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 Recent research has concentrated on using machine learning 

approaches to forecast flight delays. The majority of prior prediction 

algorithms were based on simple and standard attributes collected 

from the database from which the data were pulled. This article is the 

first attempt to propose novel features linked to airport capacity and 

infrastructure. The total runways, the total runway intersections, the 

longest runway length, the shortest runway length, the runway 

precision rate, the total terminals, and the total gates were all 

examined. In this paper, we suggest an optimized multilayer 

perceptron to predict flight arrival retards implementing data for 

domestic flights operated in United States airports. We employed 

data normalization, sampling techniques, and hyper-parameter tuning 

to strengthen the reliability of the suggested model. The 

experimental findings demonstrated that data normalization, 

sampling approaches, and Bayesian optimization produced the most 

accurate model with 92.49% accuracy. The achievements of the 

study were compared to other benchmark research from literature. 

The time complexity for the proposed model was computed and 

presented at the end of the investigation. 
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1. INTRODUCTION 

Flight delays can arise from multiple sources, comprising extreme weather, traffic jams, pilot 

experiences and qualifications, maintenance issues or repairs needed on the aircraft, late-arriving inbound 

aircraft or passengers, and crew scheduling. In some cases, delays may also be caused by strikes or labor 

disputes, security concerns or airport construction, delays due to overbooking, or issues with connecting 

flights. Airport or runway closures or construction, infrastructure, and capacity are also considered for traffic 

delays. Airport capacity can be considered as the highest number of aircraft and passengers that an airport 

can handle at any given time. Factors that can affect airport capacity include the number and size of runways, 

taxiways, gates, and terminals, as well as the efficiency of airport operations. The infrastructure of an airport, 

if it is not dedicated to handling a lot of aircraft at the same time, can lead to flight delays. 

https://creativecommons.org/licenses/by-sa/4.0/
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To enhance the safety and efficiency of aircraft operations on runways, precision aids are installed at 

airports in order to help pilots align their aircraft with the runway and descend to a safe landing. These aids 

can include equipment like the instrument landing systems (ILS) that help pilots land an aircraft safely, 

especially in poor visibility conditions. Furthermore, the microwave landing systems (MLS) provide precise 

guidance to the runway using radio signals for landing in low-visibility conditions, and runway lighting 

systems, which help pilots identify the location of the runway and its boundaries. Other examples of runway 

precision aids include visual glide slope indicators, runway alignment indicator lights, and runway threshold 

lights. These systems are designed to help pilots make safe and accurate landings, even in challenging 

weather conditions. The area navigation (RNAV) procedure, which stands for area navigation, is also a 

precision tool used by pilots to fly more direct routes. RNAV is also known as a global positioning system 

(GPS) navigation, as it commonly uses GPS data to define the position of the aircraft and guide it toward its 

final point. It is another type of navigation mode available in the flight management system (FMS) installed 

on modern airplanes. All this precision equipment helps reduce flight times and fuel consumption by 

avoiding the possibility of going around. In fact, if the runway is equipped with non-precision aids, the 

aircraft will not be able to land in bad weather and will perform a missed approach instead or divert to an 

alternate airport. 

Following the International Civil Aviation Organization (ICAO) [1], a missed approach or a  

go-around is an operation performed by an aircraft by stopping and interrupting the approach if the visual 

reference necessary and the minimum needed for landing has not been established or reached. Figure 1 

represents an aircraft go-around procedure. Poor airport infrastructure, such as inadequate runway capacity, 

outdated or limited terminal facilities, and non-precision aids, can contribute to traffic density and 

congestion, which leads to flight delays. For this end and as far as we know, we offered novel attributes that 

are related to the infrastructure of the airport and the precision of its aids, which have never been considered 

in previous studies, namely, number of runways, runway intersections, longest runway length, shortest 

runway length, runway precision rate, number of terminals, and number of gates. Other relevant features, 

such as: airport name, day of week, airline, tail number (registration), flight number, airport of origin, airport 

of destination, arrival time, departure time, arrival delay (binary), and departure delay (binary) have been 

taken from the Bureau of Transportation Statistics database (BTS) [2]. 

 

 

 
 

Figure 1. A missed approach operation (source: [3]) 

 

 

This research is intended to deliver an analytical predictive framework that minimizes the impact of 

delays and cancellations on passengers, airlines, and airport authorities by predicting the arrival delay of a 

particular flight based on new delay-contributing factors that were not studied in previous research. So as to 

boost the robustness and efficiency of the model, data normalization was adopted to transform features to be 

on a similar scale. To better understand the patterns, correlations, and associations between the features and 

the target variable, which can lead to better prediction performance, a data balancing technique was executed. 

To boost the performance, robustness, and generalization of the model, we applied an optimization of the 

hyperparameters using Bayesian optimization in such a way that the model performs better on unseen data. 

