
International Journal of Electrical and Computer Engineering (IJECE) 

Vol. 15, No. 1, February 2025, pp. 1109~1122 

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i1.pp1109-1122      1109  

 

Journal homepage: http://ijece.iaescore.com 

Sailfish-cat algorithm-enhanced generative adversarial network 

for attack detection in internet of things-Fog network 

authentication 
 

 

Pallavi Kanthamangala Niranjan1, Ravikumar Venkatesh2 
1Department of Computer Science and Engineering, NMAM Institute of Technology, NITTE (Deemed to be University), Nitte, India 

2Department of Information Science and Engineering, Vidyavardhaka College of Engineering, Mysuru, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received May 13, 2024 

Revised Aug 8, 2024 

Accepted Sep 3, 2024 

 

 The internet of things (IoT) has emerged as a prominent and influential 

concept within the realm of computing. Various attack detection methods are 

devised for detecting attacks in IoT-Fog environment. Despite all these 

efforts, attack detection still remained as a challenging task due to factors 

such as low latency, resource constraints of IoT devices, scalability issues, 

and distribution complexities. All these challenges are addressed in this 

paper by designing an efficient attack detection technique named as sailfish-

cat optimization-based generative adversarial network (SaCO-based GAN) 

tailored for the IoT-Fog framework. This proposed approach introduces the 

SaCO-based GAN for IoT-Fog attack detection utilizing deep learning and 

feature-based classification, validated through experiments showing superior 

performance metrics. Notably, the SaCO optimization technique is utilized 

to train the GAN. Experimental results demonstrate the efficacy of the 

SaCO-based GAN with a maximum recall of 92.15%, a maximum precision 

of 91.21%, and a maximum F-Measure of 92.16%, outperforming existing 

techniques in IoT-Fog attack detection. The paper recommends enhancing 

scalability, implementing real-time detection strategies, rigorously testing 

robustness against diverse attack scenarios, and integrating with existing IoT 

security frameworks for practical deployment. 
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1. INTRODUCTION 

The authenticated network of the internet of things Fog (IoT-Fog) environment is a complex 

ecosystem where IoT devices, Fog nodes, and cloud infrastructure collaborate to process and exchange data [1], 

[2]. This environment is characterized by its distributed architecture, diverse communication [3] protocols, and 

resource-constrained devices. Authentication mechanisms play a vital role in verifying the identity of entities 

within the network and ensuring secure data transmission as shown in Figure 1. Optimization algorithms aim to 

enhance the efficiency and effectiveness of various processes within this environment, including attack 

detection [4] strategies. 

The IoT-Fog environment operates amidst significant scale and complexity, encompassing a vast 

array of interconnected devices, heterogeneous in their capabilities and communication protocols [5]. This 

diversity poses substantial challenges to scalability, as the network must efficiently accommodate the 

https://creativecommons.org/licenses/by-sa/4.0/
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expanding numbers of devices while maintaining robust performance and security measures [6]. Managing 

the heterogeneity of IoT devices adds another layer of complexity, necessitating adaptable authentication and 

detection strategies tailored to each device's unique characteristics. Moreover, the distribution of data across 

Fog nodes and cloud infrastructure introduces complexities in maintaining data integrity and confidentiality 

[7], demanding sophisticated security protocols. To mitigate risks, advanced security measures such as 

encryption, access control, and intrusion detection systems are essential to safeguard sensitive data and 

ensure the reliability of communications within this intricate ecosystem. Addressing these challenges requires 

innovative approaches that can dynamically adjust to the evolving landscape of IoT-Fog environments [8], 

ensuring both operational efficiency and robust protection against emerging threats. 

 

 

 
 

Figure 1. Network model of IoT-Fog computing  

 

 

The focus of optimization algorithms for attack detection strategy in authenticated networks of  

IoT-Fog [9]–[11] environments is to improve the efficiency and accuracy of detecting security threats 

targeting the interconnected devices and infrastructure [2]. This involves leveraging optimization techniques 

such as genetic algorithms, swarm intelligence, and evolutionary algorithms to optimize parameters, feature 

selection, and decision-making processes within attack detection systems. The goal is to enhance the 

detection capabilities [12], reduce false positives, and minimize response times to security incidents. 

Furthermore, resource limitations within IoT devices and Fog nodes pose significant obstacles to 

implementing sophisticated security measures. These devices often operate with constrained computational 

power and memory, which can limit the feasibility of deploying computationally intensive optimization 

algorithms for real-time attack detection. Security and privacy concerns are paramount in IoT-Fog 

environments, where sensitive data is transmitted and processed across multiple nodes and layers, increasing 

vulnerability to malicious attacks. 

