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 A fog-cloud internet of things (IoT) system integrates fog computing with 

cloud infrastructure to efficiently manage processing data closer to the 

source, reducing latency and bandwidth usage. Efficient task scheduling in 

fog-cloud system is crucial for optimizing resource utilization and 

minimizing energy consumption. Even though many authors proposed 

energy efficient algorithms, failed to provide efficient method to decide the 

task placement between fog nodes and cloud nodes. The proposed hybrid 

approach is used to distinguish the task placement between fog and cloud 

nodes. The hybrid approach comprises the parametric task categorization 

algorithm (PTCA) for task categorization and the multi metric forecasting 

model (MMFM) based on deep deterministic policy gradient (DDPG) 

recurrent neural networks for scheduling decisions. PTCA classifies tasks 

based on priority, quality of service (QoS) demands, and computational 

needs, facilitating informed decisions on task execution locations. MMFM 

enhances scheduling by optimizing energy efficiency and task completion 

time. The experimental evaluation outperforms the existing models, 

including random forest (RF), support vector machine (SVM), and k-nearest 

neighbors (KNN). The proposed result shows an accuracy rate of 89%, and 

energy is consumed 50% lesser than the existing models. The proposed 

research advances energy-efficient task scheduling, enabling intelligent 

resource management in fog-cloud IoT environments. 
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1. INTRODUCTION 

The internet of things (IoT) and fog computing environments are rapidly developing technologies 

that facilitate the seamless communication and exchange of data between devices [1]. However, as connected 

devices grow, efficient task scheduling becomes crucial to optimize resource utilization and energy 

consumption. Energy-efficient task scheduling addresses the challenge of allocating tasks to appropriate 

resources within an IoT-fog environment that minimizes energy consumption while maximizing the overall 

system performance [2]. This is especially important as many devices in IoT-fog environments are battery-

powered and have limited energy resources. One of the key motivations for energy-efficient task scheduling 

in IoT-fog environments is the need to extend the lifetime of devices [3]. By efficient scheduling of tasks and 

leveraging the computational capabilities of fog nodes, energy consumption can be minimized, ultimately 

prolonging the life of devices and reducing the need for frequent replacement. 

https://creativecommons.org/licenses/by-sa/4.0/
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The general utilization of the resources can be optimized by planning and scheduling the task based 

on the power they consume and the ability of the available resources [4], [5]. This helps in accomplishing 

tasks without much latency and improves the experience of users or is beneficial to user interactions. The 

dynamic nature of these environments, with devices joining and leaving the network frequently, makes it 

difficult to predict resource availability accurately. This uncertainty causes a challenge when scheduling tasks 

and may lead to suboptimal resource allocation. Furthermore, deciding where to execute tasks, either at the 

fog nodes or in the cloud, adds complexity to the task scheduling process. While executing tasks at the fog 

node can reduce latency and energy consumption, it might not always be feasible due to limited resources or 

specific application requirements. 

The proposed methodology uses the parametric task categorization module (PTCM) algorithm 

which serves as the cornerstone of our task scheduling platform, providing a mechanism for classifying tasks 

based on multiple parameters such as priority, quality of service (QoS) requirements, and processing 

characteristics. Once tasks are classified by the parametric task categorization algorithm (PTCA) algorithm, 

the deep deterministic policy gradient (DDPG)-based multi-metric forecasting model (MMFM) model is used 

to optimize task scheduling decisions. DDPG is a Q-learning based reinforcement learning algorithm that 

takes policy gradient logic into account, built from experience replay and requires no prior model. It is 

composed of actor and a critic which make up the DDPG method. Whereas actor inputs states and outputs 

actions, critic takes state and two acts to output the Q-value [6]. For energy-efficient scheduling of tasks 

DDPG is utilized in fog-cloud systems and offers adaptive real-time adjustments, ensuring optimal resource 

allocation to meet QoS demands efficiently [7]. Its integration enables enhanced decision-making, surpassing 

conventional techniques by dynamically optimizing energy consumption and task completion time. 

