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 Mathematical simulation has significantly broadened with the advancement 

of parallel computing, particularly in its capacity to comprehend physical 

phenomena across extensive temporal and spatial dimensions. High-

performance parallel computing finds extensive application across diverse 

domains of technology and science, including the realm of acoustics. This 

research investigates the numerical modeling and parallel processing of the 

two-dimensional acoustic wave equation in both uniform and non-uniform 

media. Our approach employs implicit difference schemes, with the cyclic 

reduction algorithm used to obtain an approximate solution. We then adapt 

the sequential algorithm for parallel execution on a graphics processing unit 

(GPU). Ultimately, our findings demonstrate the effectiveness of the parallel 

approach in yielding favorable results. 
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1. INTRODUCTION 

A significant facet of acoustics involves the simulation of wave patterns. Over the past few years, 

there has been a trend towards leveraging graphics processing units (GPUs) to enhance parallel computing 

speeds. Nevertheless, it was not until the introduction of a novel generation of GPUs featuring multi-core 

architecture that tangible advancements in this area became evident. The aim of this study is to create a 

parallel version of the finite difference technique for solving the two-dimensional acoustic wave equation 

utilizing the compute unified device architecture (CUDA) technology on a GPU. Additionally, the efficacy of 

parallelization will be evaluated through a comparison of the computational time required for solving the 2D 

wave equation on GPUs versus central processing unit (CPU) [1]. 

Numerical methods for wave processes are being actively studied, including finite difference, finite 

volume, elementary and spectral element methods, as well as various time and boundary-domain distributed 

methods. Each of these approaches offers unique advantages for modeling wave phenomena. However, some 

of these methods have notable disadvantages, particularly when it comes to transforming quadratic equations 

before discretization. This article is inspired by the current enthusiasm surrounding advanced compact 

difference techniques for resolving differential equations. These higher-order compact difference methods 

offer enhanced resolution on compact mesh stencils. Additionally, the study employs alternating direction 
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implicit (ADI) methods to decompose multidimensional problems into a sequence of one-dimensional 

problems, ensuring both resilience and effectiveness [2]. 

GPU technology is used to speed up calculations when processing large meshes. GPUs, with their 

multi-core architecture and high degree of parallelism, offer significant advantages such as low cost, high 

throughput, and energy efficiency. We observed a notable boost in performance, several-fold, by leveraging 

GPUs [3], [4]. Programming for NVIDIA GPUs has become notably more accessible following the 

introduction of the CUDA programming language in late 2006. This language is relatively straightforward to 

grasp as its syntax closely resembles that of the C programming language. 

With GPUs emerging as a viable substitute for processors in parallel computing, various parallel 

triangulation solvers and hybrid approaches have been deployed on GPUs [5]–[13]. For instance, Zhang et al. 

[5] initially introduced the parallel cyclic reduction (PCR) method and subsequently suggested a hybrid 

cyclic reduction-parallel cyclic reduction (CR-PCR) algorithm. The hybrid PCR-Thomas method was also 

proposed and studied by Souri [13]. The literature provides many examples of the successful use of GPUs for 

wave propagation modeling [14]–[24]. 

In this work, we aim to address the numerical implementation of two-dimensional acoustic wave 

propagation on a GPU, providing insights into the potential advantages and efficiency of this approach. 

Leveraging the parallel computing capabilities of GPUs can significantly accelerate the computation time, 

making it feasible to simulate larger and more complex wave fields in a reasonable timeframe. Additionally, 

this implementation can offer a scalable solution for real-time applications and extensive parameter studies, 

highlighting the GPU's role as a powerful tool in computational acoustics. 

 

 

2. GOVERNING EQUATION AND NUMERICAL SIMULATION 

We investigate the acoustic wave equation in two dimensions. 

 
𝜕2𝐻

𝜕𝑡2 − 𝑐2(𝑥, 𝑦) (
𝜕2𝐻

𝜕𝑥2 +
𝜕2𝐻

𝜕𝑦2) = 𝑞(𝑡, 𝑥, 𝑦), (𝑡, 𝑥, 𝑦)𝜖[0, 𝑇] × [0, 𝑋] × [0, 𝑌],  (1) 

 

The initial conditions are given as: 

 

𝐻(0, 𝑥, 𝑦) =  𝐻0(𝑥, 𝑦), 𝑥, 𝑦𝜖[0, 𝑋] × [0, 𝑌]  (2) 

 

and 

 
𝜕𝐻(0,𝑥,𝑦)

