
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 14, No. 6, December 2024, pp. 6433~6444 

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i6.pp6433-6444      6433  

 

Journal homepage: http://ijece.iaescore.com 

Exploring optimal resource allocation methods for improved 

efficiency in flying ad-hoc network environments: a survey 
 

 

Zeinab E. Ahmed1,2, Aisha A. Hashim2,3, Rashid A. Saeed4, Mamoon Mohammed Ali Saeed5 
1Department of Computer Engineering, University of Gezira, Wad-Madani, Sudan 

2Department of Electrical and Computer Engineering, International Islamic University Malaysia, Selangor, Malaysia 
3Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg, South Africa 

4Department of Computer Engineering, College of Computers, and Information Technology, Taif University, Taif, Saudi Arabia 
5Department of Communications and Electronics Engineering, Faculty of Engineering, University of Modern Sciences, Sana'a, Yemen 

 

 

Article Info  ABSTRACT 

Article history: 

Received May 23, 2024 

Revised Aug 6, 2024 

Accepted Aug 14, 2024 

 

 This survey explores optimal resource allocation methods to enhance the 

efficiency of flying ad-hoc networks (FANETs). Unmanned aerial vehicles 

(UAVs), commonly known as drones, are widely deployed in military and 

civilian applications, necessitating effective coordination and communication 

to overcome challenges. FANETs facilitate wireless communication among 

UAVs, improving coordination and information exchange in environments 

lacking traditional networks. The dynamic mobility of UAVs introduces 

unique considerations for network design and connectivity, distinguishing 

FANETs from conventional ad-hoc networks. This survey reviews various 

optimization techniques, including genetic algorithms, ant colony 

optimization, and artificial neural networks, which optimize resource 

allocation by considering mission requirements, network topology, and 

energy constraints. The paper also discusses the critical role of intelligent 

algorithms in enhancing network energy management, quality of service 

(QoS), maximizing resource allocation, and optimizing overall performance. 

The systematic literature review categorizes resource allocation strategies 

based on performance optimization criteria and summarizes their strengths, 

weaknesses, and applications. This survey highlights the potential of 

FANETs to revolutionize various industries and unlock new opportunities 

for UAV-based applications. 
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1. INTRODUCTION 

The deployment of unmanned aerial vehicles (UAVs), commonly known as drones, has experienced 

a significant increase in both military and civilian contexts, driven by the widespread availability of cost-

effective electronic sensors and communication technologies [1]. However, effective coordination and 

communication among multiple UAVs present considerable challenges. To overcome these challenges, 

flying ad-hoc networks (FANETs) have emerged as practical solutions. Wireless communication among 

UAVs enables improved coordination and facilitates information exchange [2]. In various contexts, terms 

like UAV network, FANET, and drone ad-hoc network are often interchangeable. This paradigm proves 

especially useful in environments lacking traditional communication networks, such as disaster zones, remote 

areas, and offshore installations [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The dynamic mobility of UAVs introduces unique considerations for connectivity and network 

design within FANETs, setting them apart from conventional ad-hoc networks [4]. With the increasing 

demand for wireless systems, preserving quality of service (QoS) and meeting user expectations pose 

increasing challenges. Consequently, efficient resource allocation policies are crucial to optimize power and 

bandwidth utilization. Resource allocation involves assigning available resources-such as time, energy, and 

bandwidth-to network nodes based on their requirements and priorities, thereby ensuring effective resource 

utilization and QoS provisioning [5]. In the context of FANETs, optimal resource allocation plays a critical 

role in improving network efficiency and effectiveness. Achieving optimal resource allocation among 

unmanned aerial vehicles is imperative to enhance network performance and establish reliable 

communication channels. Intelligent algorithms are employed within FANETs to enhance network QoS, 

maximize resource allocation, and optimize overall performance [6]. Examples of such algorithms include 

genetic algorithms, ant colony optimization, and artificial neural networks, which optimize resource 

allocation by considering various factors such as mission requirements, network topology, and energy 

constraints. 

