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 In this paper, the cascade architecture of spline adaptive filtering (CSAF) for 

nonlinear systems is presented with the normalized version of orthogonal 

gradient adaptive (NOGA) algorithm. Spline adaptive filtering comprises a 

sandwich of the first linear adaptive filtering (LAF) and nonlinear adaptive 

look-up table. In this cascading architecture, SAF is connected to the second 

LAF. NOGA is considered as the fast convergence applied by stochastic 

gradient-based approach. Convergence properties of the proposed NOGA-

CSAF algorithm in terms of instantaneous errors can be derived by using 

Taylor series expansion. Experimental results demonstrate the effectiveness 

of proposed NOGA-CSAF algorithm using the mean square error scheme. It 

clearly outperforms the traditional least mean square algorithm on CSAF 

model in the nonlinear identification system. 
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1. INTRODUCTION 

According to the practical situations, the nonlinear adaptive filtering (NAF) models are involved to 

guarantee for many field of real-world applications [1]–[4]. As stated in a linear-nonlinear (LN) architecture 

based on Wiener model [5]–[10], the spline-based adaptive filtering (SAF) architecture consists of linear 

adaptive filtering (LAF) connected to adaptive look-up table (LUT) for NAF adapted by spline-based 

interpolation. SAF has been investigated to against the impulsive or colored noise [8], [9]. In [9], [10], SAF-

based architecture has been analyzed in the convergence properties by adaptive step-size mechanism. Based 

on Hammerstein function, the Hammerstein-based SAF (HSAF) has been derived by a nonlinear-linear (NL) 

model implemented to a block-oriented NAF connected with LAF approach [11]–[14]. Referring to HSAF 

model, there are many evaluations of performance in the various engineering field as presented in the 

ultrasonic motor system [15] and nonlinear digital cancellation in mode of full-duplex [16], [17]. 

A general trouble in nonlinear systems is that there is no “𝑎 𝑝𝑟𝑖𝑜𝑟𝑖” or previous information used. 

A set of the cascade of linear and nonlinear model has been introduced to identify the best solution with the 

present information in the real-world environment [18]–[21]. As stated in [19], [20], the cascade spline-based 

adaptive filtering (CSAF) consists of a nonlinear-linear-nonlinear (NLN) and a linear-nonlinear-linear (LNL) 

models with least mean square (LMS) algorithm that has been proposed in the system identification. In [20], 

a class of CSAF scheme has been investigated on the nonlinear radio system working at 2.4 GHz industrial, 

scientific, and medical (ISM) band to evaluate the self-interference in various scenarios. Meanwhile, the 
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modified CSAF based on the normalized version of LMS (NLMS) algorithm [21] has been modified in the 

identification nonlinear system.  

For the fast learning convergence, the adaptation of orthogonal gradient adaptive (OGA) mechanism 

in [22]–[24] can be furnished with the normalized version of OGA (NOGA) algorithm. In study [23], the 

convergence analysis of NOGA has been derived with the greedy scheme. In study [24], the orthogonal 

gradient descent algorithm has been proposed on neural networks in the areas of continual learning. 

The contribution of this work is to derive the CSAF model using NOGA mechanism under the 

minimized cost function on stochastic gradient-based approach. To the best of our knowledge, the NOGA 

mechanism can guarantee the convergence rate by using the CSAF approach. Cascade architecture on SAF 

mechanism is detailed briefly in section 2. Based on NOGA algorithm, the adaptive directional and negative 

gradient vectors of NOGA are important keys for smooth and fast convergence as shown in section 3. 

Moreover, the convergence properties of proposed NOGA-CSAF algorithm are derived by using Taylor 

expansion in section 4. Section 5 presents some experimental results for the nonlinear identification dynamic 

system. Finally, section 6 concludes the work. 