Numerous studies and research have been conducted on flight delays. The analysis axes addressed 

the causes of flight delays, their consequences, and measures to avoid them from different perspectives. The 

investigations comprised the study of statistics, network of things, probability theories, operational research, 

and machine learning. Liu et al. [4] applied an econometric model in order to perform an empirical analysis 

of flight actual airborne time (AAT) in the US and China. Borsky and Unterberger [5] suggested a difference-

in-difference framework based on an econometric analysis to study the impact of sudden changes in 

meteorological conditions on departure delays using United States data between January 2012 and September 

2017. Chen et al. [6] aimed to study aircraft delay distribution patterns in one area and demonstrate the 
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impact of delays happening at several airports using a variety of visualization techniques. In order to forecast 

the likelihood of airline delays during take-off and landing operations, the kernel density function has been 

utilized by the authors in [7]. Zeng et al. [8] focused on complex network theory and the causal inference 

method to study the propagation of delays and their influence on air traffic control systems. To examine how 

extreme weather conditions impact punctuality in high-speed rail and aviation services, Chen and Wang [9] 

utilized both data visualization and statistical analysis. for anticipating and assessing the functional condition 

of the airport arrival system, Rodríguez-Sanz [10] suggested a two-stage model: the prediction part using a 

probabilistic Bayesian network and the reliability part with a Markov chain approach. 

Statistical methods are generally based on probabilities and approximate measurements, which 

might result in misleading outcomes. Machine learning has the advantage of resulting in increased accuracy 

and being able to address enormous quantities of data, automation, and working better with unstructured data, 

according to Alla et al. [11]. Qu et al. [12] used a deep learning technique for assessing and projecting 

aircraft delays. The prediction accuracy was 8.7 percentage points higher compared with the traditional 

machine learning technique. So as to predict delayed domestic flights operated by American Airlines, 

Chakrabarty [13] have deployed a gradient boosting classifier model with data sampling and hyperparameter 

tuning. The suggested method has accomplished an accuracy of 85.73%. For airport delay prediction, a long 

short term memory (LSTM) neural network framework using historical flight data from several airports in 

the U.S. from 2015 to 2018 has been proposed by researchers in [8]. According to the experimental results, 

the suggested technique outperforms existing methods regarding reliability and precision. 

Bisandu et al. [14] have recommended a deep recurrent neural network (DRNN) model in order to 

analyze and solve flight delay prediction issues. The suggested method’s efficiency and computing time were 

compared to existing benchmark approaches. In order to help in decision-making and predicting air traffic 

delays, Nibareke and Laassiri [15] performed analysis on a flight dataset using decision tree, naïve Bayes, 

and linear regression. The calculation and comparison of accuracy, error, and score metrics have generated 

decision trees as the best model and naïve Bayes as the weakest one. Huo et al. [16] have chosen five 

methods, which are naïve bayes, logistic regression, k-nearest neighbors, random forest, and decision trees to 

forecast aircraft delays at Hong Kong International Airport. For estimating aircraft departure delays, Khan  

et al. [17] have proposed a new model using various neural network algorithms combined with different 

sampling techniques. By examining variables that are in relation with delays such as weather data, operations 

in airports ground, capacity for demand and flow control qualities, Esmaeilzadeh and Mokhtarimousavi [18] 

developed a support vector machine (SVM) model to investigate the nonlinear connection of the air delays in 

the three biggest airports in New York city. Alla et al. [19] experimented with gradient boosting, linear 

regression, extreme gradient boosting, random forest, and decision trees algorithms in order to forecast the 

arrival time of a specific flight. random forest was the most successful model, with the biggest accuracy of 

98.11% compared to the other ones. 

The content of this paper is arranged as outlined: section 2 examines the studies and efforts 

conducted in the area of flight delay estimation. Section 3 highlights the method provided in this research, the 

algorithms used, as well as all the features analyzed and proposed so as to boost the method’s performance. 

Section 4 provides the empirical results of the suggested technique as well as the time complexity computed 

in this work. Section 5 discusses the conclusion, viewpoints, and possible future developments. 

 

 

2. METHOD 

2.1.  Problem statement 

Passengers may experience severe difficulty as a result of flight delays, such as missed connections, 

missed appointments, and unplanned overnight stays. Airlines can proactively alert customers and provide 

alternate choices, such as re-booking on another aircraft, if delays are predicted in advance. Flight delays can 

also be costly for airlines, resulting in increased use of fuel, customer charges paid for the annoyed and 

dissatisfied passengers, stuffing overtime, and other operational costs. Airlines can take preventive actions to 

minimize these costs, such as adjusting flight schedules or optimizing ground operations, which can also 

improve customer satisfaction and loyalty. In order to avoid safety issues engendered by the stress and 

fatigue of pilots and the crew in general, after experiencing delays, airlines may take precautions to guarantee 

that their crew members are well-rested and that all safety protocols are followed if traffic delays are known 

