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 This paper proposes an estimator-based single phase robustness variable 

structure load frequency controller (SPRVSLFC) for the multi-region 

interconnected power systems (MRIPS) with communication delays. The 
key attainments of this research consist of two missions: i) a global stability 

of the power systems is guaranteed by removing the reaching phase in 

traditional variable structure control (TVSC) technique; and ii) a novel 

output feedback load frequency controller is established based on the 
estimator tool and output information only. Initially, a single-phase switching 

function is constructed to disregard the reaching phase in TVSC. Then, an 

unmeasurable state variable of the MRIPS is estimated by using the proposed 

estimator tool. Next, a new SPRVSLFC for the MRIPS is suggested based on 
the support of the estimator tool and output data only. Furthermore, a 

sufficient constraint is constructed by retaining the linear matrix inequality 

(LMI) procedure for ensuring the robust stability of motion dynamics in 

sliding mode. Finally, the performance of interconnected power plant under 
changed multi-constraints is imitated with the novel control technique to 

validate the practicability of the plant. 
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1. INTRODUCTION  

Over the past three decades, there has been an increasing research consideration in variable structure 

control (VSC) implementation for power system control problems. The owing characteristics of VSC contain 

strong robustness in contradiction of uncertainties and perturbations, and computational easiness [1]–[3]. 

Owing to these benefits, VSC has been successfully implemented to solve the load frequency control (LFC) 

problems for the multi-region interconnected power systems (MRIPS) [4]–[7]. The LFC of a power plant is 

an important aspect of power quality. The frequency aberration and tie-line power aberration reach zero in 

changed control zones demarcated in a multi-region power networks [8], [9]. However, in practical LFC 

problems, time delays are common phenomena. Time delay existence can cause degradation and/or 

unstableness in plant performance [10]. Therefore, the time-delay electricity plant’s stability has been 

fascinating the attention of a huge amount of value researches issued in the most newly worldwide well-
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known journals [5], [6], [11]–[13] and the associated references therein. In practical electricity plants, the 

frequency aberration is produced by swelling real power request and the voltage as well is affected strongly 

by the reactive power’s deviation. To continue satisfying the real power requests, the load frequency desires 

to be regulated. There are numerous control techniques which have been suggested in establishing load 

frequency controllers with improved execution to keep the frequency and to maintain tie line power 

movements within described values such as [11], [14]–[16]. In [14], a fractional-order proportional integral 

(PI) controller is utilized in the control of a single zone delayed LFC plant. A novel delay-dependent robust 

method was investigated in [15] for investigation of proportional integral derivative (PID) type LFC designs 

seeing the time delays presented from the communication systems. Based on an event-triggered scheme, a  

T-S fuzzy controller was proposed to make certain that each subsystem was stable in the MRIPS and robust 

to exogenous perturbation, comprising frequency change and load variation [16]. By using the extended 

Kalman filter [11], a new type-2 fuzzy controller was established for the LFC in electricity plants with multi-

regions, request response, battery energy storage plant, and wind farms. However, these studies are very hard 

to govern the acceptable parameters of PID control in the existence of various uncertainties and external 

disturbances. These external perturbations and uncertainties may damage and even destroy the MRIPS 

designed on nominal models. It makes the PID controller’s dynamic performance to be moderately deprived 

with the large overshoot, extended setting time and fluctuation with the transient frequency.  

To solve these drawbacks, VSC technique is recently employed to design the load frequency 

controller for MRIPS. The application of VSC method in both single zone and multi-region power plants 

with time delays has been determined extensively during the literature survey such as in [4]–[6], [12], [17], 

[18]. In [17], a robust H∞ sliding mode LFC law and frequency stabilization was presented for multi-region 

electricity plant with time delay in presence of linear matrix inequalities. In [18], a new delay dependent 

decentralized sliding mode controller was synthesized for the multi-region LFC electricity plant with non-

linear delayed perturbations and time-varying delays by using the Lyapunov–Razumikhin approach. A 

switching control theory-based memoryless state-feedback control approach for the networked load 

frequency control in multi-region electricity plants [4]. In [5], H∞ method-based sliding mode LFC law 

scheme by integrating an artificial delay in the controller building for MRIPS. A decentralized disturbance 

estimator-based sliding mode LFC scheme was considered in [6] for multi-area interlinked electricity plants 

with external disturbances. By employing optimized integral sliding mode control scheme, a decentralized 

LFC was anticipated for the frequency control of multi-region electricity plants [12]. Regrettably, the state 

variables of many practical power systems are not always accessible or expensive to measure all of them. 