 

 

2. THE PROPOSED CASCADE SPLINE ARCHITECTURE BASED ON NORMALIZED 

ORTHOGONAL GRADIENT ADAPTIVE ALGORITHM 

In [19], [21], the cascade or sandwich models are presented for nonlinear system identification. In 

this paper, the cascade of LNL model is considered as spline-based system, as shown in Figure 1. This 

cascade model comprises two LAFs and a nonlinear memoryless function in the middle. At the first block of 

LAF 𝒘1(𝑘), the output 𝑧(𝑘) is given by (1). 

 

𝑧(𝑘) =   𝒘1(𝑘)𝑇𝒙(𝑘), (1) 

 

where 𝒙(𝑘) denotes as the input vector. 

Subsequently, the output vector 𝒔(𝑘) of a NAF 𝒎𝑗(𝑘) at the 𝑗𝑡ℎ-index span can be expressed by (2). 

 

𝒔(𝑘) =   𝒂(𝑘)𝑇 ∙ 𝑫 ∙ 𝒎𝑗(𝑘),  (2) 

 

where 𝑫 is a spline basis matrix. It is noted that the weight vector 𝒎𝑗(𝑘) works as the adaptive controlling 

vector for the third-order polynomial spline interpolation 𝒂(𝑘) as (3). 

 

𝒂(𝑘) = [𝑎(𝑘)3 𝑎(𝑘)2 𝑎(𝑘) 1]𝑇 ,  (3) 

 

where 𝒂(𝑘) is a local parameter that is calculated by (4). 

 

𝑎(𝑘) =
𝑧(𝑘)

𝜎𝑥
− ⌊

𝑧(𝑘)

𝜎𝑥
⌋    (4) 

 

where 𝜎𝑥 is a space between 2-connected controlling taps. And a position of index span (j) for nonlinear 

adaptive controlling vector 𝒎𝑗(𝑘) is related with the output 𝑧(𝑘) of the first linear adaptive weight vector 

𝒘1(𝑘) and number of tap length (P) of 𝒎𝑗(𝑘) as (5). 

 

𝑗 = ⌊
𝑧(𝑘)

𝜎𝑥
⌋ + (

𝑃−1

2
),  (5) 

 

where ⌊∙⌋ is a floor operator and P is a uniform degree spline interpolation. It is noted that a position j from 

(5) should be adjusted in the middle range of 𝒎𝑗(𝑘). Therefore, the output 𝑦(𝑘) of the second LAF 𝒘2(𝑘) is 

given by (6). 

 

𝑦(𝑘) =   𝒘2(𝑘)𝑇𝒔(𝑘).  (6) 

 

As stated in [6], a nonlinear problem is no “𝑎 𝑝𝑟𝑖𝑜𝑟𝑖” information in general. So, the output error 

𝜖(𝑘) from Figure 1 can be expressed as (7). 

 

 𝜖(𝑘) = 𝑑(𝑘) − 𝑦(𝑘) = 𝑑(𝑘) −  𝒘2(𝑘)𝑇𝒔(𝑘), (7)  
 

where 𝑑(𝑘) denotes as a reference signal. 
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In this section, we introduce a NOGA-based algorithm on cascade spline-based architecture for 

nonlinear adaptive filtering. In studies [19], [21]  the normalized version for squared error cost function 

𝒥(𝒘1, 𝒎𝑗 , 𝒘2) is considered by the instantaneous error in (8). 

 

 𝒥(𝒘1, 𝒎𝑗 , 𝒘2) =
1

2
{

𝜖(𝑘)2

𝒙(𝑘)𝑇𝒙(𝑘)
}, (8) 

 

where 𝜖(𝑘) is given in (7). 

The adaptive learning algorithm can be derived to minimize the cost function in (8), based on 

stochastic gradient mechanism by computing the gradient with respect to (w.r.t.) the second LAF at (9). 

