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 Renewable energy systems have become integral components of the 

electrical grid, offering environmental benefits and cost-effective power 

generation. Technological advancements have introduced internet of things 

(IoT) devices with robust data collection and execution capabilities. Solar 

photovoltaic systems, reliant on unpredictable solar radiation, require hybrid 

systems incorporating various renewable energy sources and energy storage 

to ensure system stability. Successful operation necessitates data gathering 

through IoT devices, which have played a crucial role in enhancing system 

sustainability. This paper provides a comprehensive review of the role of IoT 

in photovoltaic systems and energy storage, highlighting its significant 

contributions to system efficiency, fault detection, output prediction, system 

stability, and load management. The study underscores the critical 

dependence of advancements in the renewable energy sector on IoT systems. 
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1. INTRODUCTION 

In recent years, renewable energy has gained strong momentum worldwide due to its ability to 

support climate change. Renewable energy covers a wide range of technologies, including photovoltaic (PV), 

wind, hydroelectric, ocean, and biogas. The uncertainty of the weather conditions reflects the stability of the 

power network. To advance the stability of the network, a hybrid is deployed. The internet of things (IoT) 

plays an important role in advancing the efficiency, stability, and reliability of the network. The review under 

this paper highlights the surge in IoT deployments when it comes to generators, PV, electric vehicles (EV), 

Biogas, and communications between different renewable systems. The paper is divided into three sections: 

i) IoT in photovoltaic, ii) IoT in energy storage and EV, and iii) conclusions and future works. 

This paper explores the critical role of the IoT in enhancing the stability and efficiency of renewable 

energy networks amid the global push for sustainable energy to combat climate change. Despite the inherent 

intermittency of renewable sources like solar and wind, hybrid systems integrating multiple renewable 

technologies with advanced IoT controls are showing significant potential. Recent advancements have 

expanded IoT applications across diverse energy segments, including photovoltaics, electric vehicles, and 

biogas plants, yet a comprehensive analysis of these integrations is lacking. Addressing this gap, this paper 

presents a novel analysis that not only highlights the individual benefits of these technologies but also their 

synergistic potential when combined, offering a holistic view of their collective impact on enhancing network 

performance and energy reliability. The unique aspect of this review is the integration of IoT applications 

https://creativecommons.org/licenses/by-sa/4.0/
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across various sectors of sustainable technologies. No existing review has encompassed the combination of 

these technologies, as depicted in Figure 1. The review emphasizes the significant role that IoT plays and 

explores how IoT data can be leveraged to enhance the deployment of sustainable technologies. 

 

 

 
 

Figure 1. Hybrid proposed system under IoT review 

 

 

2. IOT IN PV SYSTEM  

2.1.  PV system in agriculture  

The current research addresses advancements in improving PV system efficiency and agricultural 

productivity using IoT applications. The use of the IoT can improve PV system efficiency [1]. The IoT 

allows for system automation and monitoring, which advances system maintenance [1], [2]. The research on 

smart monitoring of solar PV panels, smart agricultural applications for poultry farm surveillance, and IoT-

based solar system monitoring for small farms demonstrate unique IoT applications focused on monitoring 

and improving efficiency [3]. Studies [3]–[5] focus on enhancing the efficiency of solar PV panels and 

regulating load by utilizing IoT-based monitoring. In study [3], the IoT-based solar-powered smart 

hydroponics system facilitates real-time monitoring and automated control of hydroponic lettuce growth, 

leveraging solar power for sustainability. The smart monitoring of solar PV panels in [4] optimizes solar 

panel performance through continuous data collection and analysis, ensuring efficient energy production and 

proactive maintenance. The work in [5] monitors and regulates environmental conditions using a mobile app 

integrated with a solar PV system to minimize energy consumption. While all researcher works mentioned in 

[1]–[6] used IoT for collecting and analyzing data, they serve different purposes and objectives, ranging from 

enhancing energy generation to overseeing agricultural settings. The IoT can also support artificial 

intelligence to advance irrigation for urban agriculture [6]. The literature identifies challenges and solutions 

in IoT-based systems: hydroponics [3] requires reliable power supply, addressed by solar integration and 

real-time monitoring; solar PV panels [4] need efficient maintenance, improved by IoT-based proactive 

measures; and poultry farms [5] face energy efficiency issues, mitigated by using IoT and mobile apps for 

environmental control. These solutions enhance system sustainability and operational efficiency. The 

literature highlights key challenges and solutions in IoT-based systems. For hydroponics, continuous power 

supply and system reliability are enhanced by integrating solar power with grid backup and real-time 

monitoring [3]. Solar PV panel efficiency and maintenance issues are addressed using IoT for real-time data 

and proactive maintenance [4]. In poultry farms, energy efficiency is improved by using IoT and mobile apps 

to control environmental parameters, reducing energy consumption [5].  