Then, it is necessary that the sliding mode predominates without the measurement of all state variables. To 

address these shortcomings, the authors in the researches [7], [13], [19] have employed the output feedback 

technique. In [19], a new super twisting sliding mode control law was constructed for controlling load 

frequency for an interconnected multi zone electricity plants. A novel super twisting sliding mode LFC was 

established in [13] for multi-zone interconnected electricity plants with time delays utilizing perturbation 

estimator. A novel LFC problem was solved for a multi-zone interconnected electricity plant with wind 

energy and electric automobiles [7]. Nevertheless, the existing MRIPS research are based on the TVSC 

scheme which only gives the wanted motion after sliding motion has happened. As a result, the overall 

stability of plant may not be guaranteed or hazardously corrupted [20], [21]. Thus, it is necessary to advance 

a novel VSC which does not include reaching phase to stabilize MRIPS for all time.  

Inspired by the above-mentioned investigation, this paper suggests a novel single phase robustness 

variable structure load frequency controller (SPRVSLFC) based on state estimator for the multi-region 

interconnected power systems (MRIPS) with communication delays. The objective of our research is to 

contribute to the advance of single-phase robustness variable structure control without reaching phase and 

performance analysis for the MRIPS. Firstly, a single-phase switching function is definitely proposed for 

MRIPS without reaching phase such that the robustness performance against exogenous disturbance is 

accurately guaranteed at the instance of moment. Secondly, a new estimator is intimated to guess the 

MRIPS’s variables which are not measured. Thirdly, based on estimated states from the estimator, a novel 

SPRVSLFC is investigated for MRIPS with communication delays without reaching phase. Further, by using 

linear matrix inequality (LMI) technique and Razumikhin–Lyapunov approach, sufficient constraint is 

determined for ensuring the robust stability of motion dynamics in sliding mode. Finally, simulation example 

is followed through on a three-region interconnected electricity plant to validate the usefulness of the 

anticipated control scheme. 

 

 

2. STATE SPACE FORM OF THE MULTI-REGION INTERCONNECTED POWER SYSTEM 

In this section, a FLC model of the MRIPS will be discussed in the time delay. The MRIPS 

comprises subsystem control areas where are interconnected through tie-lines [22]. The value 𝑑𝑖 shows the 
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small communication delay which can fluctuate from 0.1 to 1s with deliberation of two control zones. The 

dynamic equations of MRIPS with the time delay are given as (1): 

 

𝛥𝑓�̇�(𝑡) = −
1

𝑇𝑃𝑖

𝛥𝑓𝑖(𝑡) +
𝐾𝑃𝑖

𝑇𝑃𝑖

𝛥𝑃𝑡𝑖
(𝑡) −

𝐾𝑃𝑖

𝑇𝑃𝑖

𝛥𝑃𝑑𝑖
(𝑡) −

𝐾𝑃𝑖

𝑇𝑃𝑖

. 𝛥𝑃𝑡𝑖𝑒
𝑖𝑗

, 

𝛥�̇�𝑔𝑖
(𝑡) = −

1

𝑅𝑖𝑇𝐺𝑖

𝛥𝑓𝑖(𝑡) −
1

𝑇𝐺𝑖

. 𝛥𝑃𝑔𝑖
(𝑡) −

1

𝑇𝐺𝑖

𝛥𝐸𝑖(𝑡 − 𝑑𝑖) +
1

𝑇𝐺𝑖

𝑢𝑖(𝑡), 

𝛥�̇�𝑇𝑖
(𝑡) = −

1

𝑇𝑇𝑖

𝛥𝑃𝑇𝑖
(𝑡) +

1

𝑇𝑇𝑖

𝛥𝑃𝑔𝑖
(𝑡), 𝛥�̇�𝑖(𝑡) = 𝐾𝐵𝑖

𝐾𝐸𝑖
𝛥𝑓𝑖(𝑡) + 𝐾𝐸𝑖

𝛥𝑃𝑡𝑖𝑒
𝑖𝑗

, 

𝛥�̇�𝑡𝑖𝑒
𝑖𝑗

= ∑ 2𝜋𝑇𝑖𝑗
𝑁
𝑗=1,𝑗≠𝑖 [𝛥𝑓𝑖(𝑡) − 𝛥𝑓𝑗(𝑡)], 𝐴𝐶𝐸𝑖 = 𝛥𝑃𝑡𝑖𝑒𝑖

(𝑡) + 𝐸𝑖𝛥𝑓𝑖(𝑡), (1) 

 

where the area control error (𝐴𝐶𝐸𝑖) is the balance of the connected control areas. The MRIPS dynamics are 

determined above and it is proposed in the following state model: 

 

�̇�𝑖(𝑡) = 𝐴𝑖
/
𝑧𝑖(𝑡) + 𝐴𝑑𝑖

/
𝑧𝑖(𝑡 − 𝑑𝑖) + 𝐵𝑖

/
𝑢𝑖(𝑡) + ∑ 𝐺𝑖𝑗

/𝑁
𝑗=1,𝑗≠𝑖 𝑧𝑗(𝑡) + 𝜂𝑖(𝑧𝑖, 𝑡), 𝑦𝑖 = 𝐶𝑖

/
𝑧𝑖(𝑡), (2) 

