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 The widespread adoption of internet of things (IoT) devices has brought 

about unprecedented levels of connectivity and convenience. However, it 

has also introduced significant challenges, particularly in the areas of 

security and privacy. This study addresses the critical issue of intrusion 

detection within IoT environments, with a specific focus on analyzing the 

Iot-23 dataset. Our methodology involves employing principal component 

analysis (PCA) and kernel PCA for dimensionality reduction. Subsequently, 

we utilize the k-nearest neighbors (KNN) algorithm for classification 

purposes. To optimize the performance of the KNN algorithm, we 

experiment with various feature scaling techniques, such as StandardScaler, 

MinMaxScaler, and RobustScaler, utilizing different distance metrics. In our 

analysis, we discovered that employing the cosine distance metric in 

combination with KNN resulted in superior intrusion detection performance 

when utilizing PCA. Additionally, when utilizing kernel PCA, we evaluated 

multiple kernel functions and determined that the radial basis function and 

sigmoid kernel yielded the most favorable results. 

Keywords: 

Cosine distance 

Internet of things  

Intrusion detection systems  

Kernel principal component 

analysis 

K-nearest neighbors 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Zyad Elkhadir 

SIGL Research Laboratory, National School of Applied Sciences of Tetouan (ENSATE), Abdelmalek 

Essaadi University 

Tetouan, Morocco 

Email: z.elkhadir@uae.ac.ma 

 

 

1. INTRODUCTION 

Internet of things (IoT) is considered as an important connected devices environment where many 

intelligent solutions could be developed from smart cities to military applications [1]–[8] and many other 

sectors [9]. With the escalating number of connected devices worldwide, multiple sensors are employed to 

enable the remote collection of real-time data from physical objects. The latter serves as a foundation for 

constructing intelligent decision-making algorithms and efficiently managing IoT environments. However, 

the widespread utilization of real-world devices introduces heightened vulnerabilities to cybersecurity threats.  

Malicious devices have the potential to surreptitiously monitor individuals, remotely alter traffic 

signals, and destabilize networks [10]. Noteworthy real-time attacks include distributed denial of service 

(DDoS) [11], the Mirai botnet [12] and denial of service (DoS) [13] orchestrated by botnet creators who may 

also provide mitigation services for a fee charged to the victim. The protection of IoT devices against such 

intrusions holds paramount importance in the realm of security. There is a growing imperative to undertake 

necessary measures to ensure both physical and cybersecurity against these potent attacks. Consequently, a 

thorough examination of networks using intrusion detection systems (IDS) has become indispensable. 

https://creativecommons.org/licenses/by-sa/4.0/
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Maintaining a high anomaly-based IDS accuracy is challenging due to the high dimensional network 

structures with many useless information. To augment it efficacy, researchers employ many feature 

extraction methods to obtain just the valuable data. The latter will help the IDS in classifying the network 

connections. 

Many articles [14]–[17] used principal component analysis (PCA) variant with IDS in various non-

IoT networks and showed good results. Recent studies have utilized as a feature extraction PCA with  

k-nearest neighbors (KNN) classifiers to improve IDS accuracy in IoT environments. For instance, the work 

[18] built an IDS using PCA and a genetic algorithm (GA) before employing a KNN classifier to enhance 

IDS accuracy. Dash et al. [19] proposed two approaches, one utilizing PCA and another without PCA, to 

compare their performance, demonstrating a noteworthy improvement in DDoS attack detection accuracy in 

IoT devices by integrating PCA and RobustScaler. Similarly, Abdaljabar et al. [20] combined K-NN and 

decision tree classifiers to achieve outstanding results in IDS performance metrics. However, these 

approaches primarily employed PCA/KNN with Euclidean distance and did not explore the efficiency of 

other distances such as Manhattan, Minkowski, Chebyshev, cosine similarity, hamming, Jaccard similarity, 

and correlation-based distances. Each of these metrics has its strengths and may be more suitable for specific 

data types or patterns within IoT networks. 

Few other studies have employed the non-linear version of PCA, namely kernel PCA (KPCA), to 

improve IDS performance in IoT environments. For example, the study [21] combined KPCA for feature 

extraction and CNN for attack recognition and classification, demonstrating the effectiveness of this 

approach using bench-mark datasets. Similarly, Yang et al. [22] proposed a feature engineering model 

incorporating KPCA, and the work [23] utilized KPCA for feature extraction from biometric data in IoT-

based smart buildings. However, most KPCA implementations predominantly utilize the radial basis function 

(RBF) kernel, without thoroughly exploring the potential benefits of other kernel functions such as 

polynomial and sigmoid kernels. 