Flying ad-hoc networks (FANETs) represent networks of unmanned aerial vehicles (UAVs) 

collaborating to form an integrated system, with each UAV operating under resource constraints that 

encompass processing power, storage capacity, and battery life limitations. Effective resource management is 

essential to ensure optimal network performance. Intelligent resource allocation within FANETs involves 

analyzing network traffic, predicting future demands, and allocating resources accordingly [7]. This 

optimization of resource utilization enhances network performance, reduces latency, and facilitates efficient 

data throughput. Intelligent resource allocation plays a pivotal role in extending UAV battery life, ensuring 

continuous network connectivity, and meeting mission objectives. Optimal and intelligent resource allocation 

is vital for the smooth operation of FANETs, allowing them to fulfill various application needs like 

surveillance, search and rescue, and environmental monitoring [8]. FANETs offer distinct advantages, 

functioning effectively in areas with limited communication networks and finding applications across diverse 

domains, including surveillance, search and rescue missions, and environmental monitoring. Continuous 

advancements in resource allocation and control algorithms hold promise for further enhancing FANET 

capabilities. In summary, FANETs have the potential to revolutionize numerous industries and unlock novel 

opportunities for UAV-based applications [9]. 

The paper's structure is outlined below. In section 2, we introduce the systematic literature 

review framework. In section 3, we offer background information on key concepts pertinent to this paper, 

including FANET, resource allocation, and intelligent algorithms. Section 4 explores related research on 

optimization techniques to elevate the energy efficiency, quality of service, routing protocols and flight 

trajectories in FANET. Section 5 presents an analysis and discussion. Finally, the paper concludes in 

section 6. 

 

 

2. SYSTEMATIC LITERATURE REVIEW SCHEME 

In this section, we will review survey papers on FANET found in the literature. These articles 

introduce FANET thorough review of resource allocation, including answers to energy efficiency, quality of 

service, and routing protocol challenges. Resource allocation strategies are classified based on performance 

optimization criteria, and we will summarize these categories and optimization strategies, highlighting their 

strengths, weaknesses, and area of applications. Several articles related to resource allocation in FANET, 

including specific solutions to address issues such as energy consumption, quality of service, routing 

protocols, and flight trajectory, were reviewed, and cite 50 articles selected for the review study in this paper. 

The percentage distribution of the total articles for related work (50 papers) published in IEEE, MDPI, 

Springer, Hindawi, and others, as shown in Figure 1. Scholars have explored utilizing optimization 

techniques to upgrade various aspects of FANET networks, including energy consumption, quality of service, 

routing protocols, and flight trajectory.  

In summary, the optimization of resource allocation in FANETs through the integration of 

optimization methods has served as a foundational approach for enhancing various facets of FANET 

networks. Figure 2 illustrates the percentage distribution of optimization techniques employed to enhance 

diverse aspects of FANET networks. These techniques have been applied to enhance quality of service within 

FANET networks [10], and address energy consumption reduction as discussed in study [11]. Furthermore, 

optimization techniques have found utility in improving routing protocols and flight trajectories within the 

FANET context [12]. Figure 3 illustrates the number of papers published related to resource allocation in 

FANET over the past years in IEEE, MDPI, Springer, Elsevier, and other journals. 
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Figure 1. Percentage distribution of total 

articles for related work 

Figure 2. Percentage distribution of optimization techniques 

of FANET 

 

 

 
 

Figure 3. Number of publications for years 

 

 

3. FANET RESOURCES ALLOCATION  

This section summarizes the key concepts discussed in this paper, including FANET, resource 

allocation, and intelligent algorithms. UAVs have diverse applications, such as surveillance, logistics, rescue 

operations, and communication support [13]. There are two primary types of UAVs: fixed-wing and rotary-

wing, each with distinct characteristics and capabilities [14]. Fixed-wing UAVs offer high speed and payload 

capacity but require continuous movement, limiting their suitability for stationary tasks. Rotary-wing UAVs, 

such as quadcopters, provide excellent maneuverability but have a lower capacity. The selection of the 

appropriate UAV depends on the specific requirements of the applications. A group of UAVs that enable 

high-speed wireless communication over extensive areas, connecting with ground nodes, forms FANETs. 