 

where 𝑖 = 1,2. . . , 𝑁 and 𝑁 is symbolized as the amount of zones, the plant states are utilized as 𝑧𝑖(𝑡) =

[𝛥𝑓𝑖(𝑡) 𝛥𝑃𝑇𝑖
(𝑡) Δ𝑃𝑔𝑖

(𝑡) Δ𝐸𝑖(𝑡) 𝛥𝑃𝑡𝑖𝑒
𝑖𝑗

(𝑡)]𝑇 ∈ 𝑅𝑛𝑖 , the control signal of the plant is 𝑢𝑖(𝑡) ∈ 𝑅𝑚𝑖 , and the 

controlled output is 𝑦𝑖(𝑡) = 𝐴𝐶𝐸𝑖(𝑡) ∈ 𝑅𝑝𝑖 . The lumped uncertainty 𝜂𝑖(𝑧𝑖, 𝑡) = 𝛥𝐴𝑖
/
(𝑧𝑖, 𝑡)𝑧𝑖(𝑡) +

𝛥𝐴𝑑𝑖

/
(𝑧𝑖, 𝑡 − 𝑑𝑖) + 𝐵𝑖

/
𝜉𝑖(𝑧𝑖, 𝑡) + 𝛺𝑖𝛯𝑑𝑖

(𝑡), which is supposed to be unknown limit and to gratify the 

constraint ‖𝜂𝑖(𝑧𝑖, 𝑡)‖ ≤ 𝛾𝑖  and ‖�̇�𝑖(𝑧𝑖, 𝑡)‖ ≤ 𝜌𝑖  with 𝛾𝑖 , 𝜌𝑖 are acknowledged coefficients and ‖. ‖ is matrix 

norm. The matrices 𝐴𝑖
/
, 𝐴𝑑𝑖

/
, 𝐵𝑖

/
, and 𝐺𝑖𝑗

/
 are system matrices, 𝛥𝐴𝑖

/
(𝑧𝑖, 𝑡) and 𝛥𝐴𝑑𝑖

/
(𝑧𝑖 , 𝑡 − 𝑑𝑖) are the 

uncertainty parameters, and / ( , )i i iB z t  is the perturbation input signal. The constant matrices: 

 

𝐴𝑖
/
=

[
 
 
 
 
 
 
 
 
 
 
   −

1

𝑇𝑃𝑖

       
𝐾𝑃𝑖

𝑇𝑃𝑖

       0          0      −
𝐾𝑃𝑖

𝑇𝑃𝑖

      0       −
1

𝑇𝑇𝑖

      
1

𝑇𝑇𝑖

       0           0

−
1

𝑅𝑖𝑇𝐺𝑖

       0      −
1

𝑇𝐺𝑖

       0           0

   𝐾𝐸𝑖
𝐾𝐵𝑖

     0           0          0          𝐾𝐸𝑖
    

∑ 2𝜋𝑇𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

   0          0           0          0  
]
 
 
 
 
 
 
 
 
 
 
 

, 𝐴𝑑𝑖

/
=

[
 
 
 
 
 
0      0        0       0      0
0      0        0       0      0

0      0        0   −
1

𝑇𝐺𝑖

   0 

0      0        0        0      0 
0      0        0        0      0 ]

 
 
 
 
 

, 𝐵𝑖
/
=

[
 
 
 
 
 
 0  
 0  
1

𝑇𝐺𝑖

 0  
 0 ]

 
 
 
 
 

,  

 

𝐺𝑖𝑗
/

=

[
 
 
 
 
 
 
       0         0  0  0  0
       0         0  0  0  0
       0         0  0  0  0
       0         0  0  0  0 

∑ 2𝜋. 𝑇𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

 0  0  0  0
]
 
 
 
 
 
 

, 𝛺𝑖 = [−
𝐾𝑃𝑖

𝑇𝑃𝑖

  0  0  0  0]

𝑇

, 𝐶𝑖
/
= [0  0  𝐸𝑖  1  0]. 

 

 

3. MAIN RESULTS 

In this section, a new LFC signal will be proposed by using a novel estimator. A designed controller 

will keep the MRIPS’s state trajectory moving along the sliding surface from the zero-reaching time as our 

key contribution. 

