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 Predictive maintenance contributes to Industry 4.0, as it enables a decrease 

in maintenance costs and downtime while aiming to increase production and 

return on investment. Despite the increasing utilization of machine learning 

techniques in predictive maintenance in industrial systems over the past few 

years, several challenges remain to be addressed in the implementation of 

ML, including the quality of the data collected, resource constraints, and 

equipment heterogeneity. This study proposes an adaptive framework for 

predictive maintenance in the context of Industry 4.0, specifically in internet 

of things (IoT) systems, using machine learning (ML) models. In particular, 

this study introduces PdM-FSA, a new framework based on an ensemble 

classifier that takes advantage of four widely adopted ML models in the 

predictive maintenance literature: random forest (RF), support vector 

machine (SVM), extreme gradient boosting (XGBoost), and k-nearest 

neighbors (KNN). The performance evaluation results showed that the  

PdM-FSA framework can perform well for predictive maintenance 

according to the severity of equipment malfunctions in a smart factory. The 

results of this study provide significant knowledge to researchers and 

practitioners on predictive maintenance in the context of Industry 4.0. and 

enables the optimization of processes and improves productivity. 
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1. INTRODUCTION 

The term “Industry 4.0” was introduced by the German National Academy of Science and 

Engineering in 2011 to describe the fourth industrial revolution, with people, machines, and industrial 

processes intelligently networked [1]. Many technologies drive Industry 4.0, such as artificial intelligence 

(AI), cloud computing, the internet of things (IoT), cyber-physical systems, edge computing, digital twins, 

and machine learning (ML) [2], [3]. Through these technologies, Industry 4.0 enables increased productivity 

and efficiency. It also leads to improved production processes, higher quality products, and greater 

sustainability. Additionally, it decreases product development costs and shortens lead times [4]. With the 

widespread use of sensing devices in smart factories, the amount of data generated by production equipment 

have increased exponentially. These data can be leveraged to provide useful information and gain insights 

https://creativecommons.org/licenses/by-sa/4.0/
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into manufacturing processes, production systems, and equipment. For instance, several studies using ML 

models in Industry 4.0 have been proposed to enable machines to learn from data and make valuable 

predictions to anticipate equipment malfunctions [5], [6]. Within the context of Industry 4.0, it is crucial to 

establish an accurate model for identifying potential machine failures and understanding their specific 

characteristics. This is primarily driven by the tenet that repairing or replacing an entire malfunctioning 

machine typically incurs significantly higher costs than replacing a single component.  

A good predictive maintenance-based policy enables a decrease in maintenance costs and downtime, 

and increases production and return on investment [7], [8]. Compared to preventive and corrective 

maintenance, predictive maintenance relies on historical data collected from sensors and analyzed using 

algorithms [9]. Although there has been increasing interest over the past few years in the application of ML 

to predictive maintenance in industrial systems, several challenges remain related to ML implementation, 

including the quality of the data collected (missing data, dataset size, and outliers), resource constraints, and 

equipment heterogeneity.  

Our analysis of the current state of predictive maintenance is based on related work from 2007 to 

2023, identified in various databases. Some limitations have been observed in previous studies on predictive 

maintenance in Industry 4.0, including low prediction accuracy, small sample sizes, poor data quality, and 

choice of ML models. To address these issues and accurately forecast equipment malfunctions, this study 

proposes PdM-FSA, a new framework based on an ensemble classifier that leverages four ML models widely 

used in the predictive maintenance literature: random forest (RF), support vector machine (SVM), extreme 

gradient boosting (XGBoost), and k-nearest neighbors (KNN). It adopts a soft voting strategy to combine the 

predictions from these individual models into a final prediction on whether predictive maintenance is needed, 

according to the severity of the equipment malfunction, which is classified into three categories: low, 

medium, and high. The PdM-FSA is designed to help prevent equipment malfunctions accurately by 

considering the severity of the faults. The problem addressed in this study is formulated in the context of a 

smart factory composed of various equipment that produce different goods, where sensors monitor the 

equipment to collect data for predictive maintenance using ML models. The performance of these models is 

closely related to various factors, such as the size and quality of the dataset, as well as the selection of the 

ML classifier. Therefore, the research problem involves proposing the right classifier for predictive 

maintenance that takes into account multiple criteria. 