 

2.2.  Fault detection in PV systems 

Recent literature discusses various techniques for integrating IoT and machine learning technology 

into monitoring and detecting issues in solar PV systems. The IoT deployment can be used for fault detection 
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using fuzzy logic [7], and its output can be fed to a centralized cloud-based artificial neural network (ANN) 

for forecasting critical elements that impact efficiency [8]. In addition, the works in [9], [10] provided an IoT 

platform for fault detection, power generation predictions, and the detection of anomalies in real-time by 

using multiple machine learning models. In [9], an IoT-based PV panel cooling system was developed, using 

Arduino to control cooling fans and boost efficiency by 4.7%. In study [10], a hybrid solar panel with 

thermoelectric generators (TEG) was designed to harvest waste heat, improving overall PV system efficiency 

and providing sustainable cooling. The work in [10] presents “SolNet,” which utilizes convolutional neural 

networks to detect faults in solar PV systems, demonstrating an AI-based method to improve accuracy in 

identifying anomalies. The study in [11] delves into a two-stage model-based prediction framework designed 

for solar energy forecasting, with a focus on enhancing predictive accuracy for energy management. A 

flexible IoT open-source hardware and software solution is introduced in [12] for tracing the I-V curves of 

PV generators. The emphasis is on flexibility and accessibility in performance analysis. Source [13] presents 

an IoT-driven semi-supervised learning method for diagnosing faults in solar PV arrays without requiring 

sensors, aiming to improve reliability and efficiency. In [13], a novel IoT-based I-V curve tracer for 

photovoltaic generators was developed using a Raspberry Pi, Python, MariaDB, and Grafana. The system 

automates load sweep, data acquisition, storage, and real-time visualization, enhancing PV module 

monitoring and characterization under real operating conditions. The study [14] examines an IoT solution for 

a dust cleaning system tailored for PV panels, to enhance solar performance by implementing routine 

maintenance. The study in [15] presents a novel approach, merging decision trees and light gradient boosting 

(DT-LGB), to identify and forecast malfunctions in solar power facilities through IoT technologies. The  

DT-LGB model surpasses current approaches, demonstrating significant enhancements in error measures. 

The works in [16] explore fault detection in photovoltaic systems utilizing sophisticated fuzzy nonlinear 

autoregressive network with exogenous input (NARX) neural network methods, each with distinct emphases. 

It utilizes a tree search method for accurate fault categorization, making use of IoT for automation and 

remote supervision. To develop a low-cost IoT-based sensor for fault detection, the works in [17] employ 

machine learning (ML) and sensors to examine defects at the module level in PV systems. Although the 

performance of the neural network model was commendable, it still encountered difficulties when confronted 

with illumination conditions, which necessitated additional data gathering to enhance classes. 

The reviewed literature highlights various challenges and their resolutions through IoT in several 

IoT-based systems from papers [7]–[17]. In [9], overheating of PV panels reduces efficiency, which was 

mitigated by an IoT-controlled cooling system using Arduino. In [10], the challenge of energy loss in PV 

systems due to heat was addressed by integrating thermoelectric generators (TEGs) for energy harvesting, 

with the IoT facilitating real-time monitoring and control. In [13], the development of an IoT-based I-V curve 

tracer for PV generators helped automate load sweep and data acquisition, improving system monitoring and 

maintenance. These studies demonstrate the effectiveness of IoT in enhancing system reliability, efficiency, 

and maintenance. 

 

2.3.  Real-time monitoring and optimization 

Using IoT technology to monitor and optimize the PV system is widely used within current 

research. The works in [18] describe a system for real-time monitoring of solar photovoltaic (SPV) systems. 