Qiu et al. [8] proposed a novel energy management algorithm using the DDPG method for wireless 

sensor networks with renewable energy sources demonstrates superior long-term performance and effective 

energy management in real-world scenarios. The proposed work by Li et al. [9] addresses energy 

consumption in Edge of things computing, a novel scaling mechanism monitors IoT application workloads, 

categorizes them by intensity, and dynamically adjusts processor speed to balance QoS and energy efficiency, 

though continuous monitoring may sometimes increase power consumption and degrade performance. Babar 

and Khan [10] examines a scalable energy-efficient paradigm that uses recursive clustering to prioritize high-

priority tasks on fog servers, employing Euclidean distance for clustering and round-robin scheduling for 

cluster leaders, but faces challenges like overfitting and increased computational costs. Yu et al. [11] 

explores the integration of an unmanned aerial vehicle into a wireless IoT network, employing a fly-hover-

communicate protocol for data collection and device charging. It formulates a multi-objective optimization 

problem which maximizes data rate and harvested energy. In a mobile edge computing system, a dynamic 

offloading mechanism based on deep Q network (DQN) is suggested in [12]. Long short-term memory 

(LSTM) and Q-learning for offloading destination selection were integrated [13] to forecast the channel gain 

in the network. The deep reinforcement learning (DRL)-based algorithm can produce higher accuracy and 

better self-correcting performance as compared to existing techniques [14]. As IoT systems continue to 

expand, managing the scalability and complexity of task scheduling becomes increasingly challenging [15]. 

DDPG offers a promising solution by adapting to evolving system dynamics and optimizing scheduling 

decisions in real-time. 

The main contributions of the proposed work are as follows: 

− Efficient task scheduling in fog-cloud IoT systems is crucial for optimizing resource utilization and 

minimizing energy consumption. Existing energy-efficient algorithms struggle to effectively determine 

task placement between fog and cloud nodes, complicating the decision of local versus cloud processing. 

− The proposed hybrid approach classifies tasks based on priority, QoS demands, and computational needs, 

and optimizes energy efficiency and task completion time. This facilitates informed task placement and 

enhances overall system performance. 

− The proposed hybrid approach outperforms existing models (random forest (RF), support vector machine 

(SVM), and k-nearest neighbors (KNN)) by achieving 89% accuracy in task scheduling, reducing 

response time to 80 ms, and energy consumption by 50%. This advances energy-efficient task scheduling 

and enables more intelligent resource management in fog-cloud IoT environments. 

The article is organized as the proposed energy-efficient MMFM-DDPG scheduling framework in 

section 2. Section 3 shows the mathematical model for categorization and energy-efficient scheduling. 

Section 4 represents the simulation and result. Finally, section 5 describes the conclusion.  

 
 

2. PROPOSED METHOD 

Integrating fog and cloud computing in IoT presents unprecedented opportunities for advancing 

services and improving outcomes. Efficient task scheduling, facilitated by DDPG, emerges as a critical enabler 

in realizing these benefits. However, several challenges related to scalability, complexity, and QoS requirements 
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persist, warranting further research and innovation in this domain. As shown in Figure 1, the proposed system is 

designed to be scalable, adaptive, and modular to meet the varied requirements and constraints. 

 

 

 
 

Figure 1. System architecture of task offloading approach 

 

 

Task scheduling in distributed computing environments necessitates a systematic approach to 

allocate computational resources efficiently. The PTCM utilizes a decision tree-based approach to classify 

tasks into distinct categories based on various parameters such as priority, QoS requirements, and processing 

characteristics. It constructs a decision tree iteratively by selecting the most informative features and splitting 

the dataset based on those features until the entire dataset is correctly classified. Each decision tree node 

represents a feature, and each branch represents a possible feature value. The leaf nodes contain the class 

labels assigned to the tasks based on the selected features. This categorization ensures that tasks are 

prioritized and managed effectively, enabling the system to allocate resources that maximizes performance 

and meet user expectations. 