 
𝜕𝒥(𝒘1,𝒎𝑗,𝒘2)

𝜕𝒘2(𝑘)
= −

𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)

𝜕𝑦(𝑘)

𝜕𝒘2(𝑘)
=  −

𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
𝒔(𝑘). (9) 

 

For the adaptive controlling vector 𝒎𝑗(𝑘), it is possible to obtain by (10). 

 
𝜕𝒥(𝒘1,𝒎𝑗,𝒘2)

𝜕𝒎𝑗(𝑘)
=  −

𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
∙

𝜕𝑦(𝑘)

𝜕𝒔(𝑘)
∙

𝜕𝒔(𝑘)

𝜕𝒎𝒋(𝑘)
= −

𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
 𝒂(𝑘)𝑇 ∙ 𝑫 ∙ 𝒘2(𝑘).  (10) 

 

For the derivation of stochastic mechanism for the first LAF 𝒘1(𝑘), it is possible to compute by (11). 

 

∴
𝜕𝒥(𝒘1,𝒎𝑗,𝒘2)

𝜕𝒘1(𝑘)
=  −

𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
∙

𝜕𝑦(𝑘)

𝜕𝒔(𝑘)
∙

𝜕𝒔(𝑘)

𝜕𝒂(𝑘)
∙

𝜕𝒂(𝑘)

𝜕𝒘𝟏(𝑘)
   

= −
𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
 𝒘𝟐(𝑘)𝑇 ∙ 𝑫 ∙ 𝜶(𝑘) ∙ 𝒎𝑗(𝑘) ∙

𝒙(𝑘)

𝜎𝑥
,  (11) 

 

where 𝜶(𝑘) is derivation of 𝒂(𝑘) defined by (12). 

 

𝜶(𝑘) =  [3𝑎(𝑘)2 2𝑎(𝑘) 1 0]𝑇 ,  (12) 

 

where [∙]𝑇 is a transpose operator. 

The proposed weight vector 𝒘2(𝑘) based on NOGA with the help of directional weight 𝜑𝑤2
(𝑘) and 

gradient vector 𝜁𝑤2
(𝑘) can be derived from (13) and (14). 

 

𝒘2(𝑘 + 1) =  𝒘2(𝑘) + 𝜇𝑤2
∙  𝜑𝑤2

(𝑘),   (13) 

 

𝜑𝑤2
(𝑘 + 1) =  𝜑𝑤2

(𝑘) − 𝛾𝑤2
∙  𝜁𝑤2

(𝑘),  (14) 

 

where 𝜇𝑤2
 and 𝛾𝑤2

 are the tuning value and forgetting-factor for 𝒘2(𝑘). 

For the stochastic learning, the gradient 𝜁𝑤2
(𝑘) for 𝒘2(𝑘) can be obtained by (15). 

 

𝜁𝑤2
(𝑘 + 1) = 𝛾𝑤2

∙ 𝜁𝑤2
(𝑘) +

𝜕𝒥(𝒘1,𝒎𝑗,𝒘2)

𝜕𝒘2(𝑘)
,  (15) 

 

where 
𝜕𝒥(𝒘1,𝒎𝑗,𝒘2)

𝜕𝒘2(𝑘)
 is given in (9). Therefore, the adaptive gradient 𝜁𝑤2

(𝑘) can be performed by (16). 

 

𝜁𝑤2
(𝑘 + 1) = 𝛾𝑤2

∙ 𝜁𝑤2
(𝑘) −

𝒔(𝑘)𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
 , (16) 

 

where 𝛾𝑤2
 lies upon the orthogonal projection of present directional weight 𝜑𝑤2

(𝑘) and gradient 𝜁𝑤2
(𝑘) as 

(17). 

 

𝛾𝑤2
=

𝜑𝑤2
(𝑘)𝑇∙𝜁𝑤2

(𝑘)

𝜑𝑤2
(𝑘+1)𝑇∙𝜑𝑤2

(𝑘)
 .  (17) 

 

Similarly, the proposed spline-based controlling vector 𝒎𝑗(𝑘) can be expressed on NOGA with the 

help of 𝜑𝑚𝑗
(𝑘) and 𝜁𝑚𝑗

(𝑘) as (18)-(20). 

