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 Magnetic resonance imaging (MRI) is used to identify brain disorders, 

particularly strokes. Rapid treatment, often referred to as "time is brain," is 

emphasized in recent studies, stressing the significance of early intervention 

within six hours of stroke onset to save lives and enhance outcomes. The 

traditional manual diagnosis of brain strokes by neuroradiologists is both 

subjective and time-intensive. To tackle this challenge, this study introduces 

an automated method for classify brain stroke from MRI images based on 

pre- and post-stroke patients. The technique employs machine learning, with 

a focus on susceptibility weighted imaging (SWI) sequences, and involves 

four stages: preprocessing, segmentation, feature extraction, classification 

and performance evaluation. The paper proposes classification and 

performance evaluation to determine stroke region according to three types 

of categories, those are poor improvement, moderate improvement and good 

improvement stroke patients based on pre and post patients. Then, 

performance evaluation is verified using accuracy, sensitivity and 

specificity. Results indicate that the hybrid support vector machine and 

bagged tree (SVMBT) yields the best performance for stroke lesion 

classification, achieving the highest accuracy which is 99% and showing 

significant improvement for stroke patients. In conclusion, the proposed 

stroke classification technique demonstrates promising potential for brain 

stroke diagnosis, offering an efficient and automated tool to assist medical 

professionals in timely and accurate assessments. 
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1. INTRODUCTION 

A stroke, known as a "cerebral infarction," usually causes paralysis resulting cause of death in 

Malaysia, with at least 32 deaths per day, and poses a major challenge to Malaysia's health services [1]. 

A recent study showed that a patient's can be saved if they receive treatment within six hours of a stroke. 

Unfortunately, Malaysia is facing a shortage of neuroradiologists, hampering efforts to treat its growing 

number of stroke patients [2]. Advanced imaging using magnetic resonance imaging (MRI) has gained more 

attention than conventional angiography in the diagnosis of acute stroke due to its high spatial resolution and 

fast scan times. Traditionally, diagnosis was made manually by neuroradiologists during a highly subjective 
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and time-consuming task [3]. Detecting stroke from MRI images is a challenging task due to the presence of 

noise and artifacts, small size, and heterogeneous structure of vessels [4]. 

The presence of blood circulation is a critical factor in the pathophysiology of acute ischemic stroke 

as it serves as an alternative blood supply when the primary artery supplying the affected area becomes 

blocked [5]. The recruitment of blood circulation during a stroke varies from person to person and has an 

impact on potential complications, how the ischemic infarct develops, the size of the infarct, and treatment 

outcomes [6]. Early stroke status is becoming more widely recognized as a promising biomarker for 

determining how a stroke may progress [7]. 

MRI is an advanced imaging modality that has gained popularity in medical imaging, particularly in 

the assessment of early stroke. This is due to its low radiation dose, shorter scanning time, low cost, high 

spatial resolution and ease in interpretation [8]. Typically, the evaluation of early stroke is manually 

conducted by neuroradiologists, is a time-consuming and subjective process. By leveraging MRI imaging, 

researchers can investigate the characteristics, patterns, and functional significance of early stroke, 

contributing to improved understanding, diagnosis, and treatment strategies for patients with compromised 

blood flow [9].  

This research demonstrated a new analysis framework to classify early stroke accurately for 

ischemic stroke patients into three classes: good improvement, moderate improvement and poor 

improvement patients based on pre and post stroke patients’ data [10]. This study proposes to analyze brain 

stroke diagnosis based on brain MRI using machine learning. Advanced imaging with MRI has gained more 

attention than conventional angiography in acute stroke diagnosis due to its high spatial resolution and fast 

scan time [11]. Traditionally, diagnosis was made manually by neuroradiologists during a highly subjective 

and time-consuming task. Thus, the aim is to discover the utilization of machine learning techniques to 

automate the classification of early stroke diagnosis on MRI images. Machine learning has a huge benefit 

over conventional techniques in that it can learn non-linear massive data samples while also reducing the 

complexity of the process [12]. It is expected to assist doctors in giving precise decision, reducing diagnosis 

time, and delivering fast treatment to stroke patients. In providing better healthcare solutions through an 

intelligent system, the results of this research could serve to improve the healthcare of the community [13]. 