Existing solutions for utilizing optimization algorithms in attack detection strategy within 

authenticated networks of IoT-Fog environments include Swarm Intelligence algorithm. Swarm intelligence 

algorithms such as ant colony optimization (ACO) and particle swarm optimization (PSO) [13] optimize 

feature selection [14] and model parameters in attack detection [15], [16] systems, enhancing their 

performance [17] in identifying security threats. Despite the potential benefits of optimization algorithms in 

attack detection strategies for authenticated networks of IoT-Fog environments, several challenges and 

drawbacks exist. They are: 

a. Computational complexity: Optimization algorithms may require significant computational resources, 

making them unsuitable for resource-constrained IoT devices and Fog nodes. 

b. Lack of scalability: Some optimization algorithms may struggle to scale effectively to accommodate the 

increasing number of devices and data volumes within the IoT-Fog [12], [18] environment.  

c. Sensitivity to parameters: The performance of optimization algorithms can be sensitive to parameter 

settings and initialization, requiring careful tuning and optimization. 
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d. Adaptability to dynamic environments: Optimization algorithms may face challenges in adapting to the 

dynamic nature of IoT-Fog environments, where network conditions and attack patterns can change rapidly. 

In summary, scalability, the heterogeneity of IoT devices, data distribution challenges, resource 

limitations, and the evolving landscape of security threats all contribute to the complexities of IoT-Fog 

networks. These issues underscore the critical role of optimization algorithms. They are essential for 

enhancing the security posture of authenticated IoT-Fog network. These algorithms aim to mitigate 

vulnerabilities and improve the resilience of IoT-Fog environment against emerging security challenges, 

thereby safeguarding sensitive data and maintaining operational integrity. 

Effective attack detection swiftly identifies and mitigates potential threats to ensure system security 

and integrity. In the context of attack detection Diro and Chilamkurti [19] recommends leveraging long short-

term memory (LSTM) networks for attack detection in Fog-to-things communications. They highlight 

LSTMs' capability to capture long-term dependencies in sequential data, which improves the accuracy of 

attack detection by analyzing historical network traffic data. Additionally, they address potential challenges 

such as computational complexity and dataset requirements. Ethala and Kumarappan [13] introduces a hybrid 

intrusion detection method for IoT environment, combining spider monkey optimization (SMO) and 

hierarchical particle swarm optimization (HPSO). These algorithms, inspired by natural behaviors of spider 

monkeys and hierarchical structures. They address the rising cyber threats in IoT networks by improving the 

detection accuracy and efficiency through the integrated strengths of SMO and HPSO. The approach includes 

preprocessing IoT data, optimizing intrusion detection parameters, and implementing the model for real-time 

network protection. Saeed and Jameel [14] propose a method combining particle swarm optimization (PSO) 

and a decision tree (DT) classifier for intelligent feature selection in distributed denial of service (DDoS) 

attack detection. This integration optimizes feature selection from large datasets, enhancing detection 

accuracy and reducing computational overhead. Daoud and Mahfoudhi [20] introduces secure intelligent 

method for attack detection (SIMAD), a detection method combining machine learning and anomaly 

detection to secure IoT-Fog environments by monitoring network traffic and device behavior to identify 

threats like DDoS and malware with high accuracy. It also highlights challenges such as the need for 

continuous model updates and managing encrypted traffic in resource-limited settings. Gouda et al. [21] 

proposes an attack detection scheme for mobile ad hoc networks in internet of things (MANET-IoT) 

environment. This scheme uses the adaptive tunicate swarm algorithm (ATSA) to identify and mitigate 

threats from blackmailing nodes. This scheme dynamically adapts to network conditions and threat severity. 

Adrian et al. [22] explores using PSO to identify attack points on IoT devices to enhance the efficacy of 

intrusion prevention systems. PSO inspired by collective animal behaviors, targets the optimization of attack 

point selected on IoT devices, which are often vulnerable due to limited resources and insufficient security. 

The study evaluates the effectiveness of this method and discusses potential drawbacks, such as reliability of 

specific assumptions and performance variability under different conditions.  

The motivation for exploring optimization algorithms for attack detection strategy in authenticated 

networks [23], [24] of IoT-Fog environments stems from the need to address the identified gaps and 

drawbacks in existing solutions. By investigating the efficacy of optimization techniques in improving the 

efficiency, scalability, and adaptability of attack detection systems, our study aims to provide valuable 

insights into mitigating security threats within interconnected ecosystems. Furthermore, by identifying 

optimal configurations and strategies for leveraging optimization algorithms, we seek to empower 

stakeholders to develop proactive and effective security measures [25], [26] that uphold the integrity and 

confidentiality of data in IoT-Fog environment. The contribution of research in attack detection strategy within 

authenticated networks [27] of IoT-Fog environment lies in its endeavor to bridge the be identified gaps and 

challenges: i) implementation of authenticated network of IoT-Fog environment; ii) implementation of Sailfish 

cat optimization algorithm for attack detection strategy in authenticated network of IoT-Fog environment; and 

iii) comparison of proposed approaches with the existing approaches 

Based on the above discussions, the problem is defined as the development of a robust authentication 

and attack detection system tailored for IoT-Fog environment, which presents significant challenges. The 

integration of Ethereum smart contracts for device authentication and access control, along with the detection of 

various types of attacks using a sailfish-cat optimization (SaCO) based generative adversarial network (GAN) 

approach, aims to enhance security within this complex ecosystem. However, ensuring seamless authentication 

across decentralized networks and effectively detecting sophisticated attacks remain critical issues. This study 

addresses these challenges by proposing a hybrid approach that optimizes authentication processes and 

enhances attack detection mechanisms specifically designed for IoT-Fog environment. 