 

𝒎𝑗(𝑘 + 1) =  𝒎𝑗(𝑘) + 𝜇𝑚𝑗
∙  𝜑𝑚𝑗

(𝑘),  (18) 
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𝜑𝑚𝑗
(𝑘 + 1) =  𝜑𝑚𝑗

(𝑘) − 𝛾𝑚𝑗
∙  𝜁𝑚𝑗

(𝑘),  (19) 

 

𝜁𝑚𝑗
(𝑘 + 1) = 𝛾𝑚𝑗

𝜁𝑚𝑗
(𝑘) +

𝜕𝒥(𝒘1,𝒎𝑗,𝒘2)

𝜕𝒎𝑗(𝑘)
,  (20) 

 

where 𝜇𝑚𝑗
, 𝛾𝑚𝑗

 are tuning and forgetting-factor respectively for 𝒎𝑗(𝑘) and 
𝜕𝒥(𝒘1,𝒎𝑗,𝒘2)

𝜕𝒎𝑗(𝑘)
 is given in (10). 

Therefore, the gradient vector 𝜁𝑚𝑗
(𝑘) can be evaluated by (21), (22) 

 

𝜁𝑚𝑗
(𝑘 + 1) = 𝛾𝑚𝑗

𝜁𝑚𝑗
(𝑘) −

 𝒂(𝑘)𝑇∙𝑫∙𝒘2(𝑘)𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
 ,  (21) 

 

𝛾𝑚𝑗
=

𝜑𝑚𝑗
(𝑘)𝑇∙𝜁𝑚𝑗

(𝑘)

𝜑𝑚𝑗
(𝑘+1)𝑇∙𝜑𝑚𝑗

(𝑘)
.  (22) 

 

Finally, the proposed linear vector 𝒘1(𝑘) based on NOGA in terms of 𝜑𝑤1
(𝑘) and 𝜁𝑤1

(𝑘) can be 

computed as (23)-(25). 

 

𝒘1(𝑘 + 1) =  𝒘1(𝑘) + 𝜇𝑤1
∙  𝜑𝑤1

(𝑘),  (23) 

 

𝜑𝑤1
(𝑘 + 1) =  𝜑𝑤1

(𝑘) − 𝛾𝑤1
∙  𝜁𝑤1

(𝑘),  (24) 

 

𝜁𝑤1
(𝑘 + 1) = 𝛾𝑤1

∙ 𝜁𝑤1
(𝑘) +

𝜕𝒥(𝒘1,𝒎𝑗,𝒘2)

𝜕𝒘1(𝑘)
 , (25) 

 

where 𝜇𝑤1
 and 𝛾𝑤1

 are the tuning value and forgetting-factor for 𝒘1(𝑘) and 𝜁𝑤1
(𝑘) can be defined by  

(26)-(28). 

 

𝜁𝑤1
(𝑘 + 1) = 𝛾𝑤1

∙ 𝜁𝑤1
(𝑘) −

𝛽(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)

𝒘2(𝑘)𝑇𝒙(𝑘)

𝜎𝑥
𝜖(𝑘),    (26) 

 

𝛽(𝑘) = 𝛼(𝑘)𝑇 ∙ 𝐷 ∙ 𝒎𝑗(𝑘),   (27) 

 

𝛾𝑤1
=

𝜑𝑤1
(𝑘)𝑇∙𝜁𝑤1

(𝑘)

𝜑𝑤1
(𝑘+1)𝑇∙𝜑𝑤1

(𝑘)
 .    (28) 

 

where 𝛼(𝑘) is given in (12). 