 

3.1.  Constructing an estimator-based output feedback load frequency controller 

In practical power systems, several state variables cannot be measured, or the accessible 

measurement devices are very precious. For this reason, a dynamics estimator will be proposed for the multi-

region interconnected power systems as (3). 
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�̇̂�𝑖(𝑡) = 𝐴𝑖
/
�̂�𝑖(𝑡) + 𝐵𝑖

/
𝑢𝑖(𝑡) + 𝐴𝑑𝑖

/
�̂�𝑖(𝑡 − 𝑑𝑖) + ∑ 𝐺𝑖𝑗

/𝑁
𝑗=1,𝑗≠𝑖 �̂�𝑗(𝑡) + 𝑅𝑖[𝑦𝑖(𝑡) − �̂�𝑖(𝑡)], �̂� = 𝐶𝑖

/
�̂�𝑖(𝑡),  (3) 

 

where �̂�𝑖(𝑡) is the approximation of 𝑧𝑖(𝑡), �̂�𝑖(𝑡) is the output of the estimator, 𝑅𝑖 ∈ 𝑅𝑛𝑖×𝑝𝑖 is the estimator 

gain matrix. Now, the error between the states of real plant and estimated states are 𝜃𝑖(𝑡) = 𝑧𝑖(𝑡) − �̂�𝑖(𝑡). By 

relating the first (2) and the first equation of dynamics estimator (3), the leading error dynamics is 

pronounced by (4). 

 

�̇�𝑖(𝑡) = [𝐴𝑖
/
− 𝑅𝑖𝐶𝑖

/]𝜃𝑖(𝑡) + 𝐴𝑑𝑖

/
𝜃𝑖(𝑡 − 𝑑𝑖) + ∑ 𝐺𝑖𝑗

/𝑁
𝑗=1,𝑗≠𝑖 𝜃𝑗(𝑡) + 𝜂𝑖(�̂�𝑖, 𝑡) (4) 

 

Now, to design a variable structure controller, a novel load frequency controller using output information 

only is designed for the MRIPS. To do this, a new single phase sliding surface is built as (5). 

 

𝜎𝑖(𝑡) = 𝐵𝑖
/+

�̂�𝑖(𝑡) − 𝐵𝑖
/+

∫ (𝐴𝑖
/
− 𝐵𝑖

/
𝑆𝑖)�̂�𝑖

𝑡

0
(𝜏)𝑑𝜏 − 𝐵𝑖

/+
�̂�𝑖(0)𝑒−𝜀𝑖𝑡 , (5)  

 

where 𝐵𝑖
/+

= (𝐵𝑖
/𝑇

𝐵𝑖
/
)−1𝐵𝑖

/𝑇
∈ 𝑅𝑚𝑖×𝑛𝑖 is the Moore-Penrose pseudoinverse of the matrix 𝐵𝑖

/
, �̂�𝑖(0) is the 

initial condition of the estimator tool, and 𝜀𝑖 is the positive constant. The design matrix 𝑆𝑖 ∈ 𝑅𝑚𝑖×𝑛𝑖 is chosen 

to gratify the inequality of the electricity plant: 𝑅𝑒[𝜆𝑚𝑎𝑥(𝐴𝑖
/
− 𝐵𝑖

/
𝑆𝑖) < 0]. The time derivative of (5) with 

respect time and combine with the estimator (3) are calculated as (6). 

 

�̇�𝑖(𝑡) = 𝐵𝑖
/+

𝐵𝑖
/
𝑆𝑖 �̂�𝑖(𝑡) + 𝐵𝑖

/+
. 𝐵𝑖

/
𝑢𝑖(𝑡) + 𝐵𝑖

/+
𝐴𝑑𝑖

/
�̂�𝑖(𝑡 − 𝑑𝑖) + ∑ 𝐵𝑖

/+
𝐺𝑖𝑗

/

𝑁

𝑗=1,𝑗≠𝑖

�̂�𝑗(𝑡) 

           + 𝐵𝑖
/+

𝑅𝑖[𝑦𝑖(𝑡) − �̂�𝑖(𝑡)] + 𝜀𝑖𝐵𝑖
/+

�̂�𝑖(0)𝑒−𝜀𝑖𝑡. (6) 

  

To attain the stability of the multi-region electricity plants described in (2), a new single phase load 

frequency control signal is constructed as (7): 

 

𝑢𝑖(𝑡) = −(𝐵𝑖
/+

𝐵𝑖
/)

−1
{[‖𝐵𝑖

/+
𝐵𝑖

/
𝑆𝑖‖ + 𝑞𝑖 ‖𝐵𝑖

/+
𝐴𝑑𝑖

/ ‖] ‖�̂�𝑖(𝑡)‖ + ∑ ‖𝐵𝑗
/+

𝐺𝑗𝑖
/‖

𝑁

𝑗=1,𝑗≠𝑖

‖�̂�𝑖(𝑡)‖ 

            + ‖𝐵𝑖
/+

𝑅𝑖‖[‖𝑦𝑖(𝑡)‖ − ‖�̂�𝑖(𝑡)‖] + 𝛼𝑖‖𝜎𝑖(𝑡)‖ + 𝜀𝑖𝐵𝑖
/+

�̂�𝑖(0)𝑒−𝜀𝑖𝑡}𝑠𝑖𝑔𝑛(𝜎𝑖(𝑡)), (7) 

 

where 𝛼𝑖 are some positive scalars. 