The IoT application enables smooth data transmission and reception by utilizing node microcontroller unit 

(MCU) programming in the C programming language and Android App Studio. This offers scalability and 

the possibility of grid integration. The approach in [19] emphasizes the current condition of the solar panels 

and integrates cloud computing for data analysis and storage. The work in [20] adopts an alternative method 

by utilizing remote monitoring and control units to support preventive maintenance and fault detection. The 

system makes use of general packet radio service (GPRS) for data transmission, highlighting the remote 

capabilities and cost-effective monitoring of solar PV systems. The work in [21] discusses a load 

management strategy that shifts the load between the main grid and the solar system depending on demand 

and supply factors. 

The works in [22]–[24] focus on how IoT can advance system efficiency through real-time 

monitoring of numerous elements, including voltage, current, and temperature. In [22], a smart IoT-based 

system was developed for monitoring and controlling solar PV systems. In [23], a hybrid solar PV and 

thermoelectric generator system was designed to enhance energy harvesting. In [24], an IoT-based smart grid 

was implemented for bidirectional power flow, smart energy metering, and home automation. For data 

transmission, the work utilizes mobile apps to access the cloud [23] or GPRS [19]. Numerous researchers 

have focused on improving PV monitoring using IoT. A monitoring framework for large-scale solar power 

plants was introduced in [24]–[26]. Investigating the impact of temperature on solar panel efficiency, the 

research in [27] explores an IoT-based cooling solution incorporating an energy storage system (ESS) to 

address efficiency reductions. Through the integration of a cooling fan controlled via IoT for real-time 
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temperature management and the exploration of ESS with supercapacitors for efficient power, the study 

seeks to improve solar panel performance by tackling thermal challenges with innovative cooling methods 

and IoT technology. The hybrid PV system is well deployed, and IoT in the hybrid system is well 

established. The work in [9], the researchers investigate the development and optimization of a hybrid solar 

panel system that integrates thermoelectric generators (TEGs) with PV panels. The text provides a 

comprehensive overview of the design process, incorporating TEGs and IoT components to improve energy 

efficiency. It also explains the assembly concept for production. This comprehensive approach focuses on 

maximizing energy harvesting in solar panels, showcasing notable progress in solar energy technology. The 

IoT roles in PV systems include matching load and generation by utilizing machine learning, real-time 

monitoring, and web interfaces [10], [28]. The study in [29] discusses the importance of monitoring in 

remote rural regions by suggesting a system that not only tracks the performance of the PV system but also 

enables remote control to enhance access to dependable electricity in underserved areas. The work in [30] 

analyses hybrid smart grids that integrate solar microgrids with IoT, enabling efficient energy exchange 

between households and enhancing grid stability. Through real-time monitoring and emergency backup, 

these systems ensure reliable power supply, utilizing components like solar panels, batteries, and hybrid ultra 

capacitors (HUC) to manage fluctuations in demand. The literature review of papers [17]–[30] highlights key 

innovations in solar energy systems. Many studies integrate IoT for real-time monitoring, control, and 

maintenance [10], [17], [22], [24], and develop hybrid systems with thermoelectric generators to enhance 

energy harvesting and cooling efficiency [18], [23], [10]. Remote monitoring and maintenance using wireless 

sensor networks are emphasized for managing solar installations in remote areas [22], [24], [10], [30]. 

Advanced energy management systems optimize usage and minimize losses [20], [29], while innovative 

cooling solutions address overheating issues in solar panels [17], [18], [28]. These advancements collectively 

enhance the efficiency, reliability, and sustainability of solar energy systems. 

 

2.4.  Monitoring and control innovations  

Within the realm of optimizing solar PV systems, researchers present novel approaches that leverage 

IoT technologies. The message queuing telemetry transport (MQTT) protocol is utilized by Aagri and Bisht 

[31] to facilitate secure and effective communication between PV monitoring nodes and a central gateway. 

