features and enhance model performance. The preprocessed 

features are selected through AS-WOA which enhances the convergence rate and avoids local optima issues. 

Then, the selected features are given to the SARIMA-BiLSTM for predicting the coconut yields. Figure 1 

presents the block diagram of proposed methodology. 
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Figure 1. Block diagram of the proposed methodology 

 

 

2.1.  Dataset 

The coconut holds a prominent position as a cultivation crop in Kerala, which covers approximately 

39% of the region. The dataset sourced from the department of economics and statistics, Kerala, spans from 

2011 to 2021 and encompasses yearly coconut yields from 10 districts: Alappuzha, Kozhikode, Idukki, 

Kottayam, Kollam, Ernakulam, Thrissur, Wayanad, Kasaragod and Palakkad. This dataset comprises around 

120 records annually, equating to an approximate production of 8 million nuts.  

 

2.2.  Preprocessing 

The preprocessing techniques employed in this research are label encoder and min-max 

normalization. These techniques improved the data quality which is explained in the following sub-sections. 

Label encoding transforms non-numeric features into numerical ones, facilitating the model's ability to learn 

from the data. When dealing with datasets, certain features may not be in the appropriate format, 

necessitating their conversion into numerical values through label encoding. This process reduces data 

volume by encoding numeric values, resulting in efficient memory usage. The min-max normalization is 

utilized for changing raw data into a standardized format which enhances the model performance. The 

maximum score of the features is changed to 1, the minimum score of the features is changed to 0 and other 

scores of features are changed between 0 and 1 [22]. It is expressed in (1), 𝑦′ is a normalized score, 𝑦 is an 

actual value, 𝑚𝑎𝑥(𝑦) and 𝑚𝑖𝑛(𝑦) is a maximum and minimum score of y.  

 

y′ =
y−min(y)

max(xy)−min(y)
 (1) 

 

2.3.  Adaptive strategy-based whale optimization algorithm for feature selection 

The whale optimization algorithm (WOA) is employed for feature selection of coconut yield 

prediction which avoids local optima issues. It is a population-based algorithm inspired by whale’s bubble-

net feeding. WOA comprises three stages encircling, exploitation and exploration which denotes the whales' 

hunting procedure. The encircling prey identifies prey positions and encircles the targets, exploitation 

denotes spiral attack, and exploration denotes random search prey.  

  

2.3.1. Encircling prey 

This phase is used to identify the prey positions and it designates search agents according to 

different whale distances from prey. After identifying the search agent, every whale updates the positions 

according to the search agent. The optimum prey positions are unidentified at the initial optimum solution 

closer to the probable solution is considered through WOA. After estimating the best solutions, search agents 

try to update their positions to the best search agent for attaining the current best locations that are expressed 

in (2) to (5), 

 

D⃗⃗ = β ∙ X∗⃗⃗⃗⃗ (t) − X⃗⃗ (t) (2) 

 

X⃗⃗ (t + 1) = X∗⃗⃗⃗⃗ (t) − α ∙ D⃗⃗  (3) 

 

𝛼 = 2 ∙ 𝑚 ∙ 𝑛 − 𝑚 (4) 

 

𝛽 = 2 ∙ 𝑛 (5) 

 

where, �⃗⃗�  denotes present position vector of optimal metrics, t is a present iteration, 𝑋∗⃗⃗ ⃗⃗ (𝑡) is a present best 

arrangement location vector at tth iteration. 𝑋 (𝑡) denotes position of search agent, 𝛼 is ranges among 

[−𝑚,𝑚], here m reduces linearly from 2 to 0 over the whole exploitation and exploration phases. The m is 

estimated by 𝑚 = 2 − 2 ∗ 𝑡 𝑡𝑚𝑎𝑥⁄  which stays similar through whole process. The n is random number 

within [0, 1], 𝑡𝑚𝑎𝑥 is a maximum iteration.  
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2.3.2. Exploitation stage 

This phase contains two various mechanisms such as shrinking enriching process and spiral 

updating position [23] which is explained in bellow: In the shrinking enriching process, search agent position 

update is classified with search space by best solution of agent. In spiral updating position, candidate new 

position is evaluated. The goal of the shrinking enriching mechanism is to minimize the evaluated value of m 

which originates the humpback whale behavior. The search agent position update is categorized within the 

search space limited through the best solution of the agent which is designated through α random values. The 

candidate's new positions are evaluated by utilizing spiral updating position mechanism. The shrinking 

enriching mechanism and spiral updating position are expressed in (6) to (9), 

 

D⃗⃗ = X∗⃗⃗⃗⃗ (t) − X⃗⃗ (t) (6) 

 

X⃗⃗ (t + 1) = D⃗⃗ ∙ ewl ∙ cos(2πl) + X∗⃗⃗⃗⃗ (t) (7) 