in advance. For this reason, we decided in our study to develop a predictive model that allows passengers, 

airlines, and airport managers to be aware of delays so as to take proactive actions and measures. The 

objective is to provide travelers with high flexibility and peace of mind while also assisting airlines in more 

successfully directing their operations and improving customer satisfaction. Furthermore, it will help airport 

authorities and leaders in the decision-making process. We started by extracting historical flight information 

from the BTS database. The data underwent meticulous preparation, segmentation and normalization, 
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ensuring its readiness for examination. From the dataset at hand, we derived different attributes that describe 

the performance of every flight. To boost the accuracy of our model and as far as we know, we suggested 

novel features that, according to air transportation organizations and associations, are extremely important 

and lead to air traffic delays. After that, we segmented the final data as follows: 70% for training and 30% for 

testing. We utilized the multilayer perceptron (MLP) to train our model. To ensure effective training of the 

proposed system, hyperparameter tuning was adopted using the Bayesian optimization approach. We decided 

to perform a data sampling using the synthetic minority oversampling technique (SMOTE) combined with 

Tomek links. We extensively examined and assessed the evaluation of the proposed model's performance 

against different metrics. We ended the study with a complex computation. Figure 2 offers a summary of the 

architecture of the general structure of our approach. 

 

 

 
 

Figure 2. Sequential workflow of the proposed model 

 

 

2.2.  Data collection 

Historical flight records for non-stop domestic flights within the United States for the year 2019 

were obtained from the BTS [2]. Data on runway dimensions, junctions, and other pertinent details from 

about 106 airports across the U.S. were retrieved from the Federal Aviation Administration (FAA) [20] 

airport database. Moreover, information on navigational aids, equipment, and facilities at these airports was 

accessed from the air navigation database website [21]. 

 

2.3.  Data preprocessing 

Various data mining and machine learning methodologies can be utilized to uncover intriguing 

insights and patterns from extensive databases [22]. The data preprocessing operations prepare the input 

dataset for the following data mining actions. They also contribute to enhancing and boosting the accuracy 

and performance of machine learning systems, particularly in classification, according to [23]. In this paper, 

we adopted two preprocessing techniques: data cleaning and data normalization.  

In data cleaning, the process of data cleaning consists of the elimination of duplicate elements, the 

handling of missing information, the correction of inconsistent values, and the proper formatting of data, so it 

can be ready and prepared to be analyzed and used, according to [11]. It is an important phase in the data 

analysis process. It guarantees that the conclusions obtained from the data are correct and dependable. In data 

normalization, normalization adjusts the range of attribute values to fit within a new scale. This kind of 

approach is crucial for classification methods because it enhances the learning process and ensures that 

attributes with higher values do not dominate those with lower values, as highlighted in [23]. 

               

                   

              

                             

                     

                

                      

              

          



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 1038-1050 

1042 

2.4.  Features selection 

Database features used to predict arrival delays for domestic flights operated in Unites States 

Airports, we used data for the year 2019. We extracted the statistical information from the BTS [2]. The 

dataset comprising all the relevant information about the flight is summarized in Table 1. Proposed features 

are used by international organizations and associations are working to enhance air travel safety and 

efficiency, as well as to improve the passenger experience and fight against flight delays. 

 

 

Table 1. Analysis of database features 
Feature Category Description 

Day of month Numerical The day of the month in which the flight was executed 

Day of week Numerical The day of the week during which the trip was executed 

Carrier code Numerical The airlines designation 

Tail number Numerical The airlines registration/matriculation 

Flight number Numerical The number of the flight 

Origin Categorical The airport of origin 

Destination Categorical The airport of destination 

CRS_DEP Numerical The programmed departure time 

Actual_DEP Numerical The true departure time 

DEP delay Binary 1 if the flight is delayed on departure 0 if not 

CRS_ARR Numerical The programmed arrival time 

ARR delay Binary 1 if the flight is delayed on arrival, 0 if not 

(The dependent variable in our research) 

Distance Numerical The distance in miles between the airport of origin and the airport of destination 

 

 

The ICAO [1] has established standards and recommended practices (SARPs) for airlines and 

airports to guarantee safe and efficient operations. Air traffic management, airport operations, and airline 

safety are among the topics covered by these SARPs. The ICAO [1] also collaborates with member states to 

put these guidelines into action, improve the safety and efficiency of air transport, and manage flight delays. 

The European Union (EU) has proposed a "passenger rights" policy that establishes guidelines for airlines to 

follow in the case of aircraft delays, cancellations, or refused boarding. Passengers are entitled to 

compensation, assistance, and refunds in particular cases. Airports Council International (ACI) [24] has 

created the "airport service quality" (ASQ) program to assess consumer contentment with airport services. 