Theorem 1. Regard the multi-region power systems with exogenous perturbations (2). Then, the MRIPS’s 

state variables will approach to the switching surface 𝜎𝑖(𝑡) = 0 from the instant process under the controller 

signal (7). The asymptotic stability of the multi-are electricity plant is ensured. 

Proof of Theorem 1. Consider the candidate Lyapunov functional as 𝑉(𝑡) = ∑ ‖𝜎𝑖(𝑡)‖
𝑁
𝑖=1 , where direct 

differentiation of 𝑉(𝑡) results  
 

�̇�(𝑡) ≤ ∑[‖𝐵𝑖
/+

𝐵𝑖
/
𝑆𝑖‖‖�̂�𝑖(𝑡)‖ +

𝜎𝑇
𝑖(𝑡)

‖𝜎𝑖(𝑡)‖
𝐵𝑖

/+
. 𝐵𝑖

/
𝑢𝑖(𝑡) + ‖𝐵𝑖

/+
𝐴𝑑𝑖

/ ‖‖�̂�𝑖(𝑡 − 𝑑𝑖)‖

𝑁

𝑖=1

 

            +∑ ‖𝐵𝑖
/+

𝐺𝑖𝑗
/ ‖𝑁

𝑗=1,𝑗≠𝑖 ‖�̂�𝑗(𝑡)‖ + ‖𝐵𝑖
/+

𝑅𝑖‖[‖𝑦𝑖(𝑡)‖ − ‖�̂�𝑖(𝑡)‖] + 𝜀𝑖𝐵𝑖
/+

�̂�𝑖(0)𝑒−𝜀𝑖𝑡]. (8) 

 

Since ∑ ‖𝐵𝑖
/+

𝐺𝑖𝑗
/ ‖𝑁

𝑗=1,𝑗≠𝑖 ‖�̂�𝑗(𝑡)‖ = ∑ ‖𝐵𝑗
/+

𝐺𝑗𝑖
/‖𝑁

𝑗=1,𝑗≠𝑖 ‖�̂�𝑖(𝑡)‖. By exploiting the Lemma 3 of the study [23], 

we get �̂�𝑖(𝑡 − 𝑑𝑖) ≤ 𝑞𝑖�̂�𝑖(𝑡), where 𝑞𝑖 > 1. From the (8), we can rewrite as 

 

�̇�(𝑡) ≤ ∑[‖𝐵𝑖
/+

𝐵𝑖
/
𝑆𝑖‖‖�̂�𝑖(𝑡)‖ +

𝜎𝑇
𝑖(𝑡)

‖𝜎𝑖(𝑡)‖
𝐵𝑖

/+
𝐵𝑖

/
𝑢𝑖(𝑡) + 𝑞𝑖 ‖𝐵𝑖

/+
𝐴𝑑𝑖

/ ‖‖�̂�𝑖(𝑡)‖

𝑁

𝑖=1

 

            +∑ ‖𝐵𝑗
/+

𝐺𝑗𝑖
/‖𝑁

𝑗=1,𝑗≠𝑖 ‖�̂�𝑖(𝑡)‖ + ‖𝐵𝑖
/+

𝑅𝑖‖[‖𝑦𝑖(𝑡)‖ − ‖�̂�𝑖(𝑡)‖] + 𝜀𝑖𝐵𝑖
/+

. �̂�𝑖(0)𝑒−𝜀𝑖𝑡]. (9) 

 

Now, by replacing the control law (7) into (9), we can realize that �̇�(𝑡) ≤ −∑ 𝛼𝑖 . ‖𝜎𝑖(𝑡)‖
𝑁
𝑖=1 < 0, 𝛼𝑖 is 

positive constant. Consequently, the MRIPS’s state variables reach the sliding surface from the zero-reaching 

time for all 𝑡 ≥ 0. Proof of Theorem 1 is ended. 
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3.2.   Power system stability analysis in single phase sliding mode 

In this part, the overall MRIPS’s asymptotic stability in the sliding mode will be confirmed by 

means of the renowned LMI approach, Schur complement method, and the Lyapunov function. 

Theorem 2. Regard the multi-region electricity plants with exogenous perturbations (2) and the switching 

surface 𝜎𝑖(𝑡) = 0. If there exist symmetric matrix 

 
 

[
 
 
 
 
 