 

 

 
 

Figure 1. Proposed cascade spline-based adaptive filtering based NOGA algorithm 
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3. METHOD FOR CONVERGENCE PROPERTIES 

The convergence properties of proposed NOGA-CSAF learning algorithm can be verified with the 

help of error 𝜖(𝑘 + 1) by Taylor series expansion [6] as shown in (29). 

 

𝜖(𝑘 + 1) = 𝜖(𝑘) + 𝛿𝒘2∙
𝜕𝜖(𝑘)

𝜕𝒘2(𝑘)
|𝒘1,𝒎𝑗=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝛿𝒎𝒋∙

𝜕𝜖(𝑘)

𝜕𝒎𝒋(𝑘)
|𝒘1,𝒘2=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    

+𝛿𝒘1∙
𝜕𝜖(𝑘)

𝜕𝒘1(𝑘)
|𝒘2,𝒎𝑗=𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . (29) 

 

All expression terms in (29) can be derived by (30)-(35). 

 
𝜕𝜖(𝑘)

𝜕𝒘2(𝑘)
= −

𝜕𝑦(𝑘)

𝜕𝒘2(𝑘)
= −𝒔(𝑘),  (30) 

 
𝜕𝜖(𝑘)

𝜕𝒎𝑗(𝑘)
= −

𝜕𝑦(𝑘)

𝜕𝒎𝑗(𝑘)
= − 𝒂(𝑘)𝑇 ∙ 𝑫 ∙ 𝒘2(𝑘),  (31) 

 
𝜕𝜖(𝑘)

𝜕𝒘1(𝑘)
= −

𝜕𝑦(𝑘)

𝜕𝒘1(𝑘)
= −

𝛽(𝑘)𝒘2(𝑘)𝑇𝒙(𝑘)

𝜎𝑥
,  (32) 

 

𝛿𝒘2
≈ 𝜇𝑤2

∙
𝒔(𝑘)𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
 ,  (33) 

 

𝛿𝒎𝑗
≈ 𝜇𝒎𝑗

∙
 𝒂(𝑘)𝑇∙𝑫∙𝒘2(𝑘)𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
 ,  (34) 

 

𝛿𝒘1
≈ 𝜇𝑤1

∙
𝛽(𝑘)

𝜎𝑥

𝒘2(𝑘)𝑇𝒙(𝑘)𝜖(𝑘)

𝒙(𝑘)𝑇𝒙(𝑘)
 .  (35) 

 

By substituting (30) - (35) into (29), it is possible to obtain (36). 

 

𝜖(𝑘 + 1) = [1 − 𝜇𝑤2
‖𝒔(𝑘)‖2 − 𝜇𝑚𝑗

‖ 𝒂(𝑘)𝑇 ∙ 𝑫 ∙ 𝒘2(𝑘)‖2 −
𝜇𝑤1

𝜎𝑥
2

‖𝛽(𝑘)𝒘2(𝑘)𝑇𝒙(𝑘)‖2] ∙ 𝜖(𝑘).  (36) 

 

We assume that |𝜖(𝑘 + 1) < 𝜖(𝑘)| in (36) to certify the convergence, resulting in (37). 

 

|1 − 𝜇𝑤2
‖𝒔(𝑘)‖2 − 𝜇𝑚𝑗

‖ 𝒂(𝑘)𝑇 ∙ 𝑫 ∙ 𝒘2(𝑘)‖2 − 
𝜇𝑤1

𝜎𝑥
2

‖𝛽(𝑘)𝒘2(𝑘)𝑇𝒙(𝑘)‖2| < 1 .  (37) 

 

Referring to (37), the bound on the learning rates can be implied as (38). 