The structure of this paper is outlined as follows: section 2 provides an in-depth exploration of the  

IoT-Fog network model. SaCO-based GAN framework is described in detail to identify threats in the context of 

IoT-Fog computing environment. Section 3 contains the findings and conversation about the suggested 

paradigm. The conclusion of this research work is provided in section 4. 
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2. METHOD  

In this section, proposed attack detection strategy in authenticated network of IoT-Fog environment 

is presented. The proposed model leverages a hybrid approach combining sailfish-cat optimization with a 

GAN to detect attacks within an IoT-Fog environment. This approach is preceded by a robust authentication 

mechanism using Ethereum smart contracts. The process encompasses two primary phases: Authentication 

and attack detection. During the authentication phase [24], IoT device access is authenticated using access 

tokens, verified through processes like hashing and encryption. Post-authentication, permission to access data 

is granted to the user. For attack detection, the process begins with feature selection using Minkowski 

distance on network data, followed by attack detection using a SaCO-based GAN, which optimally tunes 

GAN's internal model parameters via integration of sail fish optimizer (SFO) and cat swarm optimizer (CSO) 

techniques. The authentication and attack detection processes are detailed in Figure 2. 

 

 

 
 

Figure 2. Authentication and attack detection process 

 

 

2.1.  Authentication process 

This section describes the authentication process for a decentralized cloud storage system, involving 

device registration, mapping, authentication, token generation, and data exchange, as depicted in Figure 3. 

Five entities smart contract, admin, Fog nodes, end user, and IoT devices are involved, with the admin 

deploying the smart contract to register IoT devices and map them to manage fog nodes. Authentication, 

access control, and registration are decentralized through the smart contract, which also records approved 

device users and their encrypted keyword files. The authentication process employed in this study are 

attributed to the fundamental work proposed in our previous research article [24] where the relevant 

formulation are thoroughly elucidated. 

a. Device registration phase: The administrator forms a smart contract using the IoT device's ID, Ethereum 

address, and attributes. They then register it with a user ID and an encrypted password derived from the 

concatenated device ID and Ethereum address. Secure access is ensured by verifying that the user-entered 

password matches the stored encrypted one. 

b. Mapping phase: The administrator facilitates IoT device-to-fog node mapping by generating messages 

from concatenated public keys and Ethereum addresses. Further, concatenate these messages with a 

random number for the mapping function. After meeting certain conditions, these messages are sent to the 

respective fog nodes, recorded on IoT devices, and used to secure device-to-user associations. To enhance 

security, user passwords, IDs, and public keys are hashed and XORed with a security parameter to create 

a final message stored on IoT devices for user verification. 

c. Authentication phase: When an end user attempts to log into an IoT device, they submit an authentication 

request to the smart contract, which uses the device's set authentication function to verify their 

credentials. If the user lacks the required permissions, the smart contract denies access, records the denial, 

and notifies the user about the rejection. 

d. Token generation phase: The authentication process employs token-based access control, generating 

tokens from the Ethereum address, device ID, and cryptographic elements. Fog nodes verify these tokens 

to authenticate user access to IoT devices, with enhanced security provided by digitally signed messages 

and session keys to secure and verify communications. 

e. Data exchange phase: During the data exchange phase, IoT devices and users securely transmit encrypted 

data over SSL connections to maintain confidentiality and integrity. Additionally, fog nodes and end users 
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use private and session keys for encryption. The success of data exchange relies on the consistency of signed 

messages between fog nodes and end users, ensuring the authenticity and accuracy of the data transferred. 

 

 

 
 

Figure 3. Authentication process 

 

2.2.  Attack detection process 

Following successful user authentication and data exchange, the attack detection process begins 

using the SaCO-based GAN approach as illustrated in Figure 4. Initially, input data undergoes feature 

selection via the Minkowski distance metric to select optimal features. Subsequently, attack detection utilizes 

the tuned GAN model, optimized by the SaCO, a hybrid of the SFO and CSO. The initial steps of the  

SaCO-based GAN approach is explained below. 

 

 

 
 

Figure 4. Illustrative representation of the SaCO-based GAN proposed for the detection of attacks in the  

IoT-Fog environment 

 

 

2.2.1. Get the input signal 

The input data is identified through a systematic analysis of the information extracted from a dataset. 