Effective task scheduling also requires an ability to predict future workloads and adapt resource 

allocation accordingly. The MMFM integrates advanced machine learning techniques to provide this 

predictive capability. Utilizing a reinforcement learning framework, MMFM analyzes historical task data to 

forecast trends and patterns in workload demands. This foresight enables the system to proactively adjust its 

scheduling strategy, ensuring that computational resources are optimally utilized, response times are 

minimized, and QoS criteria are consistently met. DDPG is one type of reinforcement learning where the 

policy is learned directly without the use of a parametric maximum strategy through retesting the memory 

and constantly learning through valued ideas of Q-learning and policy gradient logics. 

The DDPG algorithm is implemented by the actor and the critic. The critic takes a state and acts to 

give the Q-value, while the actor takes the states and gives actions. By iteratively adjusting its parameters in 

response to observed rewards and system variables, the DDPG-based MMFM model learns this policy. This 

enables it to adjust to changing environmental conditions and gradually optimize task scheduling decisions 

[16]. Once the tasks have been categorized and scheduled, the system's overall energy consumption may be 

computed by adding up the energy used by each task on each device. DDPG is used in fog-cloud systems for 
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task scheduling that is energy-efficient and provides adaptive real-time modifications to ensure optimal 

resource allocation to fulfil QoS demands effectively [17]. Through its integration, decision-making is 

improved, and it outperforms traditional methods by dynamically optimizing energy consumption and task 

completion time. By incorporating the MMFM, our system is equipped to forecast fluctuations in task 

workloads and adapt the scheduling strategy accordingly. This predictive functionality facilitates proactive 

resource allocation, ensuring optimal use of computational resources, minimizing response times, and 

meeting QoS criteria. 

The proposed MMFM-DDPG algorithm shown in Algorithm 1 learns from historical task data, 

which includes previous workload patterns, resource utilization, and environmental conditions. Through 

iterative training and optimization, the model gains a deep understanding of the underlying dynamics that 

influence task scheduling within the system. The DDPG algorithm used in the forecasting model for efficient 

scheduling in fog-cloud based systems shown in Figure 2 aims to optimize the allocation of tasks between 

fog nodes and cloud servers to minimize energy consumption while maintaining the QoS. 

 

Algorithm 1. Proposed multi-metric forecasting model with deep deterministic policy gradient  

(MMFM-DDPG) 
Input: Classified tasks, Critic and Actor 

Networks 

Output: Optimized task scheduling for energy 

efficiency and QoS fulfillment 

Initialize MMFM Lists: 

   Create lists for scheduled tasks 𝐿𝑠𝑡) and 

high-priority tasks (𝐿ℎ𝑡). 

Initialize DDPG: 

   Initialize critic and actor networks for 

task scheduling decisions. 

   Initialize a replay buffer to store 

experience tuples (𝑠𝑡, 𝑎𝑡, 𝑟𝑡 , 𝑠𝑡+1). 
MMFM Task Evaluation and Scheduling: 

For each task T in the classified task list: 

   Initialize 𝑇𝑏𝑒𝑠𝑡 = None 
For each task T in the list: 

   If 𝑇 >= 𝑀𝑀𝐹𝑀(𝑇): 
      𝑇𝑏𝑒𝑠𝑡 = 𝑇 
   Else if Priority(T)= high and usage(T)< 

MMFM(T): 

       Append the task 𝐿ℎ𝑡 = 𝐿ℎ𝑡 ∪ {T} 

       If ∑ 𝑢𝑠𝑎𝑔𝑒(𝑡) >= 𝑀𝑀𝐹𝑀(𝑇)𝑡∈Lℎ𝑡
 

          T𝑏𝑒𝑠𝑡 =  𝑎𝑟𝑔 max
𝑡∈Lℎ𝑡

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑡)  

          End inner loop. 