ML in Industry 4.0 has explored various supervised and unsupervised learning models such as 

SVM, RF, artificial neural networks (ANN), KNN, decision trees (DT), and clustering techniques. However, 

many of these studies have limitations in prediction accuracy, handling large datasets, computational speed, 

sensitivity to noise and errors, and accounting for different fault severity scenarios. This study is one of the 

first to propose an adaptive predictive maintenance framework, referred to as PdM-FSA, that uses an 

ensemble classifier combining four widely adopted ML models, namely SVM, RF, KNN, and XGBoost. The 

novelty lies in leveraging an ensemble approach to improve prediction performance while also considering 

the severity of equipment malfunctions. The framework involves data collection, preparation, and model 

training/inference steps tailored for fault severity prediction in a smart factory IoT system.  

The subsequent sections of this paper are structured as follows. Section 2 provides a summary of 

some existing studies. The proposed framework is presented in section 3. The performance evaluation results 

are provided in section 4. Section 5 presents the conclusion, including a summary of key findings and 

directions for future work. 

 

 

2. RELATED WORK 

machine learning (ML) models are used in various domains, including healthcare, natural language 

processing, recommendation systems, transportation, and manufacturing, to improve efficiency, accuracy, 

and support decision-making. The use of machine learning in Industry 4.0 has introduced a number of 

benefits such as improving product quality and reducing costs through predictive maintenance. This section 

presents an overview of the existing ML-based solutions for predictive maintenance in Industry 4.0. 

Susto et al. [10] introduced an ML-based solution for predictive maintenance using multiple 

classifiers, namely SVM and KNN. These classifiers operate in parallel to identify integral-type faults and 

optimize the decision process in semiconductor manufacturing. Similarly, Arena et al. [11] proposed a novel 

decision support based on decision trees called classification and regression trees (CART) to identify the 

conditions under which predictive maintenance using machine learning is more economically profitable than 

corrective maintenance. The proposed solution helps assess various scenarios based on context-aware 

information, quality and maturity of collected data, severity, occurrence, and detectability of potential 

failures, as well as direct and indirect maintenance costs. Ouadah et al. [12] proposed a methodology for 

choosing a suitable supervised-learning algorithm for predictive maintenance. The authors performed a 
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comparative analysis of RF, DT, and KNN algorithms to identify the best algorithm based on criteria such as 

dataset size and prediction time. Paolanti et al. [13] proposed predictive maintenance architecture for a 

cutting machine, using RF. However, their approach did not investigate different fault scenarios or discuss 

the quality of the dataset. 

Çınar et al. [14] performed an extensive analysis of ML models applied in the predictive 

maintenance of industrial components, focusing on papers published from 2010 to 2020. They reported that 

predictive maintenance presents significant potential for market growth and that leveraging ML can offer an 

innovative approach to implementing such maintenance practices. Their findings showed that SVM, RF, and 

ANN are the most commonly used ML models. Additionally, they identified certain challenges in 

implementing ML algorithms for predictive maintenance in Industry 4.0, including the identification of the 

data to be collected and security concerns. 

Pagano [15] proposed a predictive maintenance model that uses a combination of long short-term 

memory (LSTM) neural networks and Bayesian inference in an industrial plant. Potential limitations of this 

study include noisy data, which may decrease the sensitivity of the model when they are very similar to each 

other. Abidi et al. [16] employed SVM and recurrent neural network (RNN) to develop predictive 

maintenance model using two datasets. However, their models were not optimized for large datasets and their 

computational speeds were relatively low.  