 

𝑋 (𝑡 + 1) = 𝑋∗⃗⃗ ⃗⃗ (𝑡) − 𝛼 ∙ �⃗⃗� ,𝑖𝑓𝑝 < 0.5      (8) 

 

𝑋 (𝑡 + 1) = �⃗⃗� ∙ 𝑒𝑏𝑙 ∙ cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗ (𝑡)𝑖𝑓𝑝 ≥ 0.5 (9) 

 

here, �⃗⃗�  is highest distance among whale and prey, 𝑤 denotes constant which explains geometry of 

logarithmic spiral, and 𝑙 is produced within the range of [−1, 1] correspondingly. The decision about specific 

process is designated through a random number of p ∈ [0,1] focuses on uniform distribution. If p < 0.5, the 

agents continue to the leader according to the shrinking encircling process. If p ≥ 0.5, search agent position 

is modernized based on spiral updating position. 

 

2.3.3. Exploration stage 

In this stage, the whales randomly search according to their positions and α is designed as a random 

value either lesser than 1 or greater than -1. The α ≥ 1 condition has happened, and exploration is forced on 

humpback whales to global optimum and remove local minima. The exploration is expressed in (10) and 

(11), D⃗⃗  denotes distance between ith whale and prey, Xrand
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   denotes random location vector. The arbitrarily 

sorted whale from presently considered community. The adaptive strategy-based WOA is explained in the 

following section. 

 

�⃗⃗� = 𝛽 ∙ 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ − 𝑋  (10) 

 

𝑋 (𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) − 𝛼 ∙ �⃗⃗�  (11) 

 

2.3.4. Adaptive strategy-based WOA 

The population of individual diversity will be reduced when the algorithm is iterated to the further 

stages. The deduction causes individuals to search space for decay in the position of local optimum. During 

this time, a small number of whale populations are searched continuously and it outputs premature 

convergence and easily falls into local optimum. So, an efficient balance of growth and exploration 

capabilities of the algorithm is to enhance searching abilities. The adaptive inertia weight strategy is 

introduced into traditional WOA to balance the local and global search capabilities of WOA which enriches 

population diversity. It enables the algorithm to maintain a specific intensity of the search state in further 

iteration stages which avoids local optima issues and premature convergence. The inertia update strategy is 

expressed in (12) and (13), The ω is mathematically expressed in (14) to (16), 

 

𝑋 (𝑡 + 1) = {
𝜔 ∙ 𝑋∗⃗⃗ ⃗⃗ (𝑡) − 𝛼 ∙ �⃗⃗� ,𝑖𝑓𝑝 < 0.5

𝜔 ∙ �⃗⃗� ∙ 𝑒𝑏𝑙 ∙ cos(2𝜋𝑙) + 𝑋∗⃗⃗ ⃗⃗ (𝑡)𝑖𝑓𝑝 ≥ 0.5
     (12) 

 

𝑋 (𝑡 + 1) = 𝜔 ∙ 𝑋𝑟𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑡) − 𝛼 ∙ �⃗⃗�           (13) 

 

𝜔 =
𝐶×√𝑡

𝑀
× (1 −

𝑡

𝑇𝑚𝑎𝑥
) (14) 

 

𝑀 = √𝐻 + 𝑁2 (15) 
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𝐻 =
∑ (𝑈𝑏𝑖,𝑗−𝐿𝑏𝑖,𝑗)

2𝑁
𝑗=1

𝑡
 (16) 

 

where, ω is an adaptive inertia weight that is adjusted through the number of iterations. C = 0.1, 𝑡 and 𝑇𝑚𝑎𝑥 

are present and maximum iterations, 𝑁 is many dimensions. The √𝑡 and 𝐻 plays a major role in the initial 

stage of the iteration process. This process enables the individual populations to escape from their present 

positions and exploration with large searches to enhance the algorithm capabilities to avoid local optima 

issues.  

 

2.4.  Prediction 

The coconut yield is predicted through seasonal auto-regressive integrated moving average 

(SARIMA) with the BiLSTM model which is adaptable to handling a widespread of various seasonal 

patterns. The BiLSTM processes the data into dual networks such as forward and backward long short-term 

memory (LTSM) and the result of these networks are integrated at every time. The BiLSTM captures spatial 

features and bidirectional time dependencies from historical data which improves the model performance.  

 

2.4.1. Seasonal ARIMA 

The ARIMA is a time series forecasting technique used for changing stationary from non-stationary 

time series data through applying variances. It determines current time-series values through previously 

predicted errors and values. Similarly, the SARIMA employed past values but considered seasonality as a 

parameter. The improvisation of the ARIMA is a seasonal ARIMA (SARIMA). The SARIMA is expressed 

in (17). 