Different communication architectures, such as direct communication, satellite networks, cellular networks, 

and ad-hoc networks, can be employed within UAV networks, as depicted in Figure 4. UAVs function as 

standalone aircraft, while FANETs refer to networks of UAVs communicating to establish a wireless 

network [15]. Here are many key differences between UAVs and FANETs: 

− Function: UAVs function as autonomous aircraft capable of executing specific tasks, whereas FANETs 

consist of networks of UAVs collaborating to accomplish a shared objective. 

− Communication: UAVs typically operate in isolation and do not engage in communication with other 

UAVs. In contrast, FANETs necessitate UAV-to-UAV communication to establish a network. 

− Network topology: UAVs can be employed in diverse network topologies, including point-to-point or 

point-to-multipoint configurations. In contrast, FANETs typically adopt a mesh topology, wherein each 

UAV communicates with multiple neighboring UAVs to establish the network [16]. 

− Complexity: FANETs generally exhibit greater complexity compared to standalone UAVs due to the 

additional infrastructure and communication protocols required to form and maintain a network.  

FANETs are specialized networks for UAVs, distinct from mobile ad hoc networks (MANETs) and 

vehicular ad hoc networks (VANETs), with unique connectivity, sensor types, and service discovery 

mechanisms [17]. They face challenges like high UAV mobility and dynamic network topographic [18]. 

Unlike MANETs, FANETs rely online-of-sight communication with ground control stations, making 
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efficient routing critical despite limited route durations. Various routing protocols are used, including static, 

proactive, on-demand, hybrid, and geographic approaches. Effective resource allocation is crucial to optimize 

bandwidth and power for quality of service [19]. Resource allocation in FANETs is structured with inputs, 

constraints, objectives, and outputs, aiming to maximize network performance metrics [20]. In Figure 5, the 

taxonomy of enhanced resource allocation methods is presented, divided into static and dynamic categories. 

Static methods are ideal for stable networks with predictable traffic patterns, while dynamic methods adapt in 

real-time to fluctuating conditions, optimizing resource utilization and ensuring reliable communication [21]. 

 

 

 
 

Figure 4. Flying ad-hoc networks (FANETs)  

 

 

 
 

Figure 5. Taxonomy of enhanced methods for resource allocation schemes 

 

 

Various artificial intelligent (AI) techniques have been applied across numerous domains, including 

FANETs, to enhance system performance. In FANETs, AI plays a pivotal role in routing tasks by employing 

a decision-making paradigm. The decision-maker assesses the environment, selects optimal actions, receives 

feedback as rewards, and refines its decision-making capabilities through learning processes [22]. Energy 

management is another critical aspect of FANETs, primarily due to the limited battery life of UAVs. AI 

techniques, such as machine learning, facilitate energy optimization by anticipating future energy 

requirements, adapting network operations to conserve energy, and improving energy storage and distribution 
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efficiency [23]. For instance, AI-based algorithms can dynamically adjust UAV power levels based on many 

factors, such as location, network traffic, and battery status, minimizing energy consumption while ensuring 

reliable communication [24]. 

 

 

4. RELATED WORKS  

This section examines various approaches proposed in recent research to enhance the performance 

and efficiency of FANETs and related technologies. FANETs, comprising networks of UAVs 

communicating wirelessly, have garnered significant attention due to their diverse applications in fields such 

as surveillance, disaster response, and communication support. These studies delve into innovative 

methodologies, algorithms, and protocols aimed at optimizing resource utilization, improving energy 

efficiency, and enhancing overall network performance in FANETs and related systems. Zhao et al. [25] 

proposed a new method to enhance FANET performance using the improved artificial bee colony 

optimization (IABC) algorithm for better cluster head selection demonstrated in Figure 6 and the AI-proof of 

witness consensus algorithm (AI-PoWCA) for mining. 