This dataset, denoted as 𝑌, consists of n input data points, each providing distinct insights. Analyzing these 

data points facilitates the discovery of patterns and relationships that are critical for deriving informed 

conclusions from the dataset. 

 

𝑌 = {𝐶𝑖}; 𝑖 ∈ {1,2, … . . , 𝑛} (1) 

 

2.2.2. Minkowski distance for selecting the features 

The feature selection module processes the input data 𝐶𝑖 by employing the Minkowski distance in its 

selection algorithm. Specifically, the Minkowski distance of order 𝑔 between two neighboring data points, 

denoted as 𝐶𝑗 and 𝐶𝑘, quantifies their similarity and is mathematically expressed as (2). This distance metric 

is essential for determining the relevance of features and enhancing the overall performance of the selection 

process. 
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𝐵(𝐶𝑗, 𝐶𝑘) = (∑ |𝐶𝑗
𝑑 − 𝐶𝑘

𝑑|
𝑔𝑃

𝑑=1 )
1

𝑔 (2) 

 

2.2.3. Algorithmic procedure of the proposed sailfish-cat optimization for attack detection  

The algorithmic procedure of the proposed SaCO for attack detection is meticulously outlined. This 

approach includes a series of systematic steps that illustrate its functionality and effectiveness. Each step 

provides a comprehensive understanding of the SaCO operation, supporting efficient attack detection. Refer 

to Table 1 for a complete list of notations and their descriptions used in the algorithmic procedure of the 

proposed sailfish-cat optimization for attack detection. 

 

 

Table 1. Notations and its descriptions 
Notations Description 

Bpos The positions of all sailfish 
Tpos The positions of all sardine 

Bfit Fitness value for each sailfish 
Tfit Fitness value for each sardine 

𝑍𝑒𝑙𝑖𝑡𝑒𝐵
𝑗

 Elite sailfish's 

𝑍𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑇
𝑗

 Injured Sardine 

𝑍𝜏+1
𝑗

 New location of sardine 𝑗 

𝑍𝜏
𝑗
 Current location of sardine 𝑗 

𝑄𝑠 Prey density 

BA Number of sailfish's attack power at every iteration 

𝑀𝐵 The number of the sailfish in every cycle 

𝑀𝑇 The number of the sardines in every cycle 

 

 

Step 1. Initialization of the population 

In the SFO scheme, sailfish are identified as potential candidates, where each sailfish's position in a 

search space represents a problem variable. Initially, a population of sailfish is randomly generated in the 

solution space. The position of the 𝑎th member of sailfish during the 𝑠th search in b dimensional space is 

defined as (3):  

 

𝐵𝑎,𝑠 ∈ 𝛸(𝑎 = 1,2, . . . , 𝑑) (3) 

 

where 𝑏 denotes the number of variables and 𝑑 represents the number of sailfish members. Matrix 𝐵𝑝𝑜𝑠 is 

utilized to store the positions of all sailfish, representing the variables of all solutions throughout the 

optimization process. 

 

Bpos = [

𝐵1,1 𝐵1,2

𝐵2,1 𝐵2,2

… 𝐵1,𝑏

… 𝐵2,𝑏

⋮ ⋮
𝐵𝑑,1 𝐵𝑑,2

⋮ ⋮
… 𝐵𝑑,𝑏

] (4) 

 

where 𝑑 indicates the number of sailfish, 𝑏 denotes the number of variables, and 𝐵𝑖,𝑗 represents the value of 

the jth dimension of the ith sailfish. The school of sardines is another important component in the SFO 

algorithm. It is assumed that the group of sardines also moves within the search space. Therefore, the 

positions of sardines and their corresponding fitness values are utilized as (5): 

 

𝑇𝑝𝑜𝑠 = [

𝑇1,1 𝑇1,2

𝑇2,1 𝑇2,2

… 𝑇1,𝑏

… 𝑇2,𝑏

⋮ ⋮
𝑇𝑒,1 𝑇𝑒,2

⋮ ⋮
… 𝑇𝑒,𝑏

] (5) 

 

where 𝑒 is the number of sardines and 𝑇𝑖,𝑗  denotes the value of the 𝑗th dimension of 𝑖th sardine. The 𝑇𝑝𝑜𝑠 

matrix signifies the position of all sardines.  