The initiative solicits passenger feedback on many areas of the airport experience, such as check-in, security, 

boarding, on-time arrival, and flight delays. Airports may employ this information to improve the passenger 

experience by identifying areas for improvement. Through its awards for the year 2022 in the US, the FAA 

[20] has established the airport improvement program (AIP), which funds a number of initiatives and projects 

such as the building of new and upgraded airport infrastructure, repairs to runways and taxiways, 

maintenance of airfield components such as lighting or signs, and the purchase of airport equipment.  

In order to meet the excessive growth in Brazilian passenger traffic and the extra demand generated 

by the World Cup 2014, a lot of projects were established notably the construction of a new airport in the 

nearby town of São Gonçalo do Amarante, which was designated to serve the city of Natal [25]. According to 

Kennedy [26], intersections between runways are expected to experience additional delays in the National 

Airspace System as a result of increased wait periods. The need to queue while waiting for an intersecting 

runway to clear might cause considerable delays. Delays can also be caused by waiting to traverse one of the 

runways while taxiing. The International Air Transport Association (IATA) [27] has launched the "Airport 

Collaborative Decision-Making (ACDM)" initiative to optimize the information exchange between airports, 

airlines and air traffic control, with the objective of minimizing flight delays and enhancing the use of airport 

resources such as aircraft gates and parking. According to the international federation of Air Traffic 

Controllers’ Associations (IFATCA) [28], a marked increase in the number of approach categories studied 

has occurred over the past few years. This is mostly caused by the application of cutting-edge technologies 

including the GPS and the RNAV. Such techniques allow pilots to land with better precision and confidence, 

lowering the possibility of missed approaches or go-around procedures by giving precise and reliable 

guidance and position information, which can reduce the occurrence of flight delays. 

The ICAO [1] has produced airport design standards that recommend minimum runway lengths 

depending on the size and type of aircraft expected to operate in the airport. These standards can contribute to 

guaranteeing that airports are equipped to accept a wide range of aircraft, minimizing the chance of delays 

due to capacity limits. Similarly, the IATA [27] has produced the ADRM, which offers recommendations on 

airport planning and development, including runway length and other infrastructure requirements. Airports 

can ensure that their facilities are enhanced for safety and efficiency by following these standards, which can 

help reduce flight delays and provide a better passenger experience. This explains why we opted to stay 
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focused on achieving the objectives and policies established by the international organizations and 

associations previously explained by creating new features that fulfill the needs in terms of airport 

infrastructure and buildings, the maneuvering area of the aerodrome (runways, taxiways, intersections, and 

gates,), and the aids used to operate the flights safely and efficiently. Table 2 outlines the features that were 

proposed in this study. 

 

 

Table 2. Description of proposed features 
Feature  Category Description 

Runway Length  Numerical The distance of the most used runway 

Number of Runways  Numerical The number of runways in a specific airport 

Runways Intersections  Numerical The number of runway intersection spots in a specific airport 

Runways Precision Rate  Binary 1 if the runway is precision-aids equipped (ILS, RNAV, and GNSS) 

0 if non-precision-aids equipped (VOR, DME, NDB, and LOCATOR) 

Number of Gates  Numerical The number of airplane parking in a specific airport 

Number of Terminals  Categorical The number of passenger terminals in a specific airport 

 

 

2.4.1. Runway length 

The length of a runway can affect flight delays in different ways. Although longer runways allow 

for larger and heavier aircraft to take off and land, which can increase the capacity and demand at an airport, 

it also means a longer time to vacate and clear the runway, which causes delays for following flights. 

However, if a runway is too short for a particular aircraft, the landing or take-off distance will also be short, 

and it can lead to a runway excursion. As a preventive action, that aircraft may need to be diverted to another 

airport, causing a delay. Additionally, inclement weather can also cause flight delays, particularly if the 

runway is not long enough for an aircraft to safely take off or land in poor visibility conditions, especially if 

the runway is wet or slippery, which results in a longer braking distance. 

 

2.4.2. Number of runways 

The number of runways at an airport can have an impact on flight delays. Having numerous 

runways allows an airport to serve more air traffic and reduce delays caused by congestion, enabling aircraft 

to take-off and arrive simultaneously, thereby increasing the airport’s overall capacity. Though an increased 

number of runways can also result in a complicated architecture for the airport. In general, the more runways 

an airport has and the more complex its layout, the greater the potential for delays due to runway 

intersections. 

 

2.4.3. Runways intersections 

Flight delays can be increased with runway intersections. In airports, runway intersections are spots 

where two or more runways cross or join. They can cause traffic delays if aircraft are not able to take off or 

land on the intersecting runways at the same time, due to safety. Let us take the example in Figure 3 of two 

intersecting runways, R10 and R09. To take off on R10, aircraft A must cross R09, but aircraft B is 

authorized to land on R09. For that, aircraft A is forced to wait and hold position to give way to aircraft B for 

safety reasons.  