 

 

 
 

Figure 6. Efficient clustering protocol for FANETs 

 

 

This approach improved efficiency and resilience against attacks by up to 51%, achieving high packet 

delivery ratios and minimal end-to-end delays. Escobar et al. [26] explored network resource management in 

advanced internet of things (IoT) applications, introducing a virtual network embedding (VNE) framework for 

optimizing dataflow applications in FANETs and airborne networks. UAVs in a FANET provided edge 

computing for rescue operations, using model-based reinforcement learning for dynamic deployment decisions 

[27]. Chen et al. [28] applied deep reinforcement learning (DRL) to enhance multi-UAV-assisted uplink 

communication, achieving significant improvements in coverage rate, latency, and energy usage. In study [29], 

a DRL-based system managed UAV fleets as mobile base stations, optimizing coverage, fairness, and energy 

utilization. Qian et al. [30] minimized energy consumption in maritime-IoT (M-IoT) networks with UAVs using 

a dual-layered DRL and Lagrangian minimization approach. You et al. [31] reduced energy consumption in a 

layered FANET for mobile edge computing (MEC) with an iterative algorithm (AFU) algorithm, optimizing 

task scheduling and UAV trajectories. Namdev et al. [32] introduced AI-based clustering algorithms for 

FANETs, improving cluster lifespan, energy consumption, and construction time. Mansour et al. [33] presented 
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cross-layer and energy-aware AODV (CLEA-AODV), an energy-aware routing protocol for FANETs, 

outperforming traditional methods in delay and packet delivery ratio. In study [34], a method optimized energy 

efficiency and QoS in multi-UAV systems using Lyapunov optimization for gateway selection and task 

scheduling improvements, as displayed in Figure 7. 

Liu et al. [35] introduced a collaborative optimization method for reducing power consumption in 

MEC networks with multiple UAVs. They integrated compressive sensing-based user association and fuzzy 

c-means clustering for user association, power control, computation capacity allocation, and location 

planning. In study [36], a joint optimization model coordinated charging operations across multiple UAVs 

acting as aerial base stations, achieving a 9.1% reduction in energy usage. Priya and Mohanraj [37] explored 

UAV utilization in VANETs, introducing the resource and energy balancing (RAEB) method to enhance 

efficiency through load balancing, energy optimization, and improved packet delivery ratio. He et al. [38] 

proposed an approach for enhancing FANET efficiency through energy-efficient clustering and fuzzy-based 

path selection, aiming to reduce energy usage, extend cluster lifespan, and improve packet transmission. 

Grasso et al. [39] introduced multi-agent intra-FANET (MANIA-F), a multi-agent deep reinforcement 

learning framework for horizontal offloading among FANET UAVs as shown in Figure 8, demonstrating 

superior performance in simulation experiments compared to other mobile edge computing frameworks. 

Yang et al. [40] proposed a meta-heuristic optimization model for flight path planning in FANETs, 

enhancing device-to-device throughput and contributing to more efficient communication systems. 

 

 

  
 

Figure 7. The structure of the heterogeneous  

cloud-multi-UAV 

 

Figure 8. Traffic problem optimization  

 

 

In study [41], Attuned slicing-dependent concurrent resource allocation (AS-CRA) enhances UAV 

service reliability in 6G-NIB architecture through learning-based slicing and resource allocation, improving 

capacity, latency, resource utilization, response ratio, and blocking rate. Jailton et al. [42] utilizes multi-agent 

reinforcement learning (MARL) for coordinating heterogeneous resources, reducing task time. Tong et al. 