Step 2. Determination of fitness 

The fitness of each sailfish is determined by evaluating the fitness function as (6): 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 =  𝑓(𝐵1 , 𝐵2 , … , 𝐵𝑑) (6) 
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To assess each sailfish, the following matrix displays the fitness values for all solutions: 

 

Bfit =    

[
 
 
 
𝑓(𝐵1,1 𝐵1,2

𝑓(𝐵2,1 𝐵2,2

… 𝐵1,𝑏)

… 𝐵2,𝑏)

⋮ ⋮
𝑓(𝐵𝑑,1 𝐵𝑑,2

⋮ ⋮
… 𝐵𝑑,𝑏)]

 
 
 

    =     

[
 
 
 
𝐹𝐵1

𝐹𝐵2

⋮
𝐹𝐵𝑑]

 
 
 

 (7) 

 

In this scenario, 𝑑 represents the count of sailfish, 𝐵𝑖 , denotes the 𝑗th dimension value of the 𝑖th sailfish,  

𝑓 computes the fitness function, and 𝐵𝑓𝑖𝑡 records the fitness values representing the fitness or objective 

function outcome for each sailfish. The initial row of the 𝐵𝑝𝑜𝑠  matrix undergoes evaluation within the fitness 

function, and its result signifies the fitness value for the respective sailfish within the 𝐵𝑓𝑖𝑡 matrix. 

 

𝑇𝑓𝑖𝑡 =  

[
 
 
 
𝑓(𝑇1,1 𝑇1,2

𝑓(𝑇2,1 𝑇2,2

… 𝑇1,𝑏)

… 𝑇2,𝑏)

⋮ ⋮
𝑓(𝑇𝑒,1 𝑇𝑒,2

⋮ ⋮
… 𝑇𝑒,𝑏)]

 
 
 

   =    

[
 
 
 
𝐹𝑇1

𝐹𝑇2

⋮
𝐹𝑇𝑒]

 
 
 

 (8) 

 

where 𝑒 denotes the number of sardines, Ti,j represents the value of the 𝑗th dimension of the 𝑖th sardine, 𝑓 

signifies the objective function, and 𝑇𝑓𝑖𝑡  stores the fitness value for each sardine. It is important to note that 

sailfish and sardines are complementary elements in discovering solutions. In this algorithm, sailfish are the 

primary entities dispersed across the search space, while sardines collaborate to locate optimal positions 

within this domain. Specifically, sardines may be preyed upon by sailfish during exploration of the search 

space, prompting sailfish to update their positions upon discovering superior solutions. 

Step 3. Elitism  

The concept of elitism in the sail fish optimizer (SFO) involves preserving the optimal solution 

across generations without modification. In the context of group attacks where sailfish target sardines, the 

elite sailfish's position influences the acceleration and maneuvering of the group. Additionally, wounded 

sardines, marked in each cycle, become prime candidates for collaborative sailfish hunting. The injured 

sardine with the highest fitness at a particular iteration and the elite sailfish's coordinates are indicated as 

𝑍𝑒𝑙𝑖𝑡𝑒𝐵
𝑗

 and 𝑍𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑇
𝑗

. 

Step 4. Attack alternation strategy  

Sailfish predominantly engage in solo attacks on prey but can enhance their hunting success by 

coordinating attacks over time, adjusting their positions relative to other hunters despite no direct 

coordination. This behavior inspires the SFO, which mimics the sailfish's alternating attack strategy when 

hunting in groups. In SFO, each sardine adjusts its position based on the optimal location of sailfish and 

attack intensity to simulate this process effectively. 

 

𝑍𝜏+1
𝑗

= 𝑍𝑒𝑙𝑖𝑡𝑒𝐵
𝑗

 - β𝑗(𝑟𝑎𝑛𝑑(0,1))(
𝑍𝑒𝑙𝑖𝑡𝑒𝐵

𝑗
+ 𝑍𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑇

𝑗

2
)- 𝑍𝜏

𝑗
 (9) 

 

Hence, where 𝑍𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑇 
𝑗

denotes the position of harmed sardines, where 𝑍𝑒𝑙𝑖𝑡𝑒𝐵
𝑗

 denotes the location of elite 

sailfish, where 𝑟𝑎𝑛𝑑(0,1) denotes the random number between 0 and 1, and where βj denotes the coefficient 

at 𝑗th iteration. To achieve globally optimal solutions in attack detection, the CSO is incorporated into the 

algorithm. As a result, the CSO update equation is expressed as (10): 

 

𝑍𝑏𝑒𝑠𝑡 = 
𝑍𝜏

𝑗
(1+𝑎1𝑙1 )+𝑉𝜏+1

𝑗
− 𝑍𝜏+1

𝑗

𝑎1  𝑙1
 (10) 

 

The proposed SaCO's equation can be written as (11), 
 

𝑍𝜏+1
𝑗

= 
2𝑎1𝑙1

2𝑎1𝑙1 +2− 𝛽𝑗(𝑟𝑎𝑛𝑑(0,1)) 
 [

𝑍𝜏 
𝑗
(1+𝑎1𝑙1)+𝑉𝜏+1

𝑗

𝑎1𝑙1
(1 −

𝛽𝑗(𝑟𝑎𝑛𝑑(0,1))

2
) −

  
𝛽𝑗

2
 𝑟𝑎𝑛𝑑(0,1)𝑍𝑖𝑛𝑗𝑢𝑟𝑒𝑑𝑇 

𝑗
+ 𝛽𝑗𝑍𝜏

𝑗
] (11) 

 

where, 𝛽𝑗 = 2 ∗ 𝑟𝑎𝑛𝑑(0,1) ∗ 𝑄𝑠 − 𝑄𝑠 . Here, "prey density" 𝑄𝑠 refers to the quantity of prey at each iteration. 