 

 

2. LITERATURE REVIEW 

The human brain is a complex organ that is functions for controlling and coordinating various 

bodily functions, as well as enabling cognitive processes and behavior [14]. It is divided into several major 

regions, each with its own specific functions. The cerebrum is the largest part of the brain and is divided into 

two hemispheres, the left and right hemispheres [15]. Each hemisphere is further divided into four lobes: the 

frontal lobe, parietal lobe, temporal lobe, and occipital lobe. 

Figure 1 identifies ischemic stroke which categorize in five stage [16], those are early hyperacute  

(0–6 hours), late hyperacute (6–24 hours), acute (24 hours–1 week), subacute (1-3 weeks), and chronic  

(> three weeks). Insufficient arterial pressure to meet metabolic demands leads to brain ischemia, causing 

cerebral hypertension or a depletion of oxygen in the brain, resulting in brain tissue death or ischemic stroke 

[17]. Ischemic stroke in the brain can induce inflammation, affecting neuronal and glial function, along with 

vascular changes [18]. The ongoing supply of oxygen and nutrients is crucial for neuronal function. 

Interruption of this supply leads to unconsciousness, and prolonged deprivation causes irreversible brain 

damage [19]. Approximately 4 to 15% of all ischemic strokes are attributed to acute internal carotid artery 

occlusion as the primary cause [20]. 

 

 

 
 

Figure 1. Ischemic brain stroke  
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Women face a higher susceptibility to stroke-related conditions than men, with statistics revealing 

that 6 out of 10 individuals affected by stroke are women [21]. This underscores the need for gender-specific 

considerations in stroke prevention, diagnosis, and treatment approaches. While thrombectomy, a procedure 

aimed at removing blood clots from blocked arteries, carries inherent risks, these risks are primarily relevant 

to patients with specific characteristics [22]. For instance, individuals with a small infarction but a large 

penumbra and excellent collateral circulation are considered suitable candidates for thrombectomy [23]. 

Identifying such patients accurately is crucial to ensure that the benefits of the procedure outweigh potential 

risks. Early detection of warning signs is vital in minimizing the impact of a stroke, and public awareness 

campaigns and education programs are emphasized to enhance stroke awareness [24]. Taking into account 

the higher stroke risk in women, the appropriateness of thrombectomy based on patient characteristics, and 

the importance of early detection, healthcare providers and researchers can formulate targeted strategies for 

stroke prevention, precise patient selection for thrombectomy, and timely interventions. This comprehensive 

approach aims to alleviate the burden of stroke-related diseases and enhance outcomes for those at risk [25]. 

 

 

3. METHOD 

This part discusses the classification analysis using machine learning techniques. From the 

classification, the performance analysis was conducted based on accuracy, specificity, and sensitivity. The 

results provide insights into the model's ability to correctly classify data while minimizing false positives and 

false negatives. This evaluation highlights the strengths and limitations of the applied techniques in 

addressing the problem. 

 

3.1.  Classification analysis using machine learning techniques 

Classification technique is proposed to classify the type of strokes based on the features that are 

extracted from the best segmentation result. This study proposes four techniques which are linear 

discriminant analysis, support vector machine, bagged tree classifier and hybrid support vector machine and 

bagged tree (SVMBT). On the basis of the features that are retrieved from the best segmentation result, a 

classification technique is given to categories the different types of strokes.  

 

3.1.1. Linear discriminant analysis 

Linear discriminant analysis (LDA), a supervised machine learning method, is recognized for its 

effective approach to feature extraction and dimension reduction [26]. This technique employs a predictive 

equation based on region of interest (ROI) characteristics to classify stroke types. The discrete dependent 

variables representing ROI features are plotted on a scatter plot. LDA aims to identify a concise set of 

features that can generate a robust predictive model for distinguishing between different stroke types. This is 

achieved by calculating axes that maximize the separation between diverse stroke categories [27]. The 

technique projects the feature space onto a smaller subspace while retaining crucial discriminatory 

information for each stroke. In each stroke type, the characteristics (𝑓𝑠) are multiplied by the stroke type (𝑓𝑠), 

contributing to the creation of a scatter plot. Scatter matrices are assigned to calculate the mean vector, i, 

following the fundamental theory expressed by (1). 
 