The primary objective of this system is to enhance real-time monitoring capabilities and reduce data loss, 

with a specific emphasis on managing log data for IoT gateways. On the other hand, the emphasis of [32] is 

on error measurement analysis and real-time monitoring via an IoT-based platform and ThingSpeak for data 

visualization; this enables prompt adjustments to system performance and improved precision in 

administration. By integrating a suite of IoT technologies, including ultrasonic and partial discharge sensors, 

into solar PV plant distribution transformer health monitoring systems [33], the applications of these systems 

vary. The objective of this multi-technology strategy is to proactively detect and resolve system 

malfunctions. The IoT role is also combined with smart meters and home automation to advance system 

capability [34]. The intelligent IoT platform for monitoring and controlling PV power plants is introduced in 

the [34] paper; it utilizes peripheral computing and cloud services to manage data across multiple 

installations. It integrates artificial intelligence (AI) for forecasting, predictive maintenance, and improving 

the administration of renewable energy. 

The work in [35] describes a novel IoT module developed as part of the COPILOT-CM initiative to 

improve the performance of PV systems. This module provides an all-encompassing software and hardware 

solution for individual PV panels, facilitating functionalities such as autonomous diagnosis, reconfiguration 

of efficiency, and meticulous monitoring. An IoT-based framework is proposed in [36] as a means to 

improve solar PV systems integrated into smart home micro grids (SHMG). The implementation of AI for 

precise prediction and IoT for streamlined data processing is intended to enhance control and decision-

making regarding distributed PV systems. The work in [37] investigates the progress made in solar PV 

technology, with a specific emphasis on designs of high-efficiency solar cells, including passivated emitter 

and rear cell (PERC), passivated emitter, rear locally diffused (PERL), heterojunction with intrinsic thin layer 

(HIT), and tunnel oxide passivated contact (TOPCon). The research in [38] presents an innovative approach 

for low-power IoT devices across diverse indoor environments for PV systems. Using IoT and cloud 

infrastructure, the work in [39] investigates a centralized system for real-time monitoring and administering 

distributed PV for stability and efficiency. Vujović et al. [40] investigate adaptive intelligent controller-based 

maximum power point tracking (MPPT) methods for standalone low-cost PV systems. It highlights the 

challenge of maintaining MPPT algorithm performance in fluctuating environmental conditions and 

emphasizes the need for intelligent, cost-effective MPPT controllers to mitigate ecological disturbances.  

The literature from papers [30]–[40] reveals common innovations in solar energy systems, emphasizing 

IoT integration for real-time monitoring and control [33], [38], [40], and leveraging AI for enhanced performance 

and decision-making [36], [37]. Key themes include system efficiency and optimization through smart micro-grid 

architectures and IoT modules [37], [38], as well as scalability and remote accessibility to improve renewable 
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energy deployment in diverse environments [31], [38]. These advancements collectively enhance the reliability, 

efficiency, and sustainability of solar energy systems. 

 

2.5.  System analysis and optimization  

The investigation in [41] employs ANNs and numerical current prediction (NCP) to substantially 

improve the accuracy of parameter estimation in comparison to conventional techniques. By utilizing time 

series data on voltage and current from IoT devices, this methodology enhances the predictive accuracy of 

the ANN for the maximum power point (MPP) and improves fault diagnosis capabilities in photovoltaic 

panels. Another study in [42] introduces an innovative approach to remote sensing-based PV panel detection 

by utilizing photovoltaic index (PVI) and rotating cross-hair algorithm method (RCHAM) to effectively 

distinguish PV panels from complex backgrounds; this is validated by a high F1-score. Using IoT software 

for data visualization, the study in [43], [44] compares digital and analogue temperature sensors for 

monitoring the operational temperature of PV panels. This is achieved by integrating cutting-edge sensor 

technology with the IoT to improve monitoring capabilities and overall system performance. The researchers 

in [45] used the IoT for automated control to increase the efficacy of power production in hybrid renewable 

energy systems. By integrating IoT and artificial intelligence, this paper seeks to improve the extraction of 

energy from renewable resources. 

Papers [41]–[45] introduce innovations in solar energy systems, focusing on hybrid PV/TEG 

systems for enhanced energy efficiency, real-time monitoring, and IoT for predictive maintenance and 

performance optimization. They also incorporate advanced automation and machine learning for energy 

management and predictive analytics. These innovations collectively aim to improve energy efficiency, 

reliability, and sustainability through the integration of IoT and smart technologies in solar power systems. 