 �̄�𝑖 + 𝑞𝑖�̄�𝑑𝑖

+ ∑ [𝛽𝑗(𝐺𝑗𝑖
/
− 𝛤𝑗𝐺𝑗𝑖

/
)𝑇(𝐺𝑗𝑖

/
− 𝛤𝑗𝐺𝑗𝑖

/
) + �̄�𝑖𝑃𝑖𝑃𝑖]   𝑃𝑖𝛷𝑖 + 𝑞𝑖𝑃𝑖𝛤𝑖𝐴𝑑𝑖

/
        𝑃𝑖    𝑃𝑖𝛹𝑖   0

𝑁
𝑗=1,𝑗≠𝑖

     𝛷𝑖
𝑇𝑃𝑖 + 𝑞𝑖(𝛤𝑖𝐴𝑑𝑖

/
)𝑇  𝑃𝑖�̄�𝑖 + 𝑞𝑖�̄�𝑑𝑖

+ ∑ [�̄�𝑗𝐺𝑗𝑖
/𝑇

𝛤𝑗
𝑇𝛤𝑗𝐺𝑗𝑖

/
+ �̃�𝑗𝐺𝑗𝑖

/𝑇
𝐺𝑗𝑖

/
+ �̃�𝑖

−1𝑄𝑖𝑄𝑖]
𝑁
𝑗=1,𝑗≠𝑖   0    0   𝑄𝑖

                      𝑃𝑖                                                                          0                                               − �̄�𝑖
−1    0     0

                    𝛹𝑖
𝑇𝑃𝑖                                                                       0                                                 0   − μ̃

𝑖
−1   0 

                      𝑄𝑖                                                                        0                                                  0      0  − μ
𝑖
−1

]
 
 
 
 
 
 

< 0 (10) 

 

where �̄�𝑖 = 𝑃𝑖(𝐴𝑖
/
− 𝐵𝑖

/
𝑆𝑖) + (𝐴𝑖

/
− 𝐵𝑖

/
𝑆𝑖)

𝑇𝑃𝑖 , �̄�𝑖 = 𝑄𝑖(𝐴𝑖
/
− 𝑅𝑖𝐶𝑖

/
) + (𝐴𝑖

/
− 𝑅𝑖𝐶𝑖

/
)𝑇𝑄𝑖 , �̄�𝑑𝑖

= 𝑃𝑖(𝐴𝑑𝑖

/
− 𝛤𝑖𝐴𝑑𝑖

/
) + 

(𝐴𝑑𝑖

/
− 𝛤𝑖𝐴𝑑𝑖

/
)𝑇𝑃𝑖 , Ψ̄𝑑𝑖

= 𝑄𝑖𝐴𝑑𝑖

/
+ (𝛤𝑖𝐴𝑑𝑖

/
)𝑇𝑄𝑖 , the scalars �̄�𝑖 = 𝛽𝑖

−1 + �̄�𝑖
−1 > 0, �̃�𝑖 = 𝜇𝑖

−1 + �̄�𝑖
−1 > 0, and 𝑃𝑖 , 𝑄𝑖 are 

any positive matrices, then the multi-region power system (2) guarantees the asymptotical stability. 

Proof of Theorem 2. By utilizing the switching surface, 𝜎𝑖(𝑡) = 0, �̇�𝑖(𝑡) = 0, we can realize that the 

equivalent control is showed as (11). 

 

𝑢𝑖
𝑒𝑞

(𝑡) = −(𝐵𝑖
/+

𝐵𝑖
/)

−1
{𝐵𝑖

/+
𝐵𝑖

/
𝑆𝑖 �̂�𝑖(𝑡) + 𝐵𝑖

/+
𝐴𝑑𝑖

/
�̂�𝑖(𝑡 − 𝑑𝑖) + ∑ 𝐵𝑖

/+
𝐺𝑖𝑗

/

𝑁

𝑗=1,𝑗≠𝑖

�̂�𝑗(𝑡) 

              + 𝐵𝑖
/+

𝑅𝑖[𝑦𝑖(𝑡) − �̂�𝑖(𝑡)] + 𝜀𝑖𝐵𝑖
/+

�̂�𝑖(0)𝑒−𝜀𝑖𝑡}. (11) 

 

By replacing (11) into the first equation of the electricity system (2), we have (12), 

 

�̇�𝑖(𝑡) = [𝐴𝑖
/
− 𝐵𝑖

/
𝑆𝑖]𝑧𝑖(𝑡) + 𝛷𝑖. 𝜃𝑖(𝑡) + [𝐴𝑑𝑖

/
− 𝛤𝑖𝐴𝑑𝑖

/ ] 𝑧𝑖(𝑡 − 𝑑𝑖) + 𝛤𝑖𝐴𝑑𝑖

/
𝜃𝑖(𝑡 − 𝑑𝑖) 

 

             + ∑ 𝛤𝑖𝐺𝑖𝑗
/𝑁

𝑗=1,𝑗≠𝑖 𝜃𝑗(𝑡) + ∑ (𝐺𝑖𝑗
/

− 𝛤𝑖𝐺𝑖𝑗
/ )𝑧𝑗(𝑡)

𝑁
𝑗=1,𝑗≠𝑖 + 𝛹𝑖𝑒

−𝜀𝑖𝑡 + 𝜂𝑖(𝑧𝑖 , 𝑡), (12) 

 

where 𝛷𝑖 = 𝐵𝑖
/
𝑆𝑖 − 𝐵𝑖

/
(𝐵𝑖

/+
𝐵𝑖

/
)−1𝐵𝑖

/+
𝑅𝑖𝐶𝑖, 𝛤𝑖 = 𝐵𝑖

/
(𝐵𝑖

/+
𝐵𝑖

/
)−1𝐵𝑖

/+
, and 𝛹𝑖 = −𝜀𝑖𝐵𝑖

/
(𝐵𝑖

/+
𝐵𝑖

/
)−1𝐵𝑖

/+
�̂�𝑖(0). The 

eigenvalue of (𝐴𝑖
/
− 𝐵𝑖

/
𝑆𝑖) is used to control the estimated system variables into the sliding surface (5). The 

sliding motion dynamics can be represented as (13). 