When the sailfish reduce the amount of prey during group hunting, the 𝑄𝑠  is used to update the sailfish's 

location around the prey school. The formula for prey density is as (12): 
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 𝑄𝑠 = 1 − [
𝑀𝐵

𝑀𝐵 +𝑀𝑇]   (12) 

 

where, the terms 𝑀𝐵 and 𝑀𝑇 signifies the number of the sailfish and sardines in every cycle. 

Step 5. Pursuit and predation 

During the commencement of a hunt, both the sardines' adeptness at evasion and the sailfish's 

capacity for attack are typically at their zenith. Consequently, in the initial phase of the hunt, sailfish inflict 

wounds upon the sardines within the prey school without necessarily ensnaring them entirely. The impressive 

offensive capabilities of sailfish diminish the sardines' efficacy in escaping. These sailfish dynamically adapt 

their tactics as the sardines accrue injuries, ultimately resulting in a decrease in the prey's ability to evade 

attacks as the hunt progresses. Subsequently, the success rate of sailfish peaks. Consequently, each sardine 

adjusts its position utilizing a specific equation tailored to the evolving dynamics of the hunt. 

 

𝑍𝜏+1
𝑗

= S*(𝑍𝑒𝑙𝑖𝑡𝑒𝐵
𝑗

 - 𝑍𝜏
𝑗
+ 𝐵𝐴) (13) 

 

The symbols 𝑍𝜏+1
𝑗

 and 𝑍𝜏
𝑗
 denote the new and current location of sardine j respectively. The symbol 𝑆 refers 

to a random number ranging from 0 to 1. The symbol 𝑍𝑒𝑙𝑖𝑡𝑒𝐵
𝑗

 represents the optimal location of elite sailfish. 

𝐵𝐴 denotes the number of sailfish's attack power at every iteration, represented as (14), 

 

𝐵𝐴 = 𝐵 ∗ (1 − (2 ∗ 𝑖𝑡𝑛 ∗ η)) (14) 

 

Here, the coefficients 𝐵 and η represent factors that decrease the power of the attack value, and 𝑖𝑡𝑛 denotes 

the current iteration. The number of sardines that update their location during the last phase of the hunt is 

calculated using 𝐵𝐴 as (15), (16): 

 

μ = 𝑀𝑇 ∗ 𝐵𝐴 (15) 

 

λ = 𝑏𝑗 ∗ 𝐵𝐴 (16) 

 

Here, μ denotes the location of the sardine, while λ represents the number of variables associated with the 

sardines. The number of variables at iteration 𝑗 is represented as 𝑏𝑗, and 𝑀𝑇 denotes the number of sardines 

in each cycle. When the 𝐵𝐴 is less than 0.5, the sardines with μ variables are updated; however, if the 𝐵𝐴 is 

greater than or equal to 0.5, then the location of all sardines is updated. 

Step 6. Evaluate feasibility 

Equation (6) is used to calculate each search agent's fitness. The function that yields the best result is 

known as the optimum solution. While the value that is highest reflects an optimal fitness measure. 

Step 7. Termination 

Until the designated iteration is completed or an ideal solution is obtained, the previously indicated 

procedures continue. The implemented SaCO's pseudo code is provided by Algorithm 1 and flowchart of the 

proposed model is shown in Figure 5. 

 

Algorithm 1. Pseudo code of the developed model 
Input: Initial population of sailfish and sardine  

Output: Optimal solution (sailfish) 

Initialize the populations of sardine and sailfish, along with relevant parameters 

Compute the fitness of each individual in the population  

Determine the optimal sailfish and sardine based on their fitness 

while the stopping criteria are not met: 

      for each sailfish: 

               Compute the coefficient βj at the current iteration 

               Update the Sailfish Cat Optimization (SaCO) using equation (11) 

      end for 

      Compute the attack power BA based on equation (14) 

      if BA<0.5:  

              Compute μ based on equation (15)  

              Estimate λ based on equation (16) 

              Choose the sardine using the value of μ and λ 

              Update the location of the selected sardine using equation (13) 

      else 

              Update the location of all sardines using equation (13) 

      end if 

      Compute the fitness of all sardine 
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      if a better solution is found in the sardine population: 

            Update the optimal sailfish with the improved sardine 

            Eliminate the hunted sardine  

            Update best sailfish and sardine 

      end if 

end while 

Return the best sailfish as the optimal solution. 