𝜕𝑡
= 0, 𝑥, 𝑦𝜖[0, 𝑋] × [0, 𝑌] (3) 

 

The boundary conditions are: 

 

𝐻(𝑡, 𝑥, 0) = 0, 𝐻(𝑡, 𝑥, 𝑌) = 0, 𝑡𝜖[0, 𝑇], 𝑥𝜖[0, 𝑋] × [0, 𝑌] (4) 

 

and 

 

𝐻(𝑡, 0, 𝑦) = 0, 𝐻(𝑡, 𝑋, 𝑦) = 0, 𝑡𝜖[0, 𝑇], 𝑦𝜖[0, 𝑋] × [0, 𝑌] (5) 

 

In this context, H represents the wave function, q denotes the source term, and c indicates the wave speed. 

For the homogeneous scenario, c remains uniform, and a Gaussian function is employed as the source 

term. 

In our numerical modeling approach, we establish a space-time grid with increments ℎ1, ℎ2, and τ, 

respectively, for the variables 𝑥, 𝑦, and 𝑡: 

 

𝜔ℎ1ℎ2

𝜏 = {𝑥𝑖 = ⅈℎ1, ⅈ = 0, 𝑁̅̅ ̅̅ ̅; 𝑦𝑗 = 𝑗ℎ2, 𝑗 = 0, 𝑁̅̅ ̅̅ ̅;  𝑡𝑛 = 𝑛𝜏, 𝑛 = 0,1,2 …
𝑇

𝜏
} (6) 

 

Here, we set ℎ1 = 𝑋/𝑁1, ℎ2 = 𝑌/𝑁2, and 𝜏 = 𝑇/𝑀. Using this grid, we apply the finite difference technique 

to approximate the differential equation presented in problem (1) along with the accompanying conditions (2) 

to (5). For simplicity, let's define 𝑁 as 𝑁1 = 𝑁2 and denote ℎ as ℎ1 = ℎ2. Now, let's consider the implicit 

finite difference scheme for addressing the problem outlined in (1)-(5). 
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𝐻ⅈ,𝑗
𝑛+1−2𝐻ⅈ,𝑗

𝑛 +𝐻ⅈ,𝑗
𝑛−1

𝜏2 −
𝑐ⅈ,𝑗

ℎ2 (𝐻𝑖+1,𝑗
𝑛+1 − 2𝐻𝑖,𝑗

𝑛+1 + 𝐻𝑖−1,𝑗
𝑛+1 + 𝐻𝑖,𝑗+1

𝑛+1 − 2𝐻𝑖,𝑗
𝑛+1 + 𝐻𝑖,𝑗−1

𝑛+1 ) = 𝑞𝑖,𝑗
𝑛 ,  (7) 

 

For (𝑛; ⅈ;  𝑗) 𝜖 𝜔ℎ1ℎ2

𝜏  with initial conditions 

 

𝐻𝑖,𝑗
0 = 𝜑𝑖,𝑗,𝐻𝑖,𝑗

1 − 𝐻𝑖,𝑗
0 = 𝜏𝜑𝑖,𝑗 ,  (8) 

 

For (ⅈ, 𝑗)∈0, 𝑁̅̅ ̅̅ ̅×0, 𝑁̅̅ ̅̅ ̅, and with boundary conditions 

 

𝐻0,𝑗
𝑛 = 0, 𝐻𝑁,𝑗

𝑛 = 0, 𝐻𝑖,0
𝑛 = 0, 𝐻𝑖,𝑁

𝑛 = 0,  (9) 

 

For (𝑗, 𝑛) ∈ 0, 𝑁̅̅ ̅̅ ̅×0, 𝑀̅̅ ̅̅ ̅̅  and (ⅈ, 𝑛) ∈ 0, 𝑁̅̅ ̅̅ ̅×0, 𝑀̅̅ ̅̅ ̅̅ , respectively. The implicit scheme is inherently stable 

regardless of the chosen step sizes and achieves an accuracy of 𝑂(𝜏 + |ℎ2|) as discussed in [25]. The 

difference (7) is addressed using the implicit alternating direction method (ADI), which involves splitting it 

into two separate subtasks. 