Amruthnath and Gupta [17] conducted a study to determine the most suitable unsupervised ML 

models for detecting faults in predictive maintenance using vibration data. They compared the PCA 𝑇2 

statistic, hierarchical clustering, k-means, fuzzy c-means clustering, and model-based clustering, based on 

their prediction accuracy, performance, and robustness. However, it should be noted that their investigation 

was limited to vibration data and the dataset used was relatively small. Alsina et al. [18] used ANN, SVM, 

RF, and soft computing methods to predict the reliability of 19 industrial components, and found that ML 

models outperformed traditional approaches when using large datasets.  

Carbery et al. [19] investigated the application of Bayesian networks (BN) for diagnosing and 

predicting faults in a large dataset from Bosch. A major drawback of using BN is its computational speed, 

particularly when handling large datasets. Samatas et al. [20] performed an extensive analysis of ML 

applications in predictive maintenance. Their study found that the production sector is the most dominant 

industry using predictive maintenance, with ANN, SVM, and RF being the most commonly used models. 

Teoh et al. [21] built a logistic regression model to predict manufacturing equipment health by using real 

industrial datasets. However, it should be noted that this model is ineffective for nonlinear classes.  

The study in [22] implemented a two-phase ML methodology to facilitate the proactive maintenance 

of low-voltage industrial motors. In the initial phase, three distinct ML models were employed to detect 

abnormal motor behavior: SVM, backpropagation neural network (BPNN), and RF. In the second phase, 

SVM was utilized as the most accurate predictive model for identifying individual motor faults that were 

detected in the first phase. However, one of the limitations of this study was the absence of comprehensive 

data encompassing every type of motor fault. Wu et al. [23] presented a prognostic approach for predicting 

tool wear using an RF-based method and compared the performance of RF with feed-forward back 

propagation (FFBP) ANN and support vector regression (SVR) using a dataset consisting of 315 milling 

tests. The results indicated that RF outperformed FFBP ANN with a single hidden layer and SVR in terms of 

prediction accuracy. 

Alhuqayl et al. [24] proposed a methodology to enhance predictive maintenance in industrial 

environments by integrating ML techniques with the industrial internet of things (IIoT). Their approach 

leveraged four distinct ML models namely RF regression, gradient boosting regression, SVM, and Elastic 

Net generalized linear models (GLM), to predict an asset’s remaining useful life (RUL) by utilizing a NASA 

dataset simulating engine deterioration across different operating conditions and failure modes. The authors 

highlighted the promising performance of the RF regression and gradient boosting regression models in 

handling complex fault modes and operating conditions. Although their study showed the potential of 

combining ML and IIoT for improving predictive maintenance strategies, enabling reduced downtime, cost 

savings, and enhanced operational efficiency in industrial settings, it does not provide a comprehensive 

comparison with existing predictive maintenance approaches or methodologies. 

In summary, several ML models have been proposed for predictive maintenance in Industry 4.0, 

with most relying on a supervised learning approach [25], [26]. This study is one of the first to propose an 

adaptive predictive maintenance framework in Industry 4.0, particularly in IoT systems, using an efficient 

ML-based model to predict when it is necessary to perform maintenance in a smart factory, based on the 

severity of equipment malfunction. Table 1 presents some recent related works on ML-based predictive 

maintenance, their strengths, weaknesses, and learning approaches. In summary, most of the supervised ML 

models share common weaknesses, including memory storage, learning and prediction speeds, and sensitivity 

to errors in large datasets. 
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Table 1. Summary of the related work on ML-based predictive maintenance in Industry 4.0 
References ML models Strengths Weaknesses Learning 

approach 

Arena et al. [11] DT Simple and easy to 

implement, visualize and 

interpret. 

Poor accuracy and 

inefficient to solve 

nonlinear problems. 

Supervised 

Ouadah et al. [12] RF, DT, and KNN Perform well with small 

datasets, predictions 

closest to reality.  