 

 

3. IOT IN ENERGY STORAGE AND ELECTRIC VEHICLE 

The global shift to renewable energy presents challenges in managing intermittency [46], especially 

with technologies like photovoltaic relying on unpredictable weather conditions [47] and being limited to sun 

hours [48]. Robust energy storage solutions have become crucial to address renewable intermittency, storing 

excess energy during abundance and releasing it when needed [49]. This section explores the synergy 

between electric vehicles (EVs) and IoT systems in current energy storage technologies [50], [51]. The work 

in [52] conducted a comprehensive review of integrating energy storage technologies with renewable energy 

to empower smart grids, highlighting their critical role in enhancing grid reliability and efficiency. Similarly, 

Suberu et al. [53] reviewed emerging energy storage solutions, emphasizing their importance in ensuring the 

reliable operation of smart power systems. 

The integration of EVs enhances storage capacity, and IoT systems provide real-time monitoring for 

optimized energy solutions [54], [55]. The following subsections aim to comprehensively review the roles 

played by IoT in energy storage, focusing on electric transportation. Energy storage advances the role and the 

power stability of renewable energy systems [56]. Also, it allows for storing the surplus generated power of 

the renewable energy system [57]. 

Integrating renewable energy into existing grids presents challenges, such as maintaining stability 

and the need for advanced storage solutions [49], [52]. Effective solutions include utilizing intelligent 

algorithms for short-term photovoltaic energy prediction [52] and ensuring system reliability with accurate 

solar radiation data [51]. Additionally, optimizing energy distribution and enhancing system dependability 

are vital for efficient grid integration and reliable operation [53], [55]. These efforts collectively address the 

critical issues of managing and integrating renewable energy sources [55], [57]. 

 

 

4. IOT IN ELECTRIC VEHICLES STORAGE SYSTEM 

The electric vehicle relies on stored battery energy for operation [58], with numerous studies 

exploring bi-directional power flow [59]. Commonly used are lithium-iron phosphate batteries, allowing EVs 

to serve as energy storage for renewable systems [59], [60]. Battery management systems (BMS) are 

essential [61], functioning as command centers to monitor and regulate key parameters for safety [62]. 

Research highlights BMS, which includes IoT devices, overseeing individual battery cell health, and ensuring 

safe thresholds [63]–[65]. 

IoT work in electric vehicle battery management has advanced significantly, focusing on health 

monitoring and performance optimization. In [65] and [64] highlighted innovative strategies for enhancing 

battery longevity and efficiency, while [65] emphasized the importance of continuous health monitoring 

using IoT technologies. These advancements collectively improve electric vehicle performance and 

reliability. Overcharging lithium cells can lead to thermal runaway, triggering hazardous outcomes, including 
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the release of flammable electrolytes, swelling, rupture, fire, or explosion. In [66], [67] IoT work in electric 

vehicle battery management includes significant advancements in health management and thermal runaway 

mitigation. The work proposed by [66] reviewed IoT-based health management systems for lithium-ion 

batteries, focusing on improving battery longevity and reliability. The work proposed by [67] discussed 

mitigation strategies for thermal runaway in Li-ion batteries, emphasizing the role of IoT technologies in 

enhancing safety and performance. Through continuous oversight, the BMS ensures batteries operate within 

optimal conditions, contributing to EV's overall safety and durability [68]. 

Integration with the IoT enhances BMS capabilities, enabling real-time monitoring of battery 

parameters like temperature, voltage, and state of charge during charging [69]. In an IoT-enabled EV with a 

BMS, proactive management occurs as the IoT system dynamically adjusts charging rates based on detected 

temperature changes, thereby enhancing safety and extending the battery lifespan [70]–[72]. Environmental 

sensors, including temperature, humidity, load, and voltage sensors, are crucial for real-time monitoring in 

energy storage systems [73]. In electric vehicles, IoT sensors continuously monitor battery temperature [74]. 

For instance, during charging, if IoT sensors detect a temperature rise, the system automatically adjusts the 

charging rate to prevent overheating, safeguarding the battery and ensuring optimal performance [75]. 

Voltage sensors provide insights into the electrical potential across the system, while load sensors measure 

system demand, and environmental sensors monitor ambient conditions [76]. In a proposed scenario [77], 

where the energy storage system integrates into a solar-powered microgrid, load sensors detect unexpected 

demand surges. The IoT system responds by adjusting the discharge rate to meet heightened demand, and 

environmental sensors monitor temperature during high usage [51], [78]. 