If 𝑇𝑏𝑒𝑠𝑡 ≠ None: 

   𝐿ℎ𝑡 = 𝐿ℎ𝑡 ∪ {𝑇𝑏𝑒𝑠𝑡} 

Else: 

   Task list = Task list ∪ {T} 
If 𝑇 ≠ Null and 𝑇𝑏𝑒𝑠𝑡 = None: 
   𝐿𝑠𝑡 = 𝐿𝑠𝑡 ∪ {T} 

   If 𝑇𝑏𝑒𝑠𝑡 ≠ None: 

          𝐿𝑠𝑡 = 𝐿𝑠𝑡 ∪ {T} 

DDPG for Energy Efficiency and QoS: 

For each episode from 1 to M: 

   Initialize the starting state s0. 

   While the state is not a terminal state: 

    Select an action at: 
 

𝑎𝑡 =  {
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀

𝜋(𝑠𝑡|𝜃𝜋)          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 

 

    Execute action at and observe reward rt 

and next state st+1. 

    Store the experience tuple (𝑠𝑡,𝑎𝑡,𝑟𝑡,𝑠𝑡+1) 

in the replay buffer. 

    Update the current state to 𝑠𝑡+1. 

    Sample a random mini-batch from the 

replay buffer. 

    Set target value 
 

𝑦𝑗 = 𝑟𝑗 + 𝛼𝑄(𝑠𝑗+1|𝜃𝜋)|𝜃𝑄  
 

    Update the critic network by minimizing 

the loss Lc: 
 

𝐿𝑐 = 𝑁−1 ∑ (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗 ∣ 𝜃𝑄))
∧

2
𝑁

𝑗=1
  

 

    Update the actor network using the 

gradient:  
 

𝛻𝜃𝜇 ≅≅ 𝑁−1 ∑ 𝛻𝑎𝑡

𝑁

𝑗=1

 𝑞(𝑠𝑗 , 𝑎𝑗 ∣ 𝜃𝑞)𝛻𝜃𝜇𝜇(𝑠𝑗 ∣ 𝜃𝜇) 

 

    Perform soft updates on the target 

networks:  
 

𝜃𝑞 = 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑞, 𝜃𝛾 = 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝛾 

 

In this algorithm, actor and critic neural networks are initialized to make task assignment decisions 

based on the current system state, which includes information about tasks, fog nodes, and cloud servers. 

During each episode, the system state is reset, and for each task, an action (task assignment) is selected using 

the current policy and exploration strategy. The action's impact is simulated in the fog-cloud IoT 

environment to compute a reward based on energy efficiency and QoS fulfillment. The experience tuples 

comprising the state, action, reward, next state, and termination flag are stored in a replay buffer. The actor 

and critic networks are then updated using the sampling policy gradient and loss function, while the target 

networks are updated using soft updates. This process iterates over multiple episodes to train the DDPG 

model to make efficient task scheduling decisions tailored for fog-cloud IoT systems. 
Once trained, the MMFM continually analyzes incoming data to produce real-time forecasts of 

future workload trends. These forecasts are then incorporated into the task-scheduling process, enabling the 

system to allocate resources proactively based on anticipated demand. The integration of MMFM into the 

task-scheduling framework provides several key advantages. Firstly, it boosts the system's responsiveness by 

facilitating proactive resource allocation in anticipation of potential workload changes. This proactive 

approach guarantees smooth operation even in an environment of varying workloads and helps to reduce 

potential performance issues. 
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Figure 2. DDPG used in MMFM 

 

 

3. MATHEMATICAL MODELLING 

The parametric task categorization algorithm (PTCA) employs a decision tree-based approach to 

classify tasks into distinct categories based on predefined criteria. This algorithm uses entropy and 

information gain which is used to build a decision tree for task categorization. The feature space, represented 

by 𝑋, includes task characteristics, while Y represents the set of possible task categories. The decision tree 

learns a mapping 𝑓: 𝑋 → 𝑌 𝑡 that partitions the feature space into disjoint regions, each corresponding to a 

specific task category. This mapping is derived through an iterative process that maximizes information gain 

at each node, resulting in an effective classification model for tasks in IoT environments. Entropy is used to 

measure the uncertainty in a dataset based on the task categories such as priority, QoS demands and 

computational needs and is calculated as: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) =  − ∑ 𝑝𝑖 log2(𝑝𝑖)𝑛
𝑖=1   (1) 

 

where 𝑝𝑖  represents the proportion of tasks belonging to class 𝑖, in the dataset 𝐷, and the number of different 

classes is represented as 𝑛.  