Costly and poor 

performance with large 

datasets for RF and DT. 

Supervised 

Paolanti et al. [13] RF Higher prediction 

accuracy.  

Require robust datasets. Supervised 

Wu et al. [23] RF Higher prediction 
accuracy.  

Require robust datasets. Supervised 

Çınar et al. [14] SVM, RF, and ANN Adapted for large datasets, 

handle with random, fuzzy 
and non-linear data. 

Require large datasets 

and have slow learning 
speed. 

Supervised 

Amruthnath 

and Gupta [17] 

PCA, Hierarchical 

clustering, k-means, fuzzy 
c-means, and model-based 

clustering 

Accurate prediction. The dataset is relatively 

small. 

Unsupervised 

Alsina et al. [18] ANN, SVMs, and RF Higher accuracy 
prediction.  

Require large datasets 
and have slow learning 

speed. 

Supervised 

Carbery et al. [19] BN Handle missing data.  Lower computational 
speed with large datasets. 

Supervised 

Nikfar et al. [22] BPNN, SVM, and RF Higher prediction 

accuracy.  

Lack of data, require 

large datasets. 

Supervised 

Kamat et al. [27] K-Means Less computational time.  Sensitivity to the initial 

placement of the cluster 

centroids and outliers. 

Unsupervised 

Bekar et al. 

[28] 

K-Means Easy and simple to 

implement, efficient and 

flexible.  

Sensitivity to the initial 

placement of the cluster 

centroids and outliers. 

Unsupervised 

 

 

3. METHOD 

3.1.   Problem formulation 

The research problem was formulated in the context of a smart factory composed of various pieces 

of equipment that produce different goods. These pieces of equipment are monitored by sensors to evaluate 

process performance and machine operations. During operation, the sensors collect data for predictive 

maintenance using ML models. However, the performance of these models is closely related to several 

parameters, including the size and quality of the dataset, and the type of ML classifier employed. Therefore, 

the research problem involves proposing the most suitable classifier for predictive maintenance based on 

multiple criteria. 

 

3.2.  Description of the proposed framework 

The main goal of the proposed framework is to provide an efficient ML-based model to adaptively 

predict when it is necessary to perform predictive maintenance in a smart factory according to the severity of 

equipment malfunction. The proposed framework involves four steps: i) dataset collection, ii) dataset 

splitting, iii) data preparation, and iv) model training and inference. Figure 1 presents a high-level overview 

of the proposed predictive maintenance framework. 

 

3.2.1. Dataset collection 

This step involves collecting data from smart-factory equipment using sensors. The collected data 

include historical data that allow the prediction of necessary maintenance tasks. For the empirical study, we 

used the AI4I 2020 predictive maintenance dataset, which is a synthetic dataset that represents the real 

predictive maintenance data that exists in the industry [29]. Table 2 presents the statistics of the dataset. 

 

3.2.2. Dataset splitting 

In this step, the dataset is divided into three subsets (datasets 1, 2, and 3) according to the type of 

failure to devise predictive models that will allow the prediction of whether it is necessary to perform 

predictive maintenance according to the severity of malfunctioning. Datasets 1, 2, and 3 corresponded to 

lower, medium, and higher failures, respectively. Dataset 1 consists of 6,000 data points, dataset 2 consists of 

2,997 data points, and dataset 3 consists of 1,003 data points. 
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Figure 1. Framework for predictive maintenance 

 

 

Table 2. Statistics of the dataset 
 Air 

temperature [K] 

Process 

temperature [K] 

Rotational 

speed [rpm] 

Torque 

[Nm] 

Tool wear 

[min] 