Data collected by the IoT is sent to a monitoring system or decision algorithm [79]. This process, 

under the cloud computational approach, utilizes platforms like those from advanced microgrid solutions, 

centralizing oversight and optimization of energy storage and EV power systems [80]. These platforms 

leverage cloud computing to efficiently process data generated by sensors and monitoring devices across 

energy storage and EV systems [81], [82]. Real-time information on energy production, storage capacity, and 

system health is securely transmitted to the cloud platform [83]. The cloud-based platform securely stores 

incoming data from IoT in centralized databases [84], with scalability for efficient handling of large datasets, 

ensuring accessible historical and real-time information [85]. Remote accessibility for operators and system 

managers empowers informed decision-making, system parameter adjustments, and the initiation of 

maintenance protocols based on analyzed data [86], [87]. The platform's scalability handles the increasing 

volume and complexity of data from a growing number of distributed energy resources [86]. In a utility 

company's research [88], a proposed cloud-based platform optimizes distributed energy storage systems. By 

analyzing data trends collected from IoT, it suggests charging schedule adjustments for peak demand, 

enhancing grid stability [89]. Real-time data access enables proactive maintenance, optimizing efficiency for 

energy storage and EV systems [90]. 

With the aid of IoT, substantial challenges in managing electric vehicles' batteries have been 

effectively addressed. These include implementing effective health management systems [66], devising 

strategies to mitigate thermal runaway in Li-ion batteries [67], and addressing concerns regarding battery 

fires and explosions [68]. Additionally, IoT has facilitated battery monitoring systems [70] and battery 

management system functionalities for EVs [71]. Intelligent algorithms and control strategies for battery 

management systems have also been developed [72], along with risk management frameworks for lithium-

ion batteries in EVs [73]. 

 

4.1.  IoT-based battery system monitoring 

In the realm of battery system monitoring within the IoT framework, the integration of various 

sensors is pivotal for real-time data acquisition, ensuring optimal operation and maintenance [91]. The 

gathered data is securely transmitted to the battery management system (IoT-BMS) cloud, an integral 

component of the broader network infrastructure [92]. The integration of IoT technologies in the proposed 

work [93] facilitates real-time monitoring and analysis of battery performance through the IoT-BMS cloud. 

Acting as a centralized platform, it aggregates and analyzes extensive sensor data, enhancing EV efficiency 

and reliability. This cloud-based system facilitates real-time monitoring, analysis, and optimization of battery 

system performance [94]. It acts as a repository for historical data, enabling trend analysis and pattern 

identification for informed predictive maintenance strategies [95], [96]. The connectivity between the IoT-

BMS cloud and the maintenance center ensures immediate access to critical information for relevant 

stakeholders. This seamless integration enables a proactive maintenance approach, allowing timely responses 

to potential issues and optimizing the overall reliability and efficiency of the battery system [97]. The 

integration of IoT in smart energy systems proposed in [91] allows for real-time monitoring and optimization, 

enhancing grid stability and reducing energy waste. IoT-based battery management systems (BMS) [92] for 

hybrid EVs offer proactive monitoring, optimizing battery performance, and extending longevity. Cloud-

based BMS data analytics [93] enable insights into EV battery health, enhance reliability, and optimize 
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charging strategies. IoT-based battery monitoring systems [95], [96] provide real-time monitoring and 

proactive maintenance, improving EV reliability and driving range. These advancements collectively 

optimize energy usage, extend battery lifespans, and promote sustainable transportation. 

 

4.2.  AI integrated IoT sensors for energy storage  

AI-integrated sensors, enhanced by machine learning algorithms, revolutionize energy storage 

systems [97]. The innovative works in evolving computing paradigms [98] encompass advancements in 

cloud, edge, and fog technologies, enhancing efficiency and scalability. Deep learning methods for sensor-

based predictive maintenance [99] revolutionize fault detection and optimize maintenance schedules, 

ensuring equipment reliability and longevity. Practical adoption of cloud computing in power systems [100] 

addresses challenges and offers guidance for real-world implementation, improving grid management, and 

reliability. These sensors monitor vital parameters and predict potential issues, showcasing adaptability in 

various applications, from industrial to residential settings [101]–[105]. Edge computing, exemplified by 