 

3.1.  Information gain 

Information gain is the quantity of entropy that may be saved when a specific criterion is used as a 

splitting feature to optimize a dataset's categorization. Based on the "𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝐹" the provided data set, 

designated as 𝐷, is further separated into sub-sets 𝑆1, 𝑆2, …, and 𝑆𝑛. The weighted sum of the entropies of 

these subsets is the entropy following the split. The information gain is the difference between the pre-split 

and post-split entropies. Information gain is calculated as (2). 
 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝑆, 𝐹) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) − ∑
|𝑆𝑗|

|𝑆|𝑗
∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑗)     (2) 

 

The feature with the highest information gain is selected as the node for the current split. 

 

3.2.  Energy consumption 

The total energy consumption 𝐸𝑡𝑜𝑡𝑎𝑙  can be expressed as the sum of the energy consumed by each 

task 𝑖 across all steps 𝑡. 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ ∑ 𝐸𝑖,𝑡
𝑇
𝑡=1

𝑁
𝑖=1   (3) 

 

where 𝐸𝑖,𝑡 is the amount of energy used by task 𝑖 at time step 𝑡, and 𝑁 is the total number of tasks. This 

computation provides an accurate assessment of the system's total energy efficiency by accounting for 

variables including task execution time, device power consumption rates, and any additional overhead related 

to task execution [18]. 
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Within the realm of fog computing, the task scheduling dilemma revolves around assigning IoT 

tasks to appropriate fog nodes from a pool of potential candidates to enhance QoS. This research specifically 

considers QoS parameters such as latency, energy consumption, and network utilization. The total number of 

tasks is denoted by 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} and fog nodes as 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚}. 

The overall transmission duration of task considering both fog and cloud nodes is given by (4). 

 

𝑇𝑡𝑟𝑎𝑛𝑠,𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑖𝑗 ∗ 𝑇𝑡𝑟𝑎𝑛𝑠(𝑋𝑖𝑗)  + 𝑃𝑖𝑐𝑙𝑜𝑢𝑑 ∗ 𝑇𝑡𝑟𝑎𝑛𝑠(𝑋𝑖𝑐𝑙𝑜𝑢𝑑) (4) 

 

where 𝑇𝑡𝑟𝑎𝑛𝑠(𝑋𝑖𝑗) is the time taken to transmit a task to a fog node and 𝑇𝑡𝑟𝑎𝑛𝑠(𝑋𝑖𝑐𝑙𝑜𝑢𝑑) is the time taken to 

transmit a task to a cloud node. 𝑃𝑖𝑗  and 𝑃𝑖𝑐𝑙𝑜𝑢𝑑  are the probability of tasks being transmitted to fog and cloud. 

The time taken to execute task 𝑡𝑖 on fog node 𝑓𝑗 and to the cloud is determined as (5), (6). 

 

𝑇𝑒𝑥𝑒𝑐(𝑋𝑖𝑗) = 𝑇𝑡𝑟𝑎𝑛𝑠(𝑋𝑖𝑗)  + 𝑇𝑝𝑟𝑜𝑐(𝑋𝑖𝑗)   (5) 

 

𝑇𝑒𝑥𝑒𝑐(𝑋𝑖𝑐𝑙𝑜𝑢𝑑) = 𝑇𝑡𝑟𝑎𝑛𝑠(𝑋𝑖𝑐𝑙𝑜𝑢𝑑)  + 𝑇𝑝𝑟𝑜𝑐(𝑋𝑖𝑐𝑙𝑜𝑢𝑑)  (6) 

 

The task’s response time 𝑡𝑖 of the task is further processed across several layers, including the execution time 

of the receiver node and the time taken by the task to be transmitted from the sender node to the receiver 

node. The formula (7) and (8) is employed to calculate the response time of task 𝑡𝑖 handled at fog node 𝑓𝑗 . 