Machine 

failure 

count 10,000 10,000 10,000 10,000 10,000 10,000 

mean 300 310 1538.8 40 108 0.03 
std 2 1.5 179.3 10 63.7 0.18 

min 295.3 305.7 1168 3.8 0 0 

25% 298.3 308.8 1423 33.2 53 0 
50% 300.1 310.1 1503 40.1 108 0 

75% 301.5 311.1 1612 46.8 162 0 

max 304.5 313.8 2886 76.6 253 1 
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3.2.3. Data preparation 

In this step, different actions were performed to ensure that the datasets did not contain missing or 

invalid values, outliers, or improperly formatted data. The different actions performed include: i) data 

cleaning to remove missing values; ii) statistical analysis; iii) outlier identification and removal, and 

iv) features engineering. This produces well-curated data for training an accurate model for efficient 

predictive maintenance.  

 

3.2.4. Model training and inference 

In this step, based on a set of criteria (sample size, explainability, and training cost), some widely 

used models in predictive maintenance literature were used. These models include SVM, RF, KNN, and 

XGBoost ML [12], [14]. The specific uses of each model are described below: 

− SVM is a supervised learning model used for classification or regression tasks. The SVM finds the 

optimal hyperplane for regression tasks by using the ε-insensitive loss function, which ignores errors 

within a certain margin. To perform well, SVM models require some hyperparameters tuning, including 

the C regularization parameter and gamma (the kernel coefficient). 

− RF is a supervised learning model used to perform classification or regression tasks. The RF builds 

multiple decision trees and combines their predictions to improve accuracy and reduce overfitting. It 

operates by constructing multiple trees during training and outputting the mean prediction of the 

individual trees. 

− KNN is another type of supervised learning model used both for classification and regression. The 

classification or prediction of the grouping of individual data points is determinated based on their 

proximity [30]. To perform well, it is necessary to define the best value for the number of neighbors 

(n_neighbors), which is a hyperparameter of KNN. 

− XGBoost is a supervised learning model designed for ML tasks that requires high accuracy and speed 

[31]. It is based on decision trees and can be applied solving both classification and regression modeling 

problems. To run XGBoost, it is necessary to define three types of parameters: general, booster, and task. 

To devise an accurate and robust classifier for predictive maintenance, we leverage an ensemble 

learning model. This ensemble learning model encompasses two or more classifiers to produce the optimal 

predictive model. In this study, we considered these models to build an ensemble ML model. In this study, a 

soft voting strategy was adopted. A soft voting strategy combines multiple classifiers to make a final 

prediction based on the weighted average of the individual predictions. It considers the confidence scores or 

probabilities assigned by each base model to each class, averages the probabilities, and predicts the class with 

the highest average probability. This strategy is particularly useful when individual models in the ensemble 

learning model provide probability estimates for their predictions. Soft voting enhances the overall accuracy 

and robustness of an ensemble model by considering the confidence of each model in its prediction. Figure 2 

illustrates the ensemble learning process used to infer the condition of the equipment for performing 

predictive maintenance. 

In summary, the key methodological aspects covered in this study include: data preprocessing and 

feature engineering (section 3.2), model selection and training (section 3.2), ensemble model creation using 

soft voting (section 3.2), performance evaluation metrics (section 4.2), permutation feature importance 

analysis (section 4.3), and a systematic split of the data by fault severity levels (section 3.2). Sufficient details 

are provided to enable reproduction of this work. Algorithm 1 presents the steps involved in designing the 

proposed ensemble-learning model for fault prediction in a smart factory. 

 

Algorithm 1. Training of a predictive maintenance classifier 
Input: D ▷ historical data for predictive maintenance 

            C = {C₁, C₂, ..., Cₙ}       ▷ base level classifier 
Output: failure prediction (0 or 1) 

split D into {D₁, D₂, ..., Dₙ} ▷ Splitting is done based on the type of failure 
for each dataset in {D₁, D₂, ..., Dₙ} do 
remove irrelevant features 

if dataset has outlier then 

scale data using Robust scaler 

      else 

normalize features between 0 and 1 

endif 

if dataset is imbalanced then 

          resample the dataset 

      endif 

      Train a Meta level classifier based on C 

endif 
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Figure 2. Predictive maintenance based on ensemble learning 

 

 

4. RESULTS AND DISCUSSION 

4.1.   Settings of the empirical study 

In this empirical study, the classifiers were trained using features extracted from the AI4I 2020 

predictive maintenance dataset using Python libraries. During training, hyperparameters were optimized to 

obtain the most accurate classifier for predicting whether predictive maintenance is required. Table 3 

provides the information on the environment used in this study. 