𝑢𝑁 =

[
 
 
 
𝑢1𝑓𝑠1 𝑢1𝑓𝑠2  ⋯  𝑢𝑖𝑓𝑠𝑛

𝑢2𝑓𝑠1 𝑢2𝑓𝑠2  ⋯  𝑢𝑖𝑓𝑠𝑛

⋯   ⋯    ⋯  ⋯
𝑢𝑖𝑓𝑠𝑛  𝑢𝑖𝑓𝑠𝑛  ⋯  𝑢𝑖𝑓𝑠𝑛 ]

 
 
 

, 𝑡𝑠 = [
𝑡𝑠1
⋯
𝑡𝑠𝑛

] , 𝜇𝑖 = 𝑢𝑁 × 𝑡𝑠 (1) 

 

where 𝑢𝑁= the number of samples in each type of stroke lesion, 𝑓𝑠= the features of the ROI, and 𝑡𝑠= the type 

of stroke. 

 

3.1.2. Support vector machine 

Support vector machine (SVM) stands out as the optimal classifier for effectively categorizing 

multiple categories [28]. Recognized as a linear model applicable to both classification and regression 

challenges, SVM demonstrates proficiency in addressing a wide range of real-world problems, encompassing 

both linear and non-linear scenarios [29]. In the context of stroke lesion types, each binary learner is linked to 

a specific type of stroke, denoted as 𝑡𝑠, within a matrix element termed a coding design. To simplify 

classification in scenarios involving multiple classes, the one-versus-one coding design is implemented. This 

coding design operates as (2): 
 

𝑡𝑠(𝑡𝑠 − 1)/2  (2) 
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Each binary learner is exclusively designated to match with one type of stroke for positive binary correlation, 

another type of stroke for negative correlation, and the remaining types are disregarded [30]. In loss-weighted 

decoding, the predicted type of stroke for an observation is determined by the stroke type that results in the 

smallest average of binary losses across the binary learners, expressed as (3): 

 

�̑�𝑠 = 𝑎𝑟𝑔𝑚𝑖𝑛
∑ |𝑚𝑡𝑠𝑙|𝑔𝑚𝑡𝑠𝑙,𝑠𝑙

𝐿
𝑙=1

∑ |𝑚𝑡𝑠𝑙|
𝐿
𝑙=1

  (3) 

 

where 𝑚𝑡𝑠𝑙
 is an element of the (𝑡𝑠𝑙) of the binary learner l that corresponds to the type of stroke, 𝑡𝑠. Be the 

binary loss function, and let 𝑔 be the learner's score for a binary observation. 

 

3.1.3. Bagged tree 

Bagged tree ensemble learning method generates a substantial number of decision trees during the 

training phase and produces the stroke type that represents the mode among the individual trees' stroke types 

[31]. The universal bagging learner technique is employed in the bagged tree training algorithm. In this 

algorithm, a random sample with replacement of the training set, denoted as 𝑡𝑠 = 𝑡𝑠1,...,𝑡𝑠𝑛 (representing the 

stroke types with response 𝑓𝑠 = 𝑓𝑠1,...,𝑓𝑠, which are the features of stroke lesions), is repeatedly chosen. The 

learners are trained using resampled copies of the data in bagging (B). The common resampling method in 

this process is bootstrapping, where a specific number of stroke features (𝑓𝑠) are chosen, with replacement, 

from a larger set of stroke features (𝑓𝑠 observations) for each new learner. 

During the training, each tree in the ensemble has the ability to randomly select predictors for 

decision splits [32]. The classifier combines predictions from multiple trees to determine the expected stroke 

type for a training ensemble. For classification trees, predictions for unseen samples (𝑓𝑠) can be made after 

training through a majority vote, as represented in the equation where fb denotes the bagged tree 

classification learner. 

 

𝑓𝑠 =
1

𝐵
∑ 𝑓𝑏(𝑓𝑠)

𝐵
𝑏=1  (4) 

 

The number of stroke features, 𝑓𝑠 selected at random for every decision split is selected. This random 

selection is made for every split, and every deep tree involves many splits. 

 

3.1.4. Hybrid combination of support vector machine and bagged tree 

Both bagged trees and SVM can achieve high accuracy in classification tasks. Bagged trees excel in 

their robustness to overfitting and flexibility, while SVMs perform well in high-dimensional spaces and offer 

fine-tuning options for controlling model complexity. However, SVMs can be computationally expensive and 

require careful parameter tuning, while bagged trees may sacrifice interpretability and face challenges with 

high variance. The choice between them depends on the specific requirements and constraints as well. SVM 

is a discriminative classifier that finds the optimal hyperplane to separate classes, whereas bagged trees are 

based on ensemble learning using decision trees. Then, SVM tries to find the hyperplane that maximizes the 

margin between classes, while decision trees create piecewise constant decision boundaries. Additionally, 

SVM requires tuning of parameters like the choice of kernel and regularization parameter, while bagged trees 

are relatively simple to use without much parameter tuning. 