[43] applies reinforcement learning (RL) with double deep Q-learning (DDQN) for central processing unit 

(CPU) allocation in virtual function virtualization, optimizing UAV deployment via integer linear 

programming (ILP). Pasandideh et al. [44] introduces MPRdeep for dynamic resource allocation in FANETs, 

reducing energy consumption. Manogaran et al. [45] explores dual-based iterative search algorithm (DISA) 

and sequential exhausted allocation algorithm (SEAA) algorithms for slot and power allocation, enhancing 

network capacity and fairness. Rovira-Sugranes et al. [46] proposes long short term memory (LSTM) for 

bandwidth efficiency in C-V2X with UAVs, promising improved air slicing for vehicular communication. In 

study [47], a mathematical framework optimizes virtual functions (VF) allocation for edge service chaining, 

considering UAV capabilities, battery constraints, and latency requirements, integrating with network 

function virtualization orchestrators (NFVO) standards. Liu et al. [48] optimizes UAV positioning via 

genetic algorithms to maximize FANET throughput in disaster scenarios. Saeed et al. [49] introduces 

reinforcement learning Handoff (RLH) to minimize handoffs in UAV networks, achieving a 75% reduction. 

Galluccio et al. [50] utilize flying caches on UAVs for LTE-U systems, outperforming Q-learning in 

convergence and performance. 

Li et al. [51] introduces Q-learning-based smart clustering routing method (QSCR), a Q-learning-

based clustering routing algorithm for FANETs. It enhances energy efficiency and network longevity while 

increasing end-to-end delay and communication overhead slightly compared to an intelligent clustering 
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routing approach (ICRA). Authors also explored UAV swarm flight paths for reconnaissance missions, 

addressing power constraints and propagation models with a heuristic algorithm based on modified rapidly-

exploring random tree (RRT). Bayerlein et al. [52] presented a reinforcement learning approach optimizing 

UAV trajectory for multiple users, focusing on maximizing transmission rates using Q-learning. Ren et al. 

[53] introduced K-means online learning routing protocol (KMORP), a K-means online learning routing 

protocol for UAV ad hoc networks, improving load balancing and packet delivery ratio with dynamic 

clustering. Additionally, Xu et al. [54] enhanced the optimized link state routing (OLSR) protocol into  

S-OLSR with fuzzy logic for node trust assessment and improved multipoint relays (MPR) node selection. 

Hosseinzadeh et al. [55] proposed a Q-learning-based routing scheme using an intelligent filtering algorithm 

(QRF), a Q-learning-based routing scheme optimizing network performance, energy distribution, and routing 

delay. Wang et al. [56] explored UAV integration with mobile edge computing (MEC) servers using deep 

deterministic policy gradient (DDPG) for optimal offloading and resource allocation. Zhang et al. [57] 

presented the joint prediction and entropy (JPE) protocol for FANETs, using LSTM to predict UAV mobility 

and enhancing packet delivery ratio. Lastly, Nahi et al. [58] introduced RL-multidimensional perception and 

energy awareness optimized link state routing (RL-MPEAOLSR), which minimizes message overhead and 

control flooding in FANETs, outperforming existing protocols in various metrics, as shown in Figure 9. 

 

 

 
 

Figure 9. Adaptive communication-based UAV swarm routing algorithm 

 

 

5. RESULTS AND DISCUSSION  

In this section, we explore various optimization strategies aimed at enhancing FANETs by focusing 

on energy consumption, QoS, and routing protocols. We examine energy-efficient techniques such as 

adaptive routing and energy harvesting, QoS improvements through optimized data transmission and 

bandwidth allocation, and advanced routing protocols for reliable and efficient data delivery. These strategies 

collectively highlight their potential to significantly boost the performance and efficiency of FANETs across 

diverse operational scenarios. The analysis underscores the critical impact of these optimizations on 

achieving more sustainable and effective FANET operations. 

 

5.1.  Energy consumption 

Researchers have explored various optimization strategies to reduce energy consumption within 

FANETs, as summarized in Table 1. One approach involved using DRL to optimize UAV movement and 

mobile unit (MU) association, resulting in a closed-form solution for MU transmit power [59]. Another study 

introduced a decentralized DRL-based system to control multiple UAVs acting as mobile base stations (BSs), 

ensuring continuous communication coverage for ground mobile users. Optimization aimed to reduce energy 

consumption in a UAV-assisted M-IoT network using non-orthogonal multiple access (NOMA) by jointly 

power control, offloading ratio, resource allocation, and UAV trajectory [60]. Moth flame optimization-based 

clustering algorithms were proposed as an energy-efficient strategy for network construction and node 

deployment in scenarios where static and dynamic routing approaches were ineffective. The CLEA-AODV 

routing protocol was suggested to improve FANET performance [44]. Lyapunov optimization developed an 

optimal solution for network association in multi-UAV systems supported by heterogeneous clouds. Finally, 