 

 

 
 

Figure 3. Traffic operations on two intersecting runways (Source: [29]) 
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2.4.4. Runways precision rate  

Runway precision aids are systems and equipment that assist pilots in navigating safely and 

correctly during take-off and landing. Inaccuracies in the information provided by the non-precision runway 

aid can lead to errors in approach and landing. The discrepancies cause go-arounds and miss approach 

operations that contribute to flight delays. 

 

2.4.5. Number of gates  

Flight delays can also be affected by the number of gates at an airport. It is critical and mandatory 

for an airport to have a sufficient number of parking spaces to manage the number of flights that are planned 

to take-off and land. If there are not enough gates, flights may have to wait for one to become available, 

causing delays. 

 

2.4.6. Number of terminals  

Airports with more terminals tend to welcome more flights and passengers. This can lead to more 

congestion, longer security lines, and more potential for delays. Nevertheless, airports with few terminals can 

sometimes experience flight delays, especially if one or more are unserviceable. 

 

2.5.  Multilayer perceptron  

The MLP is a popular and basic neural network generally used for classification problems. 

Basically, it is a feed-forward neural network composed of many perceptron [11]. With one or more hidden 

layers, the MLP is generally employed for pattern recognition, classification, prediction, and function 

approximation [30]. The input layer nodes receive the input data, while the output layer nodes generate the 

network’s predictions. The neurons in each layer use activation functions to calculate a weighted sum of their 

inputs and produce a non-linear output.  

The MLP follows the process of multiplication, summation, and activation used in neural networks 

[11], as expressed by (1):  

 

𝑌 = 𝐹(∑ 𝑤𝑖 ∗ 𝑥𝑖 + 𝑏)𝑛
𝑖=0  (1) 

 

where 𝑥𝑖 refers to the 𝑖−𝑡ℎ input where 𝑖 ranges from 0 to 𝑛 inputs. 𝑤𝑖 indicates the weight matrices for both 

the hidden and output layers, with 𝑖 spanning from 0 to n inputs. 𝑏 denotes the bias term. 𝐹 represents the 

activation function. 𝑌 signifies the output value.  

Multilayer perceptron is widely used for a variety of applications. Alla et al. [11] used a MLP neural 

network with selective training for the prediction of delays on arrival. To estimate the coefficient of soft soil 

consolidation, Pham et al. [31] combined MLP and biogeography-based optimization (BBO). 

The proposed method, MLP-BBO, had the biggest predictive performance with the lowest root 

mean square error (RMSE) of 0.397 compared with other models. Mubarek and Adali [32] adopted a MLP 

for fraud detection. The proposed model revealed that it was the most accurate, with the greatest degree of 

accuracy of 99.47% using nine selected features. For drought forecasting, Zulifqar et al. [33] applied and 

tested the MLP in several climatological stations situated in the northern area and Pakistan. The model was 

able to predict drought conditions with different time scales and higher accuracy. To determine the warming 

and calming requirements of energy-efficient buildings, Xu et al. [34] have utilized and optimized an MLP 

method using different optimization algorithms. Radhakrishnan et al. [35] have developed an MLP model for 

predicting mechanical ventilator settings by changing the hidden layers and comparing the results. The best 

model was the one with three hidden layers. 

In the present study, the MLP was implemented for assessing and foreseeing the occurrence of flight 

delays using new features. We opted for the MLP for many reasons: i) Because MLPs have few parameters, 

they can be employed by individuals without previous experience, and their implementation techniques are 

easy to understand [36]; ii) MLPs have the capability to be utilized across diverse fields for solving a variety 

of problems [36]; iii) MLPs serve as tools for discrimination, recognition of patterns, empirical modeling, 

and many other applications [36]; iv) When applied to similar issues, MLPs often outperform standard 

statistical approaches [36]; v) While traditional linear models struggle to model data with nonlinear 

properties, MLPs can effectively capture both linear and nonlinear interactions [36]; and vi) MLPs are 

effective in extracting structural or pattern characteristics from both static and dynamic data [36].  

To create a machine learning system, weight parameters are set up and adjusted using an 

optimization approach. According to the study [37], this action keeps occurring till the objective function 

attains a minimum or the accuracy reaches a maximum. In our investigation, we employed Bayesian 

optimization to tune the hyperparameters.  

 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

 Airport infrastructure and runway precision aids for forecasting flight arrival delays (Hajar Alla) 

1045 

2.6.  Bayesian optimization  

The hyperparameter optimization paradigm involves the use of four pertinent elements: an estimator 

(which might be a regression or classification model with some sort of objective function), a defined search 

space, a technique for exploring or optimizing hyperparameter combinations, and an evaluation metric for 

comparing the effectiveness of various hyperparameter configurations. Bayesian optimization models 

compute the next hyperparameter by considering the previous outcomes of tested hyperparameter values 

avoiding numerous unnecessary evaluations. As a consequence, the Bayesian approach can find the best 

hyperparameter combination in fewer iterations than other optimization techniques such as random search 

and grid search. Bayesian optimization employs two main components to select the next hyperparameter 

configuration: a surrogate model and an acquisition function [37]. 