 

3.2.  Performance analysis for classification technique 

In the realm of machine learning, a confusion matrix serves as a table utilized to assess the 

performance of a classification model. It achieves this by contrasting the predicted classifications made by 

the model with the actual classifications present in the data [33]. This matrix provides a comprehensive 

summary of the accurate and inaccurate predictions made by the model on a testing dataset. The figures 

within the confusion matrix serve as the basis for computing diverse performance metrics, including 

accuracy, sensitivity, and specificity. These metrics provide numerical assessments of the model's 

performance on a test dataset, each with its defined interpretation. Accuracy reflects the classification model's 

capability to accurately categorize instances.  

 

Accuracy =  
True Positive+True Negative

Total number of samples
  (5) 

 

Specificity pertains to the capacity of a classification model to accurately recognize negative instances. It is 

determined by the ratio of true negative predictions (instances correctly identified as negative) to the total 

number of actual negative instances in the test dataset. 
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Specificity =  
True Negative

True Negative+False Positive
  (6) 

 

Sensitivity, also referred to as recall, signifies the proficiency of a classification model in accurately 

recognizing positive instances. It is calculated as the ratio of true positive predictions (instances correctly 

identified as positive) to the total number of actual positive instances present in the test dataset. 

 

Sensitivity =  
True Positive

True Positive+False Negative
  (7) 

 

 

4. RESULTS AND DISCUSSION 

A classification methodology employing LDA, SVM and bagged tree classifier has been devised to 

categorize stroke lesions in SWI images. The input features utilized by these classifiers are derived from ROI 

images, extracted through the optimal segmentation technique proposed by adaptive threshold segmentation 

method. Consistent outcomes are observed across all scatter plot diagrams for each feature, depicting correct 

and incorrect classifications. Mean boundary and standard deviation scatter plot diagrams are included to 

assess the performance of each classifier. The detailed assessment of the stroke patient model's classification 

performance on both the training and testing datasets is presented through the confusion matrix. This matrix 

facilitates a thorough analysis of the model's accuracy and errors within individual classes, offering insights 

into correct and incorrect classifications. 

 

4.1.  Classification analysis using machine learning techniques 

The comprehensive assessment of the stroke patient’s model classification performance on both the 

training and testing datasets is illustrated through the confusion matrix. This matrix enables a detailed 

scrutiny of the model's accurate and inaccurate categorizations within each class. Additionally, it facilitates 

the calculation of key metrics such as precision, recall, and F1-score, offering a deeper understanding of the 

model’s predictive capabilities. Such analysis is crucial for identifying areas for improvement and ensuring 

reliable performance in real-world scenarios. 

 

4.1.1. Poor improvement stroke patient 

The percentage of performance evaluation is to verify the computational accuracy taken by each 

classification technique. Figure 2 identifies the performance evaluation for classification technique based on 

poor improvement stroke patient. From the table, can see that SVMBT achieved highest accuracy which is 

99.5% at training and 100% at testing. Continued by bagged tree which produced 99.1% at training and 

97.3% at testing and SVM obtained 79% at training and 86.7% at testing. The least accuracy obtained by 

LDA is 69.6% at training and 84.9% at testing. 

 

 

 
 

Figure 2. Performance evaluation for classification technique based on poor improvement stroke patient 

 

 

4.1.2. Moderate improvement stroke patient 

Figure 3 illustrates the evaluation of classification methods for moderate improvement stroke 

patients. The table reveals that SVMBT attained the highest accuracy, reaching 100% during training and 

100% during testing. Followed by bagged tree exhibited 95.8% accuracy during training and 97.8% during 

testing, while SVM achieved 80% during training and 85.6% during testing. On the other hand, LDA 

displayed the lowest accuracy, with 67.5% during training and 69% during testing. 
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Figure 3. Performance evaluation for classification technique based on moderate improvement stroke patient 

 

 

4.1.3. Good improvement stroke patient 

Figure 4 outlines the assessment of classification methods concerning good improvement stroke 

patients. The table reveals that SVMBT demonstrated the highest accuracy, achieving 98.5% during training 

and 100% during testing. Then, bagged tree model yielded 95.3% accuracy during training and 99% during 

testing, while SVM obtained 83.4% during training and 86% during testing. Conversely, the LDA displayed 

the lowest accuracy, with 56.8% during training and 74.5% during testing. 