 

0 <  𝜇𝑤2
‖𝒔(𝑘)‖2 + 𝜇𝑚𝑗

‖ 𝒂(𝑘)𝑇 ∙ 𝑫 ∙ 𝒘2(𝑘)‖2 + 
𝜇𝑤1

𝜎𝑥
2

‖𝛽(𝑘)𝒘2(𝑘)𝑇𝒙(𝑘)‖2 < 2 .  (38) 

 

It is seen that the proposed NOGA-CSAF approach can be confirmed to converge into its own optimum point 

when 𝜇𝑤2
, 𝜇𝑚𝑗

, and 𝜇𝑤1
are selected into the bound. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION  

We assume that the identification of unknown CSAF architecture [19] consists of two linear 

components 𝒘20
, 𝒘10

 and the 23-point of a nonlinear function of LUT length of 𝒎0 deployed by as (39)-(41). 

 

𝒘20
= [1, 0.5, −0.25, 0.15, 0.25, −0.10, 0.05]𝑇 ,   (39) 

 

𝒘10
= [0.6, −0.4, 0.25, −0.15, 0.1, −0.05, 0.001]𝑇 ,   (40) 

 

𝒎0 = [−2.2, −2.0, −1.8, ⋯ , −0.8, −0.91, −0.40, −0.20, 0.05, 0, −0.40, 0.58, ⋯ , 2.2]𝑇 .  (41) 
 

The input signal can be generated by (42). 

 

𝒙(𝑘 + 1) = 𝜆 ∙ 𝒙(𝑘) + √1 − 𝜆2 ∙ 𝜂(𝑘),  (42) 
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where 0 ≤ 𝜆 < 1 is a parameter concerned with a level of correlation between connected samples and 𝜂(𝑘) 

denotes as a zero-mean white Gaussian noise. For this experiment, 𝜆 is set at 0.125 and 0.725 and the 30 dB 

signal to noise ratio (SNR) is set for the simulation.  

Fixed parameters for learning algorithms are as follows: 𝜇𝑤1
= 1.25 × 10−3, 𝜇𝑤2

= 5.25 × 10−3, 

𝜇𝑚𝑗
= 9.75 × 10−2 for proposed NOGA-CSAF approach, 𝜇𝑤1

= 1.5 × 10−2, 𝜇𝑤2
= 3.90 × 10−2,  

𝜇𝑚𝑗
= 1.40 × 10−2 for LMS-CSAF algorithm. The number of tap (M) of all cases is 7 and the 3rd degree of 

spline (P = 3) is used. From [25], we assume to initialize 𝒘1(0) = 𝒘2(0) = [1 0 ⋯ 0]T. The basis 

spline matrix (D) named “Catmull–Rom” is used as [8], [26]. 
 

𝑫 =  1
2⁄ [

−1
   2

   3
−5

−3
   4

  1
−1

−1
   0

   0
   2

   1
   0

   0
    0

].     (43) 

 

Figure 2 shows the components of two linear adaptive filters 𝒘2(𝑘) in (13) and 𝒘1(𝑘) in (23) from 

proposed NOGA-CSAF compared to 𝒘20
 in (39) and 𝒘10

 in (40). Results show that the proposed 𝒘2(𝑘) and 

𝒘1(𝑘) can update adaptively. While Figure 3 depicts the adaptive spline controlling vector 𝒎𝑗(𝑘) in (18) 

compared with the target 𝒎0 in (41). 

For the nonlinear identification dynamic system [19], a white Gaussian noise random sequence for 

the uniform noise is used through the 4th order Butterworth of infinite impulse response transfer function for 

the first linear block filtering is as (44): 

 

𝐻1 =
(0.2851+0.5704𝑧−1+0.2851𝑧−2)

1−0.1024𝑧−1+0.4475𝑧−2 ∙
(0.2851+0.5701𝑧−1+0.2851𝑧−2)

1−0.0736𝑧−1+0.0408𝑧−2 ,    (44) 

 

and the transfer function of the 4th order Chebyshev IIR filter for the second linear block filtering is as (45). 