Yang et al. [61] introduced a fuzzy c-means clustering-based algorithm to minimize total power consumption 

in a MEC network with multiple UAVs. 
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Table 1. Optimization techniques for energy consumption improvement in FANET 
Ref Optimization methods Result 

[24] Deep reinforcement 
learning 

In terms of MU coverage rate, system latency, and system energy consumption, the algorithm 
exceeds earlier benchmark algorithms in simulations. 

[30] Deep reinforcement 

learning 

The results proved our model's superiority in terms of energy efficiency when compared to the 

cutting-edge DRL-EC3 approach based on DDPG and three additional baselines. 
[31] NOMA-based MEC model 

for the UAV-assisted 

maritime IoT system 

On average, NOMA reduces its total energy use by 17.6%. These findings demonstrate that the 

NOMA is an efficient multiple access strategy that can be applied to the M-IoT MEC system 

using UAVs. 
[32] An iterative algorithm 

(AFU) 

When compared to Local, FixU, and Guangxi University (GGU), AFU reduces overall energy 

usage by 60.52% and 41.56%, respectively. 

 Moth flame optimization Zone routing technique, according to simulation results, has kept communication routes secure 
and promises increased security without incurring computational expenses. 

[60] Glow swarm optimization 

(GSO) 

When various types of information transmission are carried out over FANETs, we provide an 

optimized CH selection model that greatly enhances cluster lifetime and minimizes energy usage. 
[44] Lyapunov optimization The proposed gateway selection technique used less energy than existing systems, however the 

proposed job scheduling and resource allocation strategy increased QoS performance and 

obtained the best solution after only a few iterative rounds. 
[61] Fuzzy c-means clustering-

based algorithm 

The proposed algorithm outperforms conventional approaches, according to numerical results. 

 

 

5.2.  Quality of service 

Numerous research endeavors have focused on optimizing techniques to enhance the quality of 

service in FANETs, as outlined in Table 2. Grasso et al. [62] introduced MANIA-F, a multi-agent deep 

reinforcement learning framework for managing horizontal offloading among FANET UAVs. Li et al. [63] 

proposed a flight path planning model based on meta-heuristic optimization techniques to improve 

communication efficiency in FANET scenarios [64]. AS-CRA is presented to enhance service reliability in 

UAVs within the 6G-NIB architecture [65]. In study [66], MPRdeep was introduced as a DRL approach for 

UAV positioning and resource allocation in FANETs dealing with dynamic network conditions and 

immediate communication demands. Integrate double deep Q-learning (DDQN), reinforcement learning 

(RL), and integer linear programming (ILP) techniques to deploy virtual functions within active UAVs in 

FANETs [67]. A genetic algorithm was utilized in [68] to optimize UAV positions to maximize FANET 

throughput. Finally, Saeed et al. [69] introduced RLH, an innovative user association algorithm designed to 

minimize redundant handoffs within UAV networks [70]–[72]. 

 

 

Table 2. Summary of articles that enhance the quality of service in FANET 
Ref Optimization methods Result 

[62] A multi-agent deep reinforcement 
learning framework (MANIA-F) 

The results show that the proposed framework outperforms other state-of-the-art 
mobile edge computing frameworks. 

[63] Bat algorithm and generalized 

regression neural network (GRNN) 

The simulation findings suggest that the approach improves network performance. 

[64] AS-CRA The proposed solution outperforms the competition in terms of capacity, latency, 

resource utilization rate, response ratio, and blocking rate, with metrics of 89.726%, 

81.32%, 0.963%, 92.309%, and 0.047%, respectively. 
[65] MARL The results show that the proposed technique increases computing resource 

utilization and reduces task execution time significantly. 