 

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑋𝑖𝑗) = 𝑇𝑡𝑟𝑎𝑛𝑠(𝑋𝑖𝑗)  + 𝑇𝑝𝑟𝑜𝑐(𝑋𝑖𝑗)  (7) 

 

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑋𝑖𝑐𝑙𝑜𝑢𝑑) = 𝑇𝑡𝑟𝑎𝑛𝑠(𝑋𝑖𝑐𝑙𝑜𝑢𝑑)  + 𝑇𝑝𝑟𝑜𝑐(𝑋𝑖𝑐𝑙𝑜𝑢𝑑)  (8) 

 

To calculate the energy needed to transmit task ti to fog node fj, the transmission time is multiplied by a 

constant coefficient as (9) and (10): 

 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑋𝑖𝑗) = 𝜆 ∗ 𝑇𝑟𝑡𝑜𝑡𝑎𝑙(𝑋𝑖𝑗) ∗ (1 + µ)  (9) 

 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑋𝑖𝑐𝑙𝑜𝑢𝑑) = 𝜆 ∗ 𝑇𝑟𝑡𝑜𝑡𝑎𝑙(𝑋𝑖𝑐𝑙𝑜𝑢𝑑) ∗ (1 + µ)  (10) 

 

where 𝐸𝑡𝑜𝑡𝑎𝑙(𝑋𝑖𝑗) is the total energy consumption for executing task 𝑋𝑖𝑗 on a fog node. 𝐸𝑡𝑜𝑡𝑎𝑙(𝑋𝑖𝑐𝑙𝑜𝑢𝑑) total 

energy consumption for executing task 𝑋𝑖𝑐𝑙𝑜𝑢𝑑 on a cloud node. λ is the transmission energy coefficient, 

representing the energy required per unit of data transmission. 𝑇𝑟𝑡𝑜𝑡𝑎𝑙(𝑋𝑖𝑗) total transmission time for task 

𝑋𝑖𝑗 j on a fog node 𝑇𝑟𝑡𝑜𝑡𝑎𝑙(𝑋𝑖𝑐𝑙𝑜𝑢𝑑) total transmission time for executing task 𝑋𝑖𝑐𝑙𝑜𝑢𝑑 on a cloud node. 𝜇 is the 

processing energy coefficient, representing the energy required for processing tasks relative to the 

transmission energy. 

 

 

4. SIMULATION AND RESULT 

Simulations are carried out in this section to ensure that the suggested algorithm works properly. For 

implementing the MMFM using DDPG in a fog computing environment, several simulation parameters and 

setup configurations are considered. The simulation environment was designed to emulate a fog-cloud IoT 

system [19], incorporating multiple fog nodes and cloud servers. Key parameters included the number of fog 

nodes, which were varied between 5 to 20, and cloud servers set to 3 for managing offloaded tasks. Task 

generation was simulated using a Poisson process to mimic real-time task arrivals, with task attributes such 

as priority, QoS demands, and computational requirements being randomly assigned based on predefined 

distributions [20], [21].  

Network bandwidth and latency were configured to reflect realistic conditions, with average latency 

ranging between 5 to 20 ms for fog nodes and higher latencies for cloud interactions. The DDPG agent was 

trained over 10,000 episodes, with each episode consisting of 50 task scheduling iterations. The reward 

function was designed to balance energy efficiency and task completion time, encouraging optimal task 

allocation between fog nodes and cloud servers. Hyperparameters for the DDPG model included a learning 

rate of 0.001, a discount factor of 0.99, and a batch size of 64. The simulation was executed using a 

combination of Python libraries, such as TensorFlow for the DDPG implementation and SimPy for the 

discrete-event simulation of the fog computing environment [22]. This setup ensured a comprehensive 

evaluation of the MMFM's performance in dynamically adjusting task allocations to meet QoS requirements 

and enhance energy efficiency. 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 7244-7253 

7250 

The performance analysis of algorithms and models involves evaluating their accuracy, and 

computational efficiency. Accuracy measures the correctness of predictions, while computational efficiency 

assesses resource usage. Generalization examines how well models apply to unseen data [23], [24]. 