 

2.6.1. Surrogate model: Gaussian processes  

The surrogate model is applied to direct the search for the target model’s global optimum. The most 

common surrogate model for objective function modeling is the gaussian process (GP), which follows a 

normal distribution according to (2). It is an advanced probabilistic model that is widely used in machine 

learning for regression and classification problems [37]. 

 

),µ |N(y  D)x,|(
^^

2=yp  (2) 

 

where 𝐷 corresponds to the hyper-parameter configuration space, and 𝑦 = 𝑓(𝑥) denotes the evaluation 

outcome for each hyper-parameter value 𝑥, 𝜎² is the covariance and µ the mean. 

After making predictions, the subsequent evaluation points are selected based on the confidence 

intervals generated by the BO-GP model. Every new data point is incorporated into the dataset, and the  

BO-GP model is updated accordingly. This process is reiterated several times until the set stopping criteria 

are met. For a dataset with size 𝑛, the BO-GP model has a time complexity of 𝑂(𝑛3) and a space complexity 

of 𝑂(𝑛2). A significant drawback of the BO-GP model is its cubic time complexity concerning the number 

of instances, which impacts its scalability and parallel processing capabilities. Additionally, the BO-GP 

model is mainly designed for optimizing continuous variables [37]. 

 

2.6.2. Acquisition function  

To select the next candidate from the search space, the acquisition function can be described to 

mean the anticipated gain: 

 

𝐴(𝑥) = 𝐸[𝐺(𝑥)| X,y]  (3) 

 

where  

 

𝐺(𝑥): = 𝑚𝑖𝑛( 𝑦) − 𝑓(𝑥). 𝐺: 𝑅𝑑 → 𝑅 (4) 

 

is the gain for unknown solutions. In every loop, an additional candidate solution 𝑥′ is selected via 

the maximization of the acquisition function [38]: 

 

𝑥′ = 𝑎𝑟𝑔𝑥∈𝑆 𝑚𝑎𝑥 𝐴 (𝑥) (5) 

 

2.6.3. Bayesian algorithm  

The key stages of the Bayesian optimization technique are demonstrated in Algorithm 1 [38]. The 

initial round produces the basic datasets 𝑥 and 𝑦. A stochastic surrogate model of the objective function is 

consequently developed. Following that, a sample is chosen by maximizing the acquisition function. The 

sample is assessed via the objective function. The surrogate model is subsequently revised with the novel 

data. This technique will continue until the maximum number of iterations is met. 

 

Algorithm 1. Bayesian optimization algorithm 

Require: An acquisition function A 

1. Construct the primary data set 𝑋, 𝑦 using the objective function 𝑓. 

2. Build the Gaussian process model utilizing the dataset 𝑋, 𝑦 

3. While the stopping criteria have not been met, do 

4.      Maximize the acquisition function: 

         𝑋′ =  𝑎𝑟𝑔 𝑚𝑎𝑥 𝐴(𝑋)  

𝑋 ∈ 𝑆 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 1038-1050 

1046 

5.      Evaluation: 𝑦’ ←  𝑓(𝑋’) 

6.      Augment the data set by adding 𝑋′, 𝑦′ to 𝑋, 𝑦 

7.      Rebuild the Gaussian process model for f using the expanded dataset 𝑋, 𝑦 

8. End while 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Experimental setup 

The simulations were conducted in Python 3.9.15 using the scikit-learn library. The program was 

coded on an HP computer with Windows 10. In our research, delayed flights are represented as 1 and on-time 

flights as 0. 

 

3.2.  Results and analysis 

Choosing the most appropriate hyperparameters possesses an enormous effect on the performance 

model. A selection of different hyperparameter values has been considered as a search space to build and 

optimize the proposed MLP model: i) Hidden layer size: (100,), (50), (50,50), (100,100), (100,50), (50,100); 

ii) Activation function: logistic, Tanh, and ReLU, iii) Solver: SGD, Adam; iv) Alpha: 0.01, 1e-6, 1e-2;  

v) Learning rate: constant, invscaling, adaptive; and vi) Max iteration: 100, 500, 1000, 2000. 

Actions can vary in duration and occur concurrently, possibly overlapping in time [39]. To validate 

the choice of the hyperparameter optimization method, we compared the Bayesian optimization with that of 

grid search [37] and random search [37] techniques regarding the accuracy and the elapsed time. According 

to the results in Table 3, we deduce that the Bayesian algorithm is the best optimization method to be 

proposed in this study. In Table 4, the combination of the best hyperparameters and the best accuracy 

generated by the Bayesian optimization is presented. Our proposed model was evaluated in terms of 

normalization, data sampling, and parameter tuning. Table 5 shows the evaluation results before and after 

normalizing the data regarding the recall, the F1 score, the accuracy, and the precision. It shows the 

importance of data normalization to enhance the efficiency and training consistency of the model being 

proposed. We performed the data balancing using the Smote-Tomek technique, which combines under 

sampling and oversampling for better sampling. Table 6 presents the evaluation findings with and without 

data sampling. Based on the results, we deduce that balancing data with the Smote-Tomek technique was 

very successful, which increased the accuracy to 90.13%. All the other metrics were improved compared 

with the previous findings. 