 

[
�̇�𝑖(𝑡)

�̇�𝑖(𝑡)
] = [

𝐴𝑖
/
− 𝐵𝑖

/
𝑆𝑖       Φ𝑖

      0         𝐴𝑖
/
− 𝑅𝑖𝐶𝑖

/
] [

𝑧𝑖(𝑡)
𝜃𝑖(𝑡)

] + [
𝐴𝑑𝑖

/
− 𝛤𝑖𝐴𝑑𝑖

/
  Γ𝑖𝐴𝑑𝑖

/

      0                 𝐴𝑑𝑖

/
] [

𝑧𝑖(𝑡 − 𝑑𝑖)
𝜃𝑖(𝑡 − 𝑑𝑖)

] 

 

                + ∑ [
𝐺𝑖𝑗

/
− 𝛤𝑖𝐺𝑖𝑗

/
    Γ𝑖𝐺𝑖𝑗

/

      0               𝐺𝑖𝑗
/

]𝑁
𝑗=1,𝑗≠𝑖 [

𝑧𝑗(𝑡)

𝜃𝑗(𝑡)
] + [

𝐼𝑖    Ψ𝑖

𝐼𝑖    0
] [

𝜂(𝑧𝑖, 𝑡)

𝑒−𝜀𝑖𝑡
]. (13) 

 

Now, to validate the stability of the electricity system dynamics, we regard the Lyapunov positive definition 

function 𝑉[𝑧𝑖(𝑡), 𝜃𝑖(𝑡)] = ∑ [
𝑧𝑖(𝑡)
𝜃𝑖(𝑡)

]
𝑇

[
𝑃𝑖    0
0    𝑄𝑖

] [
𝑧𝑖(𝑡)
𝜃𝑖(𝑡)

]𝑁
𝑖=1 , where the positive matrices 𝑃𝑖 and 𝑄𝑖  are defined by 

LMI (10). Then, by executing the derivative of 𝑉[𝑧𝑖(𝑡), 𝜃𝑖(𝑡)], combining (13), and using Lemma 3 of paper 

[23] and Lemma of work [24], we attain  

 

�̇�[𝑧𝑖(𝑡), 𝜃𝑖(𝑡)] ≤ ∑[
𝑧𝑖(𝑡)
𝜃𝑖(𝑡)

]
𝑇

[
𝛬1𝑖𝑗 + �̄�𝑖𝑃𝑖𝑃𝑖 + �̃�𝑖𝑃𝑖𝛹𝛹𝑖

𝑇𝑃𝑖    𝑃𝑖𝛷𝑖 + 𝑞𝑖𝑃𝑖𝛤𝑖𝐴𝑑𝑖

/

    𝛷𝑖
𝑇𝑃𝑖 + 𝑞𝑖 (𝛤𝑖𝐴𝑑𝑖

/
)
𝑇
𝑃𝑖          Λ2𝑖𝑗 + 𝜇𝑖𝑄𝑖𝑄

] [
𝑧𝑖(𝑡)
𝜃𝑖(𝑡)

]

𝑁

𝑖=1

 

+∑ [�̃�𝑖�̃�𝑖
2 + �̃�𝑖(𝑡)]

𝑁
𝑖=1 ,  (14) 

 

where𝛬1𝑖𝑗 = �̄�𝑖 + 𝑞𝑖�̄�𝑑𝑖
+ ∑ [𝛽𝑗(𝐺𝑗𝑖

/
− 𝛤𝑗𝐺𝑗𝑖

/
)𝑇(𝐺𝑗𝑖

/
− 𝛤𝑗𝐺𝑗𝑖

/
) + �̄�𝑖𝑃𝑖𝑃𝑖]