 

 

 
 

Figure 4. Performance evaluation for classification technique based on good improvement stroke patient 

 

 

4.2.  Performance analysis for classification technique  

In the training phase, careful consideration of numerous parameters and reasoned analysis of various 

experimental outcomes are crucial. Training involves iterating through input data, calculating training loss to 

assess how well the model predicts output based on provided input. The goal is to minimize loss by adjusting 

model weights and biases using optimization procedures like stochastic gradient descent. During testing, the 

model is assessed using new input data. Testing loss indicates the model's ability to generalize to new data; 

significant testing loss suggests overfitting to training data. Ideally, training and testing losses should 

decrease over time, leveling off at the same value, demonstrating effective generalization.  

Figure 5 shows the performance analysis for classification technique. Based on the data presented, 

can view that good improvement stroke patient achieved highest accuracy which is 0.99, sensitivity is 0.81 

and specificity is 0.75. Then, followed by poor improvement stroke patient achieved second highest accuracy 

which is 0.89, sensitivity is 0.73 and specificity is 0.68. At last, the least performance achieved by moderate 

improvement stroke patient with accuracy of 0.78, sensitivity is 0.64 and specificity is 0.52 as well. To 

address overfitting, increasing the training data or applying regularization techniques like dropout, weight 

decay, and batch normalization is recommended. These adjustments aim to enhance the model's ability to 

generalize effectively to new data, ultimately improving accuracy. 
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Figure 5. Performance analysis for classification technique 

 

 

4.3.  Comparison results of performance verification for the stroke lesion classification benchmarking 

Based on previous research, Table 1 concluded the results by other researchers in similar studies. The 

Bagged tree classification technique has shown best accuracy compared to other studies. The accuracy 

obtained was 0.99, sensitivity is 0.81 and specificity is 0.75. Ye et al. [34] presents accuracy with 0.97, 

sensitivity is 0.86 and specificity is 0.76 by using Bagged tree. Cui et al. [35] presents the second highest 

accuracy with 0.95, sensitivity is 0.86 and specificity is 0.71. Then, followed by Horn et al. [36] presents 

accuracy with 0.89, sensitivity is 0.84 and specificity is 0.81. After that, Liang et al. [37] accuracy with 0.79, 

sensitivity is 0.62 and specificity is 0.45. Continuously, Zhang et al. [38] presents accuracy with 0.76, 

sensitivity is 0.62 and specificity is 0.57. At last, Dewan et al. [39] presents accuracy with 0.63, sensitivity is 

0.58 and specificity is 0.53.  

 

 

Table 1. Machine learning technique for brain stroke diagnosis by other researchers 
Author Imaging Modality Number of Data Technique Result 

Accuracy  Sensitivity  Specificity  

Proposed method MRI 24 patients SVMBT 0.99 0.81 0.75 

Dewan et al. [39] CBCT 183 patients SVM 0.63 0.58 0.53 
Zhang et al. [38] CT 154 patients LDA, KNN 0.76 0.62 0.57 

Cui et al. [35] MRI 65 patients Bagged Tree 0.95 0.86 0.71 

Liang et al. [37] MRI 89 patients LDA 0.79 0.62 0.45 
Horn et al. [36] MRI 30 patients Bagged Tree 0.89 0.84 0.81 

Ye et al. [34] MRI 46 patients Bagged Tree 0.97 0.86 0.76 

 

 

5. CONCLUSION  

In this research, machine learning techniques are proposed for automatic scoring of brain stroke 

diagnosis in the context of treatment decision making in ischemic stroke. The automated technique to classify 

and quantify the lesion area would support clinicians and neuroradiologists rendering their findings more 

robust and reproducible. The techniques are highly capable to classify the type of brain stroke and accurate 

diagnosis for ischemic stroke patient into three types, those are poor, moderate and good improvement stroke 

patient. The outcome of this research could serve as an insight to improve the healthcare of the community 

by providing better solutions using such intelligent system. Furthermore, the characteristics of stroke lesion 

appearances, their evolution, and the observed challenges should be studied in detail. 
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