Comparative analysis against baselines and state-of-the-art methods benchmarks performance. Evaluating 

these aspects ensures models meet the desired criteria for real-world applications, balancing predictive 

power, resource consumption, and interpretability. This analysis guides iterative refinement, enhancing 

model reliability, efficiency, and effectiveness in solving target problems [25].  

MMFM has established itself as a top performer among predictive algorithms, offering close to the 

best solution for the problem with an output close to 0.89. The difference in the achieved score rises to a 

notably more impressive level compared to results obtained by other prominent reinforcement learning 

algorithms, namely random forest (RF), support vector machine (SVM), and k-nearest neighbors (KNN). The 

evaluation process was conducted in a detailed manner, by collecting several metrics of performance which 

included F1 scores, RMSE, and MSE. Through this, it was demonstrated that MMFM not only had very good 

accuracy and prediction but also showed a high variable of consistency and reliability in case the varied 

scenarios and datasets were considered. 

The horizontal bar graph illustrated in Figure 3 shows the accuracy comparison among four models: 

RF, SVM, KNN, and MMFM. The x-axis of the graph represents the accuracy level, proposed MMFM 

performs better compared to other existing models. The area chart as illustrated in Figure 4 signifies the 

energy consumption of four models which includes the RF, SVM, KNN and the proposed MMFM in the  

x-axis. In the y-axis representing energy consumption The SVM is the most energetic model consuming a 

quantity of about 80 kWh, whereas the KNN model is the second most energetic consuming a quantity of 

about 75 kWh. 

 

 

 
 

Figure 3. Shows the accuracy comparison 

 

 

 
 

Figure 4. Energy consumption for different models 
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MMFM, on the other hand, uses less than 50 units of energy resulting in monumental efficiency. 

To assess the changes in the total energy consumption for various sizes of tasks under various circumstances, 

as well as to compare the expenditures with the previous methods, Figure 5 is provided. Our proposed 

algorithm’s energy consumption is always less than that in traditional local computing as well as the full 

offloading. In Figure 6, the adventure consists of an accumulation of rewards by showing the four climbing 

passages. The x-axis stands for the episodes having 0-3 values, while the y-axis demonstrates the desired 

reward from 0 to 15. The line in graph pattern is aimed at demonstrating a positive correlation, which is an 

increase in total rewards as the episodes get forward. Firstly, the reward may start from about 3 and quickly 

increase to approximately 15 as the episodes move to four. Therefore, this kind of growth shows the system 

performance of the model to be upgraded over time which should bring higher rewards over episodes. 

 

 

 
 

Figure 6. Total rewards per episode 

 

 

 
 

Figure 5. Total energy consumption with different task sizes 

 

 

5. CONCLUSION 

The main goal is to preserve local energy resources by prioritizing critical tasks for migration to the 

cloud. The implementation of the PTCA enabled efficient task transfer to the Amazon Web Services (AWS) 

cloud infrastructure, leading to effective resource distribution and optimization. Furthermore, the task 

scheduler, empowered by the predictive features of the MMFM, adeptly orchestrated task assignments based 

on forthcoming predictions. This holistic strategy ensured that vital tasks were prioritized, maximizing local 

energy conservation while sustaining system efficiency. Throughout the study, the effective task migration to 

the AWS cloud via the PTCM algorithm highlighted the viability and efficiency of fog-cloud-based 

approaches for resource-demanding applications. By tapping into the scalability and computational 

capabilities of the cloud, the system exhibited improved efficiency and adaptability in managing varied 
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workloads. Additionally, incorporating the MMFM model into the task-scheduling framework was pivotal in 

refining resource management and boosting system efficiency. Through predictive analytics, the task 

scheduler was able to foresee future workload requirements, facilitating proactive decision-making and 

optimal resource distribution. This methodology not only enhanced task completion rates but also promoted 

energy conservation by migrating non-essential tasks during peak demand periods. 
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