End 

 

 

 
 

Figure 5. Flowchart of the developed model 

 

 

3. RESULTS AND DISCUSSION  

This section explores the results of the proposed attack detection strategy in the IoT-Fog context, 

providing details on the experimental setup and dataset description. The SaCO-based generative adversarial 

network is implemented using Python on a Windows 10 system with an Intel processor and 4 GB of RAM. 

The strategy utilizes the BoT-IoT database [28], encompassing a diverse array of normal and botnet traffic 

categorized in CSV, Argus, and PCAP formats, totaling over 72 million records. The dataset consists of 

PCAP files totaling up to 69.3 GB and CSV flow traffic data of 16.7 GB. It includes various types of attacks 

such as data exfiltration, denial of service (DoS), DDoS, service scan, keylogging, and OS attacks. 

 

3.1.  Comparative techniques 

Our proposed technique SaCO based GAN compared with k-neural network (KNN), support vector 

machine (SVM) [25], neural network (NN) [15], linear regression, deep convolutional neural network 

(DCNN) [16], and GAN [29], based on recall, precision and F-Measure evaluation metrics. Precision, recall, 

and F-measure are important metrics to determine algorithm performance because they collectively assess the 

accuracy in identifying attacks (precision), the completeness of attack detection (recall), and provide a 

balanced measure that considers both accuracy and comprehensiveness (F-measure), crucial for evaluating 

the effectiveness of security measures in IoT-Fog environments. 
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3.2.  Comparative analysis 

This section provides a detailed comparative analysis of the attack detection model in the IoT-Fog 

environment, focusing on three distinct types of attacks: backdoor attacks, fuzzers attacks, and DoS attacks. 

The performance evaluation of the proposed SaCO-based GAN method is assessed using metrics such as 

precision, recall, and F-measure.  

 

3.2.1. Analysis based on backdoor attack 

Figure 6 provides a comparative evaluation of the SaCO-based GAN method specifically developed 

for detecting backdoor attacks. In Figure 6(a), a comparison of recall is presented, revealing variations with 

changes in the percentage of training data. Specifically, with 70% training data, existing methods such as 

KNN, SVM, NN, linear regression, DCNN, GAN, and the developed SaCO-based GAN exhibit recall values 

of 83.41%, 83.73%, 83.79%, 85.23%, 85.67%, 86.73%, and 87.23%, respectively. Additionally, Figure 6(b) 

displays a comparative analysis of precision values across different percentages of training data. At a training 

data percentage of 70%, KNN, SVM, NN, linear regression, DCNN, GAN, and the developed SaCO-based 

GAN demonstrate precision values of 81.59%, 82.71%, 82.77%, 83.09%, 83.21%, 85.99%, and 87.85%, 

respectively. Furthermore, Figure 6(c) represents a comparative analysis of F-measure values with varying 

percentages of training data. The existing attack detection methods (KNN, SVM, NN, linear regression, 

DCNN, GAN) and the proposed SaCO-based GAN method achieve F-measure values of 82.08%, 82.27%, 

82.72%, 84.07%, 84.36%, 85.44%, and 87.07% when trained with 70% of the data. This emphasizes the 

balanced performance of the SaCO-based GAN in both recall and precision, highlighting its capability to 

effectively detect backdoor attacks across varying training data scenarios. In summary, Figure 6 demonstrates 

that the SaCO-based GAN method outperforms traditional methods in recall, precision, and F-measure when 

detecting backdoor attacks in IoT-Fog environment. The results underscore its potential as an advanced 

security solution for mitigating backdoor threats effectively. 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 6. Comparative analysis using backdoor attack (a) recall, (b) precision, and (c) F-measure 
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3.2.2. Analysis based on DoS attack 

Figure 7 provides a comparative analysis of the developed SaCO-based GAN method specifically for 

detecting DoS attacks. Figure 7(a), displays comparative analysis of recall by altering training data percentage. 

In 60% of training data, recall attained by existing methods, like KNN, SVM, NN, linear regression, DCNN and 

GAN and developed SaCO-based GAN are 82.68%, 82.98%, 83.09%, 84.46%, 84.90%, 85.90%, and 86.40%. 

Figure 7(b) displays comparative analysis of precision value by varying amount of training data percentage. 

When, training data=60%, precision value obtained by present KNN, SVM, NN, linear regression, DCNN and 

GAN methods and developed SaCO-based GAN method are 81.72%, 82.46%, 84.16%, 84.18%, 84.46%, 

84.75%, and 86.70%. Figure 7(c) represents comparative analysis of F-measure value by changing training data 

percentage. The existing attack detection methods, such as KNN, SVM, NN, linear regression, DCNN, and 

GAN and proposed SaCO-based GAN method obtained F-measure of 80.66%, 81.80%, 81.92%, 82.33%, 

83.53%, 83.93%, and 84.64% in 60% of training data. This underscores the SaCO-based GAN's balanced 

performance in recall and precision, further confirming its efficacy in detecting DoS attacks across various 

training data scenarios. In summary, the SaCO-based GAN method demonstrates superior performance in 

recall, precision, and F-measure compared to traditional methods, making it a robust solution for enhancing 

security against DoS attacks in IoT-Fog environments. 
 