 

 

Table 3. The environment of the empirical study 
Parameter Value 

OS Windows 10 

CPU Intel Core i7-7500U 
RAM 8 Go 

Libraries sklearn, imblearn, xgboost, numpy, pandas 

 

 

4.2.  Criteria for performance evaluation 

 To evaluate the performance of the proposed framework, we considered a number of well-known 

metrics. These include accuracy, precision, F1 score and Gmean. These metrics are defined as follows: 

− Accuracy: Accuracy, as defined by the international vocabulary of metrology (VIM) in [32], is the degree 

of agreement between a measured quantity value and an actual quantity value of a measurand. This allows 

for the assessment of the performance of a model on a given dataset. 

− Precision: This criterion helps evaluate the ration of true positives to the total number of positives 

predicted by the model.  

− F1 score: this criterion refers to the harmonic mean of precision and recall. The optimal value of the F1 

score is 1, whereas the worst value corresponds to 0. 

− Gmean: This criterion is useful for evaluating the balance between the classification performance in both 

majority and minority classes. The best value of Gmean is 1 and its worst value is 0. 

 

4.3.  Evaluation of the results 

The performance of the different models considered in this study was evaluated. Table 4 presents 

the results obtained when evaluating the models based on dataset 1 (lower failures). It can be observed that 

the ensemble classifier (Voting model) provided marginally better results than the other classifiers. 

Table 5 presents the results obtained when evaluating the models based on dataset 2 (medium 

failures). It was observed that the performance of the ensemble classifier was less to that of the XGBoost 

classifier. Nevertheless, the ensemble classifier (voting model) is somewhat immune to the incorrect 
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prediction of bad models because we adopted a soft voting strategy. Table 6 presents the results obtained 

when evaluating the models based on dataset 3 (higher failures). These results showed that the ensemble 

classifier (voting model) provides performance similar to that of the XGBoost classifier. 

 

 

Table 4. Performance evaluation for ML models based on dataset 1 (Lower failures) 
 Accuracy Precision F1 score Gmean 

SVM 0.945000 0.968570 0.953573 0.884098 

RF 0.973333 0.976446 0.974588 0.876311 
KNN 0.931111 0.964717 0.943638 0.863228 

XGBoost 0.972778 0.977472 0.974539 0.897634 

Voting 0.973889 0.977589 0.975320 0.891031 

 

 

Table 5. Performance evaluation for ML models based on dataset 2 (medium failures) 
 Accuracy Precision F1 score Gmean 

SVM 0.956667 0.976659 0.964568 0.837411 

RF 0.961111 0.972179 0.965887 0.730926 
KNN 0.923333 0.972020 0.943390 0.796952 

XGBoost 0.966667 0.976029 0.970556 0.789400 

Voting 0.965556 0.974485 0.969355 0.761328 

 

 

Table 6. Performance evaluation for ML models based on dataset 3 (higher failures) 
 Accuracy Precision F1 score Gmean 

SVM 0.920266 0.959601 0.937895 0.599000 
RF 0.940199 0.956869 0.948045 0.502760 

KNN 0.850498 0.960575 0.897645 0.658322 

XGBoost 0.943522 0.961720 0.951775 0.607015 
Voting 0.943522 0.961720 0.951775 0.607015 

 

 

Overall, the proposed ensemble classifiers for different categories of predictive maintenance 

performed well. This performance can also be observed in the confidence interval, which indicates the degree 

of accuracy of the prediction. Figures 3, 4, and 5 show the 95% confidence intervals for the ensemble 

classifier for datasets 1 to 3. 