 

𝐻2 =
(0.2025+0.2880𝑧−1+0.2025𝑧−2)

1−1.0100𝑧−1+0.5861𝑧−2 ∙
(0.2025+0.0034𝑧−1+0.2025𝑧−2)

1−0.6591𝑧−1+0.1498𝑧−2 .   (45) 

 

Then, the nonlinear block is shown by (46). 

 

𝑦(𝑘) =  
2 ∙𝑥(𝑘)

1+|𝑥(𝑘)|2 .     (46) 

 

Results of mean square error (MSE) are then computed by (47). 

 

𝑀𝑆𝐸(𝑘) = 10 log(𝑑(𝑘) −  𝒘2(𝑘)𝑇𝒔(𝑘)2).   (47) 

 

 

 
 

Figure 2. Comparing simulation results of proposed NOGA-CSAF algorithm in the linear components 
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Figure 3. Comparison between the adaptive spline vector 𝒎𝑗(𝑘) and target 𝒎0 

 

 

Figure 4 shows the MSE curves of cascade architecture getting from (47) at λ=0.125 in (42) for 

proposed NOGA-CSAF are compared with LMS-CSAF [19] in the different step-size parameters averaged 

from 100 simulations. Figure 5 shows the MSE curves at λ=0.725 in (42) for proposed NOGA-CSAF 

compared with LMS-CSAF [19] in the different step-size parameters averaged from 100 simulations. In 

addition, Figures 3 and 4 also depict that proposed NOGA-CSAF can perform clearly the superior results 

compared to the conventional LMS-CSAF approach with the different step-size values. 

 

 

 
 

Figure 4. Trends of MSE curves of cascade architecture at λ=0.125 of proposed NOGA-CSAF 

 

 

Referring to Figures 4 and 5, the results in MSE can confirm the effectiveness of the proposed 

NOGA-CSAF approach in terms of fast convergence towards the minimized cost function. The averaged 

MSE of the proposed NOGA-CSAF algorithm compared with the LMS-CSAF is summarized in Table 1. 
Notice that the proposed algorithm can demonstrate a better performance compared with all cases. It is 

confirmed that the proposed weight vectors and spline-based controlling coefficient in CSAF model can be 

changed adaptively by NOGA algorithm during the learning process. 
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Figure 5. Trends of MSE curves of cascade architecture at λ=0.725 of proposed NOGA-CSAF 

 

 

Table 1. Averaged MSE in unit of dB of proposed NOGA-CSAF approach 
Algorithm Set-up parameters Averaged MSE (dB) 

𝝀 = 𝟎. 𝟏𝟐𝟓 𝝀 = 𝟎. 𝟕𝟐𝟓 

NOGA-CSAF 𝜇𝑤1
= 1.25 × 10−3 

𝜇𝑤2
= 5.25 × 10−3 

𝜇𝑚𝑗
= 9.75 × 10−2 

-25.005 dB -21.741 dB 

LMS-CSAF [19] 𝜇𝑤1
= 1.50 × 10−2 

𝜇𝑤2
= 3.90 × 10−2 

𝜇𝑚𝑗
= 1.40 × 10−2 

-18.975 dB -17.739 dB 

LMS-CSAF [19] 𝜇𝑤1
= 5.00 × 10−3 

𝜇𝑤2
= 9.00 × 10−3 

𝜇𝑚𝑗
= 4.00 × 10−2 

-18.371 dB -17.281 dB 

 

 

5. CONCLUSION  

The cascade architecture of spline adaptive filtering based on NOGA algorithm has been introduced 

with some modifications of stochastic gradient-based mechanism. Accordingly, CSAF based on NOGA is 

proposed in this paper. Also, the convergence properties of the proposed NOGA-CSAF have been derived in 

terms of instantaneous error using Taylor series expansion. Several experiments are conducted and tested in 

the nonlinear identification system. Results of MSE curves clearly show that NOGA-CSAF outperforms the 

conventional LMS-CSAF in the case of underlying nonlinear identification system. 
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