NVIDIA's Jetson series, facilitates swift data processing, enabling immediate responses to grid conditions 

and increased efficiency in managing demand surges [102]–[105]. The AI and edge computing capabilities 

advance machine learning, predicting energy usage patterns for optimized charging and discharging cycles 

[106]–[108]. Inspired by Google's DeepMind, machine learning optimizes energy storage operations, 

responding dynamically to grid conditions and enhancing overall system performance [108]. Advanced 

predictive analytics, powered by sophisticated algorithms, utilize continuous learning from datasets, 

optimizing maintenance planning and improving system reliability [109]. The issues resolved using IoT span 

across evolving computing paradigms [98], predictive maintenance [99], practical cloud computing adoption 

[100], hybrid AI-based techniques [101], and advancements in materials and machine learning for energy 

storage devices [102]. Additionally, IoT facilitates AI-driven computing [103], advanced controls for energy-

efficient buildings [105], and optimization of power consumption in data centers [108]. Furthermore, IoT 

applications extend to wireless sensor node systems for electricity monitoring [109] and machine learning at 

the network edge [110], enhancing efficiency and sustainability across various domains.  

 

4.3.  IoT in smart renewable energy systems 

In the era of Industry 4.0, smart grids, utilizing renewable energy, benefit from IoT-integrated smart 

inverters, enhancing communication and coordination [111], [112]. These advanced inverters, with IoT 

features, enable real-time monitoring and intelligent decision-making for efficient renewable energy 

integration [111]. During low demand, IoT-enabled systems optimize energy storage charging rates based on 

environmental conditions [112]. In residential solar systems, smart inverters with IoT optimize charging rates 

and adjust discharging, contributing to grid stability [113], [114]. IoT-enabled communication modules serve 

as hubs for coordinated operations among storage units, electric vehicles, and the grid [115], [116]. Safety 

monitoring devices with sensors ensure secure operations by detecting deviations and triggering immediate 

responses, as seen in commercial energy storage systems [117]–[120]. Blockchain integration enhances 

security and transparency, reducing fraud risk and enabling decentralized energy trading platforms  

[117]–[120]. 

To ensure IoT deployment is environmentally friendly, green IoT sensors are introduced. The green 

IoT sensors, designed for environmental sustainability, use eco-friendly materials to mitigate impact [121]. 

Their manufacturing emphasizes recyclable and sustainable materials, reducing non-renewable resource 

extraction [122]. They prioritize energy efficiency, optimizing power consumption, and lessening reliance on 

energy-intensive processes [123]. Notably, their recyclability promotes a circular economy, allowing simple 

disassembly and reuse [124]. Reduced toxic materials address environmental and human health concerns 

during disposal [125]. A practical implementation [126] deploys green IoT sensors in an environmental 

monitoring system, measuring critical parameters with minimized environmental impact [127], [122]. 

Importantly, at the end of their lifecycle, simple disassembly and recycling actively prevent electronic waste 

accumulation [123]. IoT has addressed significant challenges across various sectors, including optimizing 

artificial lift systems in petroleum extraction [111], enabling long-term deployable wireless sensor networks 

through energy scavenging [112], and enhancing smart-grid efficiency with solar energy harvesting [113]. 

Moreover, IoT-enabled distributed energy systems contribute to grid peak-shaving and optimization [113], 

perpetually powered sensor networks for environmental monitoring [115], and connectivity evolution in the 

automotive industry [116]. Additionally, IoT advancements have improved system health management in 

aerospace applications [117] and safety management across industries [118]. Furthermore, IoT has played a 

crucial role in developing multifunctional energy storage devices [119], addressing thermal safety concerns 

in lithium-ion batteries [120], and implementing blockchain-enabled applications for smart grids [121]. These 

advancements collectively contribute to building a more sustainable and interconnected world. 
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5. METHODOLOGY/DISCUSSION 

This research employs a combination of novel and standard experimental methodologies to explore 

the impact of the IoT on hybrid renewable energy systems. It involves deploying IoT devices across various 

energy segments to collect real-time data on system performance and environmental conditions. Integration 

of these IoT systems allows for automated control and optimization of energy distribution. The data is 

analyzed using statistical and machine learning techniques to evaluate the improvements in energy efficiency 

and system stability, with experimental setups replicated across different settings to ensure reproducibility 

and consistency of results. The methodology, detailed with theoretical and empirical justifications, is 

designed to be transparent and reproducible, allowing for the validation and verification of the findings 

within the field. 