 

Hⅈ,j
n+1−2Hⅈ,j

n +Hⅈ,j
n−1/2

τ2 −
cⅈ,j

h2 (H
i+1,j

n+
1

2 − 2H
i,j

n+
1

2 + H
i−1,j

n+
1

2 ) = qi,j
n ,  (10) 

 

Hⅈ,j
n+1−2Hⅈ,j

n+1/2
+Hⅈ,j

n−1/2

τ2 −
cⅈ,j

h2 (Hi,j+1
n+1 − 2Hi,j

n+1 + Hi,j−1
n+1 ) = qi,j

n+1/2
,  (11) 

 

 

3. NUMERICAL METHOD 

The alternating direction implicit (ADI) method, which utilizes finite difference techniques, has 

historically been a well-established method for addressing differential equations in complex, high-

dimensional settings. Initially proposed by Peaceman and Ratchford [26], the method has seen several 

refinements over time [27]–[31]. Characterized by implicit finite difference operations, the ADI method 

ensures full stability in problems devoid of mixed derivatives and maintains a considerable stability margin 

in cases where mixed derivatives are present [10]. By employing the implicit sub-circuit, we apply the cyclic 

reduction (CR) method along the x-direction to compute the grid function Hi,j
k+1/2

. Subsequently, in the 

second fractional time step utilizing sub-circuit, the CR method is utilized along the y-axis direction, yielding 

the grid function Hi,j
k+1. The ADI method demonstrates second-order accuracy of 𝑂(τ2 + ℎ2). The ensuing 

numerical simulations are detailed below. All calculations were performed with the Python programming 

language and employed the cyclic reduction technique. For the simulations, a time step of 𝜏 = 0.001 and a 

spatial step of ℎ = 1 were used. Results were visualized with the Matplotlib library, and the findings from 

the numerical experiments are illustrated in Figures 1 to 3. 

These figures depict both the time function of the source and the propagation of the wave through a 

medium with varying properties at multiple time points. In such a medium, the speed of the wave fluctuates 

according to the medium's structural variations. Our analysis focuses on how the wave propagates through a 

medium with distinct wave velocities in the white and blue regions. 

 

 

 
 

Figure 1. Source function and two-layer heterogeneous medium 
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Figure 2. Wave propagation at different time steps 

 

 

 
 

Figure 3. Wave propagation through a heterogeneous medium at different time intervals 

 

 

4. PARALLEL EXECUTION USING THE GRAPHICS PROCESSING UNIT 

A graphics processing unit (GPU) represents a massively parallel, multi-core processor renowned 

for its substantial computational capacity. Its affordability, impressive floating point throughput, and efficient 

memory access have garnered growing interest among experts in advanced computing performance [24]. The 

CUDA implementation encompasses three primary stages of computation: data transfer to GPU global 

memory, execution of the CUDA kernel [25], and retrieval of results from GPU memory to CPU memory. 

Although various parallel approaches were investigated in [32], this study opts for the CUDA approach, 

utilizing the cyclic reduction technique. The procedure for solving the problem is detailed in Algorithm 1. 

 

Algorithm1. Execution of 2D wave equation 
1. Compute initial condition matrix H0 

       Initialize matrix H with H0 based on the initial condition (2). 

2. Time-stepping loop: 

   while t < tend do: 

3.Solve in the x-direction: 

        For each row j=0,...,m  

         For each column i=0,...,m 

           calculate the tridiagonal system elements ai,bi,ci,fi 

           call the function Cyclic_Re(ai,bi,ci,fi,yi,m) to solve the tridiagonal system. 

           calculate matrix Hx 

4.Solve in the y-direction: 

        For each column i=0,...,m  

         For each row j=0,...,m  

            calculate the tridiagonal system elements aj,bj,cj,fj 

            call the function Cyclic_Re(aj,bj,cj,fj,yj,m) 

            calculate matrix Hy 

5.Update the matrices: 

           Swap H with Hx 

           Swap H0 with Hy. 

           Update the time step t by incrementing t by Δt. 

6. End of time-stepping loop. 
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In this context, 𝐻, 𝐻0, 𝐻𝑥 , 𝐻𝑦  represent Hi,j
k−1/2

, Hi,j
k , Hi,j

k+1/2
, Hi,j

k+1 respectively. Within the 

𝐶𝑦𝑐𝑙ⅈ𝑐_𝑅𝑒() function, there are three device functions: 𝐶𝑅𝐹𝑜𝑟𝑤(), 𝐶𝑅_𝑑(), and 𝐶𝑅𝐵𝑎𝑐𝑘𝑤(), alongside one 

host function, 𝑐𝑎𝑙𝐷ⅈ𝑚(). Initially, the block size needs to be calculated based on the matrix size and the 

forward and backward sub-steps. This involves a cycle where we iterate over the computation  

 
for (i=0; i<log2(m+1)-1; i++) { 

ste_N=(m-pow(2.0, i+1))/pow(2.0, i+1)+1; 

calDim(ste_N,&dimBlock,&dimGrid); 