 

  
(a) (b) 

 

 
(c) 

 

Figure 7. Comparative analysis using DoS attack (a) recall, (b) precision, and (c) F-measure 
 

 

3.2.2. Analysis based on fuzzers attack 

Figure 8 provides a detailed comparative evaluation of the SaCO-based GAN method specifically 

designed for detecting fuzzers attacks. In Figure 8(a), the analysis of recall is depicted, illustrating variations 

in training data percentage. Specifically, at a training data percentage of 80%, recall values obtained by 

existing methods, including KNN, SVM, NN, linear regression, DCNN, GAN, and the developed SaCO-

based GAN, are 87.75%, 88.08%, 88.15%, 89.65%, 90.10%, 91.2%, and 91.2%, respectively. Furthermore, 

Figure 8(b) provides a comparative analysis of precision values across different percentages of training data. 
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With a training data percentage of 80%, KNN, SVM, NN, linear regression, DCNN, GAN, and the developed 

SaCO-based GAN exhibit precision values of 83.66%, 85.04%, 86.14%, 86.59%, 88.92%, 89.13%, and 

80.25%, respectively. Additionally, Figure 8(c) represents a comparative analysis of F-measure values with 

varying percentages of training data. The existing attack detection methods (KNN, SVM, NN, linear 

regression, DCNN, GAN) and the proposed SaCO-based GAN method achieve F-measure values of 84.32%, 

84.87%, 85.80%, 86.95%, 88.21%, 88.64%, and 89.3% when trained with 80% of the data. This indicates 

that the SaCO-based GAN method not only excels in recall and precision but also provides a balanced 

performance in terms of F-measure, underscoring its effectiveness in detecting fuzzers attacks across varying 

training data scenarios. These results collectively emphasize the robustness and competitive edge of the 

SaCO-based GAN method in enhancing security measures against fuzzers attacks in IoT-Fog environment. 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 8. Comparative analysis using fuzzers attack (a) recall, (b) precision, and (c) F-measure 

 

 

3.2.  Comparative discussion 

Detailed comparison of the proposed SaCO-based GAN method with existing attack detection 

schemes, emphasizing recall, precision, and F-measure across different percentages of training data is 

presented in Table 2. Notably, the SaCO-based GAN achieves an outstanding recall of 92.15%, surpassing 

established methods such as KNN, SVM, NN, linear regression, DCNN, and GAN, which range from 

88.44% to 91.97%. Similarly, in terms of precision, where KNN, SVM, NN, linear regression, DCNN, and 

GAN range from 85% to 87.96%, the SaCO-based GAN excels with a precision value of 90.64%. Moreover, 

the F-measure results further underscore its effectiveness, with values ranging from 87.62% to 90.31% for 

existing methods compared to 91.78% achieved by the SaCO-based GAN. These results highlight the 

superior performance of the SaCO-based GAN method in accurately detecting attacks, demonstrating its 

potential for enhancing security in IoT-Fog environments. 
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Table 2. Comparative analysis 
Attack Metrics (%) KNN SVM NN Linear regression DCNN GAN SaCO-based GAN 

Backdoor Recall 88.44 88.78 88.82 90.37 90.82 91.97 92.15 
Precision 85 85.93 86.98 87.33 87.33 87.96 90.64 

F-Measure 87.62 88.29 88.53 88.76 89.11 90.31 91.78 

DoS Recall 90.34 90.68 90.76 92.15 92.15 92.15 92.17 
Precision 85.76 87.30 87.92 88.07 90.17 90.81 91.20 

F-Measure 88.18 89.47 89.83 91.28 91.88 92.14 92.15 

Fuzzers Recall 89.39 89.73 89.79 91.32 91.78 92.13 92.15 
Precision 86.6 86.86 87.11 88.21 90.38 91.03 91.20 

F-Measure 88.44 88.86 89.07 89.85 91.38 92.14 92.16 

 

 

4. CONCLUSION  

This research paper introduces a novel approach for detecting attacks in IoT-Fog environment using 

the SaCO-based GAN method. Authentication involves five entities accessing Ethereum smart contracts, 

where IoT device access is secured through access tokens, along with subsequent functions like hashing and 

encryption. Post-authentication, attack detection utilizes Minkowski distance for feature selection and 

integrates SaCO to optimize GAN parameters. The proposed method achieves impressive performance 

metrics with high recall, precision, and F-measure values of 92.15%, 91.21%, and 92.16%, respectively, 

demonstrating its effectiveness in identifying and mitigating attacks in IoT-Fog environment. 
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