 

SARIMA = ARIMA(p, d, q)(P, D, Q)s (17) 

 

Here, 𝑝 and 𝑃 denotes autoregressive and seasonal autoregressive order, 𝑑 and 𝐷 denotes difference and 

seasonal difference order, 𝑞 and 𝑄 denotes moving average and seasonal moving average order, 𝑠 is a 

seasonal length in a data. The SARIMA captures both seasonal and non-seasonal patterns in data which 

creates forecasted model. The SARIMA is adaptable to handling a widespread of various seasonal patterns 

and captures spatial features. The certain modeling procedure of SARIMA is defined:  

a. Stationarity test: The augmented dickey-fuller (ADF) and auto-correlation function (ACF) are utilized to 

find whether the time-series data was stable or not. If it is not stable, then the d and D-order differences 

are applied. 

b. Ljung-Box test: It is accomplished on a sequence, if the p score is lesser than the significance level, the 

sequence is constant. If the sequence is not constant, the modeling is continued. 

c. Model identification and order determination: To fit the SARIMA, the Python grid search is employed. 

d. Model selection: The optimum model is selected using the least Akaike information criterion (AIC). 

e. Model test: By utilizing the residual white noise test, the model success fitting is determined.  

f. Prediction: The constructed model is utilized for prediction. 

 

2.4.2. Bidirectional long short-term memory 

The LSTM stores the input data in a hidden layer including the time series concept. Through this, 

the input data is stacked in a time sequence at the hidden layer, and the new input data is replicated in the 

result. The BiLSTM is an improved version of conventional LSTM which takes past and upcoming states to 

enhance the prediction performance. The BiLSTM processes the data into dual networks such as forward and 

backward LSTM [24] and the result of these networks are integrated at every time. Figure 2 presents the 

architecture of BiLSTM. 

In a forward layer, its evaluation is accomplished from time [1, t] and its output is attained and 

saved at every time. In the background layer, the evaluation is reversed over time [𝑡, 1] and its output is 

attained and saved at every time. Lastly, at every moment, the final result is attained through integrating 

output for the respective time of the forward and backward layers. The BiLSTM is mathematically expressed 

in (18) to (20). 

 

h⃗ t = tanh(Wxh⃗⃗ xt + Wh⃗⃗ h⃗⃗ + bh⃗⃗ 
) (18) 

 

ℎ⃗⃖𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ⃗⃗⃖𝑥𝑡 + 𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ + 𝑏ℎ⃗⃗⃖) (19) 

 

yt = Wh⃗⃗ h⃗
 
t + Wh⃗⃗⃖yh⃖⃗ + by  (20) 
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where, ℎ⃗ 𝑡 and ℎ⃗⃖𝑡 are forward and backward hidden layer outputs which are presented through superscripts 

(. ) and (.⃖ ) correspondingly. The 𝑊𝑥ℎ⃗⃗ , 𝑊ℎ⃗⃗ ℎ⃗⃗  and 𝑊ℎ⃗⃗⃖𝑦 are weight matrices of input, hidden and output layers. 

The 𝑏𝑦, 𝑏ℎ⃗⃗  and 𝑏ℎ⃗⃗⃖ are output bias vectors of input, hidden and output layers correspondingly. The BiLSTM 

captures spatial features and bidirectional time dependencies from historical data which improves the model 

performance.  

 

 

 
 

Figure 2. Architecture of BiLSTM 

 

 

3. RESULTS AND DISCUSSION 

The SARIMA-BiLSTM is evaluated through Python 3.10 with RAM 8 GB, intel core i5 and OS 

windows 10. The proposed SARIMA-BiLSTM is adaptable to handling a widespread of various seasonal 

patterns and captures spatial features. The proposed SARIMA-BiLSTM is adaptable to handling a 

widespread of various seasonal patterns and captures spatial features. The metrics like R2, MAE, MSE, and 

RMSE are employed for evaluating model performance [25]. 

 

3.1.  Quantitative and qualitative analysis 

The quantitative and qualitative analysis of the proposed SARIMA-BiLSTM is assessed with R2, 

MAE, MSE, and RMSE metrics. The BiLSTM captures spatial features and bidirectional time dependencies 

from historical data which improves the model performance. The proposed SARIMA-BiLSTM is adaptable 

to handling a widespread of various seasonal patterns and captures spatial features. Table 1 presents the  

AS-WOA performance and Table 2 presents the SARIMA-BiLSTM performance.  