𝑁
𝑗=1,𝑗≠𝑖 , 𝛬2𝑖𝑗 = �̄�𝑖 + 𝑞𝑖�̄�𝑑𝑖

+ ∑ [�̄�𝑗𝐺𝑗𝑖
/𝑇

𝛤𝑗
𝑇𝛤𝑗𝐺𝑗𝑖

/𝑁
𝑗=1,𝑗≠𝑖  

+�̃�𝑗𝐺𝑗𝑖
/𝑇

𝐺𝑗𝑖
/
+ �̃�𝑖

−1𝑄𝑖𝑄𝑖], �̃�𝑖 = ‖𝜂𝑖(𝑧𝑖 , 𝑡)‖, and �̃�𝑖(𝑡) = �̃�𝑖
−1(𝑒−𝜀𝑖𝑡)𝑇𝑒−𝜀𝑖𝑡 . Then, applying well-known LMI 

technique [25] to inequality (14), we achieve 
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ϒ̃𝑖 = −[
𝛬1𝑖𝑗 + �̄�𝑖𝑃𝑖𝑃𝑖 + �̃�𝑖𝑃𝑖 . 𝛹𝛹𝑖

𝑇𝑃𝑖   𝑃𝑖𝛷𝑖 + 𝑞𝑖𝑃𝑖 . 𝛤𝑖𝐴𝑑𝑖

/

    𝛷𝑖
𝑇𝑃𝑖 + 𝑞𝑖 (𝛤𝑖𝐴𝑑𝑖

/
)

𝑇

𝑃𝑖        Λ2𝑖𝑗 + 𝜇𝑖𝑄𝑖𝑄𝑖

] > 0.        (15) 

 

According to the (14), (15), it can be seen that  

 

( ) 2 2
min

1

ˆ( ),  ( ) ( ) ( ) .
N

i i i i i i i
i

V z t t z t t −    
=

   + +      
       (16)  

 

The term �̃�𝑖(𝑡) in (16) will hit zero when the time reaches infinity. The equation (16) can be represented as 
2 2

min
1

ˆ[ ( ), ( )] [ ( ). ( ) ],
N

i i i i i i
i

V z t t z t −   
=

  +  where the constant value ( , )i i i i iz t   =  and the 

eigenvalue min ( ) 0.i   Consequently, [ ( ), ( )] 0i iV z t t   is attained with 
2

min

ˆ ( ) .
( )

i i
i

i

z t
 





 From 

now, the sliding motion dynamics (13) is asymptotically stable.  

 

 

4. SIMULATION TEST 

To attempt the usefulness and robustness of the suggested control approach, simulations are 

executed to verify the performance. In this section, the proposed suggestion has been carried out the three- 

region electricity systems gotten from [22]. The subsystem parameters are represented in Table 1. The 

external perturbations of three areas are respectively assumed as d1 = 0.01, d1 = 0.015, d1 = 0.02. The 

performance of the controller in these power systems are illustrated in Figure 1. 

 

 

Table 1. Parameters of three-region interconnected electricity plant 
Area 𝑇𝑝𝑖

 𝑇𝐺𝑖
 𝐾𝐸𝑖

 𝑇𝑇𝑖
 𝐾𝑝𝑖

 𝐾𝑇𝑖𝑗
 𝑅𝑖  𝐾𝐵𝑖

 

1 0.2×102 0.08 0.1×102 0.3 1.2×102 0.55 0.024×102 0.41 

2 0.25×102 0.072 0.09×102 0.33 11.25×102 0.65 0.027×102 0.37 

3 0.2×102 0.07 0.071×102 0.35 11.5×102 0.545 0.0025×102 0.4 

 

 

 
 

Figure 1. Time response of (a) the frequency deviations, (b) the load frequency controllers, and (c) the single-

phase sliding surfaces of three-area power systems with external disturbances 

 

 

From the aforementioned investigation of the achieved imitation results, it is clear to observe that 

the sliding mode occurs from the opening time moment (t = 0). Additionally, it can be specified that the 

improved robustness and the desired dynamic response of the MRIPS are attained by canning reaching phase 

that has reduced the limitations required in other studies [4], [7], [13]. Moreover, unlike the recent studies 

[5], [6], [12], the constructed technique does not require the accessibility of the state variables of the MRIPS. 

Consequently, this approach is very valuable and more realistic, since it can be effortlessly executed in many 

practical MRIPSs. 
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5. CONCLUSION 

This paper represents the novel estimator-based single phase robustness variable structure load 

frequency controller, which eliminates entirely the reaching phase and utilizes output data only, for the multi-

region interconnected power systems with communication delays. We have suggested the new single phase 

sliding function such that the reaching time is equivalent to zero and the MRIPS is insensitive the external 

perturbations. The estimator has been designed to estimate the immeasurable states for helping the load 

frequency controller strategy. The new SPRVSLFC for the MRIPS has been proposed by using the estimator 

tool and output information only. Improved robustness and the wanted dynamic response are achieved by the 

removal of the reaching phase that has reduced the limitations required in other study. Additionally, the 

sufficient condition has been given by using the LMI method such that the motion dynamics in sliding mode 

possess the possessions of asymptotical stability. Lastly, the simulated results of the three- region 

interconnected power system validate practicability, usefulness and robustness of the anticipated control 

scheme even in the existence of the external disturbances and the communication delays.  
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