Table 7 highlights the effect of optimizing the suggested MLP model by monitoring the results 

before and after the Bayesian optimization. We notice that the Bayesian optimization has resulted in a higher 

accuracy of 92.49%. All the other metrics were improved compared with the previous findings. Figure 4 

monitors the receiver operating curve (ROC) for the final proposed model with normalization, sampling and 

optimization. The area under the curve is 0.9230. 

 

 

Table 3. Comparison of hyper-parameter algorithms 
 Bayesian Grid search Random search 

Accuracy (%) 92.49 88.08 87.61 

Elapsed time (seconds) 1063.79 3994.03 4382.37 

 

 

Table 4. The best hyper-parameters and accuracy of the proposed model 
Model Hyper-parameter (HP) The best HP value The best accuracy 

Multilayer perceptron Activation ReLU 92.49% 

Alpha 0.01 

Hidden layer sizes (50) 

Learning rate constant 

Max Iter 1000 

Solver Adam 

 

 

Table 5. Evaluation metrics in terms of data normalization 
 With normalization Without normalization 

Accuracy (%) 79.40 75.98 

Precision 78.96 74.00 

Recall 77.73 70.66 

F1 score 78.13 73.22 
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Table 6. Evaluation metrics in terms of data balancing 
 With sampling Without sampling 

Accuracy (%) 90.13 79.40 

Precision 91.10 78.96 

Recall 79.93 77.73 

F1 score 90.48 78.13 

 

 

Table 7. valuation metrics in terms of hyperparameter tuning 
 With optimization Without optimization 

Accuracy (%) 92.49 90.13 

Precision 92.15 91.10 

Recall 80.27 79.93 

F1 score 92.13 90.48 

 

 

 

 

Figure 4. ROC curve for the proposed model. Source: own calculation 

 

 

3.3.  Benchmark findings 

 To demonstrate the efficacy of our suggested approach, we compared our findings in Table 8 to 

those from previous studies. The comparison was made based on the recall, the F1 score, the accuracy, and 

the precision. We remark that our suggested strategy is the most accurate when compared to the others. 

 

 

Table 8. Related works and proposed method comparison 
Model Features used Objective Metric 1: 

accuracy 

(%) 

Metric 2: 

F1 score 

(%) 

Metric 3: 

precision 

(%) 

Metric 4: 

recall  

(%) 

Henriques et al. 

[40] 

Flight information, weather data; aircraft 

data; delay propagation information 

To predict flight 

arrival delays 

85.63 79.00 - - 

Stefanovic et al. 

(arrival) [41] 

Flying period, trip number, airline, 

destination, origin, climate, ceiling data, 

velocity of the wind, wind direction, 

visibility, planned time, classes 

To predict the 

flight arrival time 

deviation for 

Lithuanian airports 

47.43 50.77 47.43 56.73 

Stefanovic et al. 

(departure) 

[41] 

Flying period, trip number, airline, 

destination, origin, climate, 

ceiling data, velocity of the wind, wind 

direction, visibility, planned time, classes 

To predict the 

flight departure 

time deviation for 

Lithuanian airports 

85.65 87.86 85.65 90.90 

Pamplona et al. 

[42] 

Flight data, delay justification code To predict air 

traffic delays 

91.30 77.00 87.00 69.00 

Vonitsanos et al. 

[43] 

Flight data, same-origin-flights count, 

average airline delay, average origin 

delay, cancelled (classification), arrival 

delay (regression) 

To forecast air 

flight delays 

- 54.35 54.37 53.40 

Our model Flight data, distance, runway length, 

number of runways, runways 

intersections, runways precision rate, 

number of gates, number of terminals. 

To predict flight 

arrival delays 

92.49 92.13 92.15 80.27 
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3.4.  Time complexity 

According to [11], 𝑂(𝑎 ∗ 𝑏 ∗ 𝑐) is the time complexity of matrix multiplication for: 
 

𝑀′ = 𝑀𝑎𝑏 ∗ 𝑀𝑏𝑐 (6) 
 

In a neural network, to go from layer 𝑎 to 𝑏, we have (7): 

 

𝑆𝑏 = 𝑊𝑏𝑎 ∗ 𝑋𝑎 (7) 

 

where 𝑆𝑏 denotes the calculated amount of the weights 𝑊𝑏𝑎 and the input data 𝑋𝑎. By implementing the 

activation function, we get:  

 

𝑌𝑏 = 𝑓(𝑆𝑏) (8) 

 

where 𝑌𝑏 is the output. 