However, the accuracy of a predictive model is tied to its input features. To understand how each 

feature contributes to the prediction of equipment malfunction, we considered the permutation feature 

importance scores. Figure 6 presents the permutation feature importance scores of the proposed voting 

classifiers for dataset 1, Figure 7 for dataset 2, and Figure 8 for dataset 3. These results suggest that the 

number of features during the training can be further reduced. 

 

 

 
 

Figure 3. Plot Predicted vs real values with confidence interval - dataset 1 
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Figure 4. Plot Predicted vs real values with confidence interval - dataset 2 

 

 

 
 

Figure 5. Plot Predicted vs real values with confidence interval - dataset 3 

 

 

 
 

Figure 6. Bar chart of voting classifier with permutation feature importance scores - dataset 1 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 7211-7223 

7220 

 
 

Figure 7. Bar chart of voting classifier with permutation feature importance scores - dataset 2 

 

 

 
 

Figure 8. Bar chart of voting classifier with permutation feature importance scores - dataset 3 

 

 

4.4.   Limitations of the study 

Limitations are external factors or deficiencies that are beyond the control of researchers and impose 

restrictions on the technique and processing of study data [33]. This section discusses the constraints 

associated with the representativeness of the dataset and any potential biases. Although the proposed  

PdM-FSA framework showed promising results on the AI4I 2020 Predictive Maintenance dataset, it is 

important to take into account certain limitations. This AI4I 2020 dataset is a synthetic dataset designed to 

represent the real-world predictive maintenance data. However, as a synthetic dataset, they may not fully 

capture the complexities and nuances of real-world industrial data. Manufacturing environments can be 

highly diverse, with variations across different facilities, equipment types, operating conditions, and data 

collection procedures. The patterns and characteristics present in the synthetic dataset may not be 

representative of all the possible real-world scenarios. This could limit the generalizability of trained models 

when deployed in certain manufacturing settings. 

 

 

5. CONCLUSION  

 This study aimed to address the problem of maintenance in a smart factory by proposing an adaptive 

predictive maintenance framework in Industry 4.0, specifically in IoT systems, using machine learning 

models. This research problem involves proposing the right classifier for predictive maintenance based on 
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multiple criteria. Therefore, this study introduced ensemble classifiers based on four ML models that are 

widely used in predictive maintenance: SVM, RF, KNN, and XGBoost. The classifiers proposed in this study 

aimed to accurately detect equipment malfunctions in a smart factory based on their severity. To achieve this, 

we used the AI4I 2020 predictive maintenance dataset and performed data preparation prior to training our 

classifiers.  

The Voting model outperformed the SVM, RF, KNN, and XGBoost models with regard to the four 

criteria based on dataset 1 (lower failures). The XGBoost model slightly outperformed the Voting model 

based on dataset 2 (medium failures). The Voting model presented a similar performance to that of the 

XGBoost model based on dataset 3 (higher failures). The results of the performance evaluation showed that 

our classifiers performed well with an accuracy of over 90%. This indicates that these classifiers can be 

considered for deployment in a smart factory for predictive maintenance.  

The study’s findings provide useful insights regarding predictive maintenance in Industry 4.0. and 

enable the optimization of processes and improve productivity. Furthermore, the findings suggest that the 

performance of the proposed framework can be improved further by reducing the number of features during 

training. In future research, we plan to reduce the number of features and deploy and evaluate the proposed 

framework in a real environment. Moreover, we plan to evaluate the performance of the framework on 

diverse real-world datasets from multiple manufacturing facilities and equipment types. Additionally, 

techniques such as domain adaptation, transfer learning, and continual learning can be explored to enhance 

the models’ capacity for adapting to new data distributions and mitigate potential biases. 
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