 

 

Table 1. Performance of AS-WOA 
Method R2 MAE MSE RMSE 

PSO 0.93 0.089 0.098 0.983 

GWO 0.90 0.085 0.093 0.957 

CSO 0.88 0.078 0.089 0.931 

WOA 0.86 0.073 0.084 0.926 

AS-WOA 0.84 0.056 0.081 0.907 
 

Table 2. Performance of SARIMA-BiLSTM model 
Method R2 MAE MSE RMSE 

CNN 0.92 0.092 0.092 0.957 

RNN 0.89 0.086 0.089 0.949  

LSTM 0.87 0.081 0.086 0.926 

BiLSTM 0.85 0.075 0.083 0.915 

SARIMA-BiLSTM 0.84 0.056 0.081 0.907 
 

 

 

Table 1 presents the performance of AS-WOA through R2, MAE, MSE and RMSE. The 

performance of particle swarm optimization (PSO), grey wolf optimization (GWO), cat swarm optimization 

(CSO) and WOA are matched with AS-WOA. The AS-WOA attains better results through R2, MAE, MSE, 

and RMSE values of about 0.84, 0.056, 0.081, and 0.907 appropriately when compared to existing 

algorithms. Table 2 presents the performance of SARIMA-BiLSTM through R2, MAE, MSE, and RMSE. 

The convolutional neural network (CNN), recurrent neural network (RNN), LSTM, and BiLSTM 

performance are matched with SARIMA-BiLSTM performance. The SARIMA-BiLSTM attains better 

results through R2, MAE, MSE, and RMSE values of about 0.84, 0.056, 0.081, and 0.907 appropriately when 

compared to existing algorithms. Figures 3, 4, and 5 present the epoch v/s accuracy, epoch v/s loss, and 

confusion matrix for SARIMA-BiLSTM respectively. Confusion matrix is a table employed to establish the 

prediction performance that summarizes and visualizes the model performance. The epochs v/s accuracy and 

loss graphs are visualizing the process when training the model. 
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Figure 3. Epoch v/s accuracy 

 

 

 
 

Figure 4. Epoch v/s loss 

 

 

 
 

Figure 5. Confusion matrix 

 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 783-791 

790 

3.2.  Comparative analysis 

The SARIMA-BiLSTM is compared with existing methods through metrics like R2, MAE, MSE 

and RMSE shown in Table 3. The existing methods like Multilayer stacked ensemble [17], CNN-DNN [18], 

CEN-SCA-BiLSTM [19], and ARIMA [20] are compared with the SARIMA-BiLSTM model. The BiLSTM 

captures spatial features and bidirectional time dependencies from historical data which improves the model 

performance. The proposed SARIMA-BiLSTM is adaptable to handling a widespread of various seasonal 

patterns and captures spatial features. From Table 3, the SARIMA-BiLSTM attains better results through R2, 

MAE, MSE, and RMSE values of about 0.84, 0.056, 0.081, and 0.907 respectively. 

 

 

Table 3. Comparative analysis 
Method R2 MAE MSE RMSE 

Multilayer stacked ensemble [17] N/A 6.63 N/A 10.545 

CNN-DNN [18] 0.87 0.199 0.071 0.266 

CEN-SCA-BiLSTM [19] 0.974 35.77 46.98 68.42 

ARIMA [20] 0.961 N/A N/A 0.853 

SARIMA-BiLSTM 0.84 0.056 0.081 0.907 

 

 

3.3.  Discussion 

The advantages of SARIMA-BiLSTM and the drawbacks of existing techniques are discussed in 

this section. The multilayer stacked ensemble [17] necessitates numerous preprocessing to fit the baseline 

supplies that are not initiated for yield prediction. The CNN-DNN [18] requires a significant capability of 

data and it cannot consider the time-series data. The CEN-SCA-BiLSTM [19] required a vast amount of 

captured data which is complex to obtain. In ARIMA [20], high attention was required to fascinate and 

stimulate farmers in coconut production. The SARIMA-BiLSTM outperforms these existing model 

limitations. The AS-WOA is utilized for selecting the best features which enhances the convergence rate and 

avoids local optima issues. The SARIMA-BiLSTM is adaptable to handling a widespread of various seasonal 

patterns and captures spatial features. 

 

 

4. CONCLUSION 

This paper proposes a SARIMA-BiLSTM for coconut yield prediction. The collected dataset is 

preprocessed through a label encoder and min-max normalization is employed to change non-numeric 

features into numerical features and enhance model performance. The preprocessed features are selected 

through AS-WOA which avoids local optima issues. Then, the selected features are given to the SARIMA-

BiLSTM for predicting the coconut yields. The SARIMA-BiLSTM is adaptable to handling a widespread of 

various seasonal patterns and captures spatial features. The SARIMA-BiLSTM performance is estimated 

through R2, MAE, MSE and RMSE. The SARIMA-BiLSTM attains 0.84 of R2, 0.056 of MAE, 0.081 of 

MSE, and 0.907 of RMSE which is better when compared to existing techniques. In the future, a hybrid 

optimization algorithm can be employed to enhance the SARIMA-BiLSTM performance. 
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