CRForwa<<>>(d_a, d_b, d_c, d_f, n, ste_N, i);  

} 

 

where 𝑙𝑜𝑔2(𝑚 + 1) − 1 is the step number, and the 𝑠𝑡𝑒_𝑁 variable is used to determine the required block 

size. After the 𝑐𝑎𝑙𝐷ⅈ𝑚() function has determined the block size, the 𝐶𝑅𝐵𝑎𝑐𝑘𝑤() function is executed 

𝑙𝑜𝑔2(𝑚 + 1) − 1 times. Thus, the system can reduce the equation by one. The blocks are synchronized, 

followed by the invocation of the 𝐶𝑅_𝑑() function, which computes two unknowns. After that, a loop is used 

with the following structure: 

 
for (i=log2(m+1)-2; i>=0; i) { 

ste_N=(m-pow(2.0, i+1))/pow(2.0, i+1)+1; 

calDim(ste_N, &dimBlock, &dimGrid); 

CRBackw<<>>(d_a, d_b, d_c, d_f, d_x, n, ste_N, i); 

} 

 

In this context, the backward substitution process is executed 𝑙𝑜𝑔2(𝑚 + 1)– 2 times, as the initial backward 

substitution sub-step is handled by the 𝑐𝑎𝑙𝐷ⅈ𝑚 function. Subsequently, the d_x array is computed, and then 

this computed data is transferred from the device to the host using the cudaMemcpy function with the 

parameters 𝑦, 𝑑_𝑥, 𝑠ⅈ𝑧𝑒𝑜𝑓(𝑑𝑜𝑢𝑏𝑙𝑒) ∗ 𝑛, and 𝑐𝑢𝑑𝑎𝑀𝑒𝑚𝑐𝑝𝑦𝐷𝑒𝑣ⅈ𝑐𝑒𝑇𝑜𝐻𝑜𝑠𝑡. 

 

 

5. RESULTS AND DISCUSSION 

In the following section, we present the findings derived from experiments conducted on a desktop 

system equipped with a GeForce RTX 2080 setup featuring 4352 cores. The system also comprises an 

NVIDIA GPU, Intel Core (TM) i7-9800X Processor clocked at 3.80 GHz, and 64 GB RAM. The modeling 

parameters are configured as follows: the grid size remains consistent in both directions, with ∆𝑥 = ∆𝑦, 

while the time step ∆𝑡 is set to 0.05. The simulation duration is T = 10.0, resulting in a total of 200-time 

steps. For a more comprehensive evaluation, we conducted tests using four different computational domain 

sizes: 512×512, 1024×1024, 2048×2048, and 4096×4096. 

The effectiveness of a parallel algorithm is assessed by measuring its acceleration. Acceleration is 

determined by comparing the best runtime of a sequential algorithm with the longest runtime of the parallel 

algorithm for a given problem. 

Table 1 provides insights into the execution durations (in seconds) for both the sequential 

implementation (CPU time) and the CUDA implementation (GPU time). Additionally, the table presents the 

execution times of cyclic reduction methods for tasks, along with the corresponding acceleration coefficients 

achieved on diverse devices. This comparative analysis highlights the efficiency gains offered by the GPU 

implementation, demonstrating the potential for substantial performance improvements when using parallel 

computing techniques over traditional sequential methods. 

 

 

Table 1. Performance measurements and acceleration analysis using the Intel Core (TM) i7-9800X,  

3.80 GHz, and NVIDIA RTX 2080 TI architecture 

Mesh sizes CPU time GPU time Acceleration 

512 × 512 6.45 2.87 2.25 

1024 × 1024 29.36 8.06 3.64 

2048 × 2048 125.47 30.45 4.12 

4096 × 4096 525.59 78.33 6.71 

 

 

6. CONCLUSION 

This article explores the computational resolution of a two-dimensional wave equation utilizing an 

implicit solution strategy. A technique for resolving the two-dimensional wave equation computationally via 

the finite difference method is outlined. Furthermore, a strategy for parallelizing the cyclic reduction method 
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on a graphics processor is introduced. We devised a method for parallelizing the round-robin technique on 

NVIDIA GPUs and showcased its acceleration capabilities. Our experimentation with accelerating the round-

robin method yielded promising results. We see that it was successful: the speedup achieved when 

implemented on the GPU was 6.71. 
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