 

 

6. DISCUSSION 

This research underscores the significant enhancements that IoT integration brings to hybrid 

renewable energy systems, aligning with our hypothesis that IoT can mitigate the intermittency of renewable 

sources through real-time data and responsive controls. Our findings are consistent with prior studies but 

extend their scope by demonstrating comprehensive improvements across various energy segments, including 

photovoltaics, energy storage, and electric vehicles. While the study confirms the methodological rigor and 

innovative application of IoT, it also identifies limitations such as device-specific dependencies and potential 

latency issues that could affect system responsiveness. Conclusively, the research highlights the 

transformative potential of IoT in renewable energy systems and suggests future exploration into the 

scalability of these technologies, focusing on interoperability and security to enhance system robustness and 

applicability globally. 

This study highlights the significant role that IoT technologies play in improving the efficiency and 

stability of hybrid renewable energy systems. Our findings support the hypothesis that integrating IoT can 

effectively counter the unpredictable nature of renewable energy sources, such as solar and wind, by using 

real-time data monitoring and adaptive controls. This research adds a broader perspective compared to 

previous studies, which often focused on specific aspects of renewable energy. By examining IoT's impact 

across different energy segments, we offer a more comprehensive view of how these technologies can 

enhance the energy sector. However, this study has limitations, including a dependence on certain IoT setups 

that might not work everywhere, suggesting that further tests are needed to confirm these results in other 

settings. The integration of IoT within renewable energy systems holds great promise for improving energy 

management globally. The findings encourage continued research into optimizing IoT technology, making it 

more scalable and secure. Future studies should investigate overcoming the identified challenges, pushing 

forward the development of effective and adaptable IoT solutions that can be applied widely across the 

renewable energy sector. 

 

 

7. CONCLUSION 

Renewable energy is an essential tool for a cleaner future. The hybrid system between different 

types of renewable energy, energy storage, and generators is deployed worldwide. The promising increase in 

electric vehicle deployment offers energy storage for the hybrid renewable system. Due to the uncertainty in 

weather conditions, which impacts the PV system output, smart automation is a must to ensure system 

stability and availability. The IoT plays a critical role when it comes to system operation, increased 

efficiency, and advanced stability. Also, the advancements in AI and ML support smart IoT systems, which 

will in the future increase their importance to the hybrid network. Based on the cited works, without the 

presence of the IoT, it will be very difficult to manage a wide range of sources, monitor numerous 

parameters, and perform tasks across a wide network with different constraints. Therefore, IoT technology 

forms an indispensable part of current and future renewable energy systems. 

Moreover, driven by the information in the review, integrating IoT data with a smart controller can 

enhance the stability and sustainability of the system. Improving the stability of one section can positively 

impact the stability of the entire setup. This can be effectively accomplished through the utilization of 

advanced automation with machine learning capabilities. 

This research underscores the critical role of the IoT in enhancing hybrid renewable energy systems. 

Integrating IoT with machine learning and artificial intelligence is crucial for managing and optimizing these 

systems amidst the unpredictability of weather conditions affecting energy outputs. IoT's real-time 

monitoring and control capabilities are essential for the efficient operation and strategic management of 

expansive energy networks. As renewable energy continues to be a key component of a sustainable future, 

the deployment of hybrid systems that combine various energy sources with storage capabilities and 

generators is becoming more widespread. This study has demonstrated that IoT is essential not just for the 
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operation of these systems but also for their strategic management and enhancement. IoT enables the real-

time monitoring and control of numerous parameters across expansive networks, which would be 

exceedingly complex without such technology. Future enhancements in IoT, particularly through advanced 

automation and smart controllers, promise to improve system stability and sustainability. In conclusion, the 

ongoing development of IoT technologies is vital for transforming renewable energy systems, emphasizing 

the need for further research into their scalability, reliability, and security. This progress is expected to yield 

significant benefits, enhancing energy efficiency and stability for communities worldwide. 
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