[66] DISA and SEAA According to numerical calculations, both DISA and SEAA can efficiently allocate 

resources for UAVs while maintaining link fairness and priority. 

[67] LSTM When compared against two benchmark schemes, the simulation results show that 

the proposed scheme is valid: deep Q-network and deep policy gradient. 
[68] MPRdeep MPR deep converges rapidly and has strong generalization ability under dynamic 

network conditions and user locations, according to the results. 

[69] RLH According to simulation results, the RLH algorithm can reduce the number of 
handoffs by 75%. 

 

 

5.3.  Routing protocols and flight trajectory 

Several optimization techniques have been applied to improve routing protocols and flight 

trajectories in FANETs, as outlined in Table 3. In study [73], the performance of three nature-inspired 

algorithms (NIA) for FANET routing specifically ant colony optimization (ACO), modified Firefly algorithm 

(MFA), and modified genetic algorithm (MGA) was assessed using metrics such as packet delivery, delay, 

overhead, and throughput [74]. To address FANET challenges, Hosseinzadeh et al. [75] introduced ASR-

FANET, an adaptive software-defined networking (SDN)-based routing framework for FANET. Another 

approach, presented by Zheng et al. [76], utilized RL to predict node positions, control communication, and 
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manage data transmission within the network. FANET routing algorithm based on fuzzy logic and RL was 

introduced in a separate paper [77], aiming to mitigate limitations of traditional ACO methods, such as high 

average hops and low link connectivity. Lastly, Huang et al. [78] proposed an adaptive communication-based 

routing algorithm explicitly designed for UAV swarms. 

 

 

Table 3. Summary of articles that enhance the routing protocols and flight trajectory in FANET 
Ref Optimization methods Result 

[12] ACO, MFA, and MGA MFA surpasses the other two methods, making it the most efficient routing 
algorithm in FANET, according to the report. 

[19] An adaptive SDN-based routing 

framework for FANET  
(ASR-FANET) 

The study uses comprehensive simulations to evaluate the performance of the  

ASR-FANET framework and discovers that it outperforms other standard protocols. 

[20] Reinforcement learning  According to the simulation results, the proposed algorithm outperforms policy in 

terms of choosing the route with the highest value function and the shortest  
end-to-end delay. 

[64] Fuzzy logic and reinforcement 

learning 

In terms of performance, simulation findings indicate that the proposed algorithm 

outperforms traditional routing algorithms. 
[65] Multilayer perceptron algorithm The results show that our algorithms can achieve efficient and effective routing for 

large-scale UAV swarm collaboration in a partly observable distributed 

environment. 
[66] K-means algorithm and genetic 

algorithm 

The simulation findings demonstrate that the proposed scheme is successful and 

outperforms the benchmarks. 
[67] Deep reinforcement learning  The suggested algorithm is shown to be efficient in simulations. 

[68] Reinforcement learning  The results demonstrate that the proposal works to improve network performance. 

 

 

6. CONCLUSION  

This paper explored optimal and intelligent resource allocation in FANETs. UAVs, commonly 

known as drones, are widely deployed in military and civilian applications, requiring effective coordination 

and communication to address challenges. FANETs enable wireless communication among UAVs, 

improving coordination and information exchange in environments without traditional networks. The 

dynamic mobility of UAVs introduces unique considerations for network design and connectivity, 

distinguishing FANETs from conventional ad-hoc networks. This survey reviews various optimization 

techniques, including genetic algorithms, ant colony optimization, and artificial neural networks, which 

optimize resource allocation by considering mission requirements, network topology, and energy constraints. 

It also discusses the critical role of intelligent algorithms in enhancing network energy management, QoS, 

resource allocation, and overall performance. The systematic literature review categorizes resource allocation 

strategies based on performance optimization criteria and summarizes their strengths, weaknesses, and 

applications. This survey highlights the potential of FANETs to revolutionize various industries and unlock 

new opportunities for UAV-based applications. 
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