If we have 𝑁 layers, the operation will execute N-1 times (including input and output layers). In this 

scenario, we have three layers. Therefore, we will need two matrices for storing the weights: 𝑊𝑏𝑎 and 𝑊𝑐𝑏. 

Here, 𝑎 represents the number of nodes in the input layer, 𝑏 signifies the number of nodes in the second layer 

(hidden layer), and 𝑐 indicates the number of nodes in the output layer. 𝑊𝑏𝑎 is a matrix having 𝑏 rows and 𝑎 

column which holds the weights connecting layer 𝑎 to layer 𝑏, whereas 𝑊𝑐𝑏 has 𝑐 rows and 𝑏 columns that 

include the weights connecting layer 𝑏 to layer 𝑐. 

Given 𝑛 training instances, we possess: 

 

𝑆𝑏𝑛 = 𝑊𝑏𝑎 ∗ 𝑋𝑎𝑛 (9) 

 

According to (6), time complexity of (9) is 𝑂(𝑏 ∗ 𝑎 ∗ 𝑛). Then we apply the activation function: 

 

𝑌𝑏𝑛 = 𝑓(𝑆𝑏𝑛) (10) 

 

which has 𝑂(𝑏 ∗ 𝑛) as time complexity. Overall, we are dealing with the subsequent complexity: 𝑂(𝑏 ∗ 𝑎 ∗
𝑛 + 𝑏 ∗ 𝑛) = 𝑂(𝑏 ∗ 𝑛 ∗ (𝑎 + 1)) = 𝑂(𝑏 ∗ 𝑎 ∗ 𝑛). 

Using the same calculation, for going from b to c in (11), we have 𝑂(𝑐 ∗ 𝑏 ∗ 𝑛). 

 

𝑆𝑐𝑛 = 𝑊𝑐𝑏 ∗ 𝑋𝑏𝑛 (11) 

 

In total, the temporal complexity of feedforward propagation is going to be: 

 

𝑂(𝑏 ∗ 𝑎 ∗ 𝑛 + 𝑐 ∗ 𝑏 ∗ 𝑛) = 𝑂(𝑛 ∗ (𝑎𝑏 + 𝑏𝑐) = 𝑂(𝑛 ∗ 𝑎 ∗ 𝑏 ∗ 𝑐) 
 

For one epoch (number of iterations), It is equivalent to 𝑂(𝑛 ∗ 𝑎 ∗ 𝑏 ∗ 𝑐). For 𝑖 epochs, it is equivalent to 

𝑂(𝑖 ∗ 𝑛 ∗ 𝑎 ∗ 𝑏 ∗ 𝑐). Also, the time complexity of the Bayesian optimization algorithm is 𝑂(𝑛3). The total 

time complexity is: 𝑂(𝑖 ∗ 𝑛 ∗ 𝑎 ∗ 𝑏 ∗ 𝑐) + 𝑂(𝑛3). Since 𝑖, 𝑎, 𝑏, and 𝑐 are unchanged, the complexity can be 

simplified to: 𝑂(𝑖 ∗ 𝑛 ∗ 𝑎 ∗ 𝑏 ∗ 𝑐) + 𝑂(𝑛3) = 𝑂(𝑛) + 𝑂(𝑛3) = 𝑂(𝑛3). The global temporal complexity of 

our proposed model is then: 𝑂(𝑛3).  

 

 

4. CONCLUSION 

The aviation industry has recently experienced important and significant growth, leading to a 

massive increase in passenger and cargo demand. In fact, air travel is the safest, secure, and most rapid means 

of transport so far. The massive increase due to the high demand resulted in a density in the air and on the 

ground (airports), which has caused flight delays. Researchers and academics from all over the world are 

constantly working to find new approaches and strategies to address the challenge of aircraft delays. In this 

study, we proposed an optimized MLP using data for domestic flights operated in U.S. Airports so as to 

foresee flight delays. Not only the traditional features extracted from the database were used, but we also 

proposed new features that, according to air transportation organizations and associations, are very relevant 

and contributors to air traffic delays. To enhance the accuracy of the suggested model, we used data 

normalization, sampling methods, and hyper-parameter optimization. After a comparison of the elapsed time 

and accuracy for the Bayesian algorithm, grid search and random search techniques, we chose the Bayesian 

optimization to adjust the hyper-parameters for the MLP. The experimental results proved that data 
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normalization, sampling techniques, and Bayesian optimization generated the most accurate model with the 

highest accuracy of 92.49%. Recall, precision and F1 score were also improved. To demonstrate the 

robustness of our suggested technique, we conducted a high-level comparison of our results with those from 

previous studies regarding the recall, the F1 score, the accuracy, and the precision. The time complexity for 

the proposed model was computed and presented at the end of the study. In the future, we would like to 

explore more variables that are responsible for flight delays, such as weather information, the busyness of the 

airports analyzed, and the type of aircraft studied. 
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