This paper focuses on several critical areas of study. First, we examine how various distance metrics 

impact the performance of the KNN classifier and PCA in IDS for IoT security. Next, we provide a 

comparative analysis of kernel PCA, utilizing different kernel functions, against traditional PCA. The rest of 

the paper is arranged in the following manner: Section 2 details the proposed IDS framework. Section 3 

presents and discusses the experimental results. Finally, Section 4 summarizes the key findings. 

 

 

2. METHOD  

The proposed IDS, as depicted in Figure 1, consists of two main phases: the training phase and the 

testing phase. In the initial phase, data is collected from three devices, followed by data preprocessing 

procedure, which involves cleaning the data and replacing missing values. Subsequently, the processed data 

undergoes scaling methods, including standard, min-max, and RobustScalers, discussed extensively in 

Section 2.2 to ensure that all features are comparably scaled, preventing any individual feature from 

dominating solely based on its magnitude. 

 

 

 
 

Figure 1. The proposed IDS model 
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Following scaling, principal component PCA or kernel KPCA is applied to the resulting data to 

extract the axes (PCs) of the reduced space and generate training data with reduced features, more details 

about PCA and KPCA are given in subsection 2.3. In the classification or testing phase, data is collected 

from the same devices, and identical preprocessing and scaling techniques are applied as in the training 

phase. The resulting data is then projected onto the reduced space using the PCs. Finally, the obtained testing 

data is compared to the training data in the same reduced space using the KNN algorithm to classify normal 

and malicious data. Subsection 2.4. gives an overview about KNN and the employed distances. 

 

2.1.  Dataset 

The dataset utilized in this study was sourced from [24], known as the IoT-23 dataset, it contains 

real and labeled instances of IoT malware infections alongside normal traffic. The 23 captures are 

constructing the dataset and organized as 3 normal captures and 20 malicious captures. Every capture from 

corrupted devices is labeled with a corresponding malware sample executed. Due to the vast size of the 

dataset, a decision was made to retain a small part of connections from each individual dataset and 

subsequently merge them into a novel dataset. This manipulation was undertaken to ensure that our 

computational resources could efficiently manage the workload of the novel dataset and simultaneously 

extracting the most of attack types present within the initial IoT-23 dataset. 

Initially, the Python library Pandas was employed to individually load all 23 datasets from the IoT-

23 dataset into data frames. A condition was applied to skip the first 10 rows and read the subsequent one 

hundred thousand rows. Subsequently, these 23 data frames were consolidated into a single data frame. 

Missing values were replaced with 0. Finally, the combined dataset was generated and saved as the 

“iot23combined.csv” file. The resulting “iot23combined.csv” file comprises a total of 1,444,674 records. It 

encompasses 10 types of attacks. 

 

2.2.  Scaling techniques 

In the domain of data preprocessing for machine learning, scaling techniques are instrumental in 

enhancing the robustness and efficacy of predictive models. Three commonly utilized scalers are 

StandardScaler, MinMaxScaler, and RobustScaler. StandardScaler: this scaler standardizes the features by 

subtracting the mean (µ) and dividing by the standard deviation (σ). 

 

Standardized Feature =
Feature − 𝜇

𝜎
 

 

It is particularly effective when features exhibit different scales, ensuring that each feature contributes 

equally to the model. The transformed data has a mean of zero and a standard deviation of one 

MinMaxScaler: MinMaxScaler scales the features to a specified range, typically between 0 and 1, using the 

following formula: 

 

Scaled Feature =
Feature − min(Feature)

max(Feature) − min(Feature)
 

 

It is useful when the data distribution is not Gaussian, helping mitigate the impact of outliers while 

maintaining the shape of the original distribution. RobustScaler: it handles outliers by scaling features based 

on robust statistics. It utilizes the median (𝜇
~

) and interquartile range (IQR). 

 

Robustly Scaled Feature =
Feature − 𝜇

~

IQR
 

 

This scaler is less sensitive to extreme values, making it suitable for datasets with outliers or skewed 

distributions. In summary, the selection of a scaler depends on the data characteristics and the specific 

requirements of the machine learning task. Each scaler offers unique advantages in terms of handling data 

distributions, outliers, and maintaining the integrity of the underlying information. 

 

2.3. Feature extraction methods 

2.3.1. Principal component analysis 

The goal of PCA is to decrease dimensionality while preserving as much variance as possible. This 

is achieved by focusing on the leading principal components (PCs), which are arranged in descending order 

of their variance [25]. Mathematically, given a training set of M vectors 𝑤𝑖  each with n features. We obtain 

𝑛′(𝑛′ << 𝑛) principal components from the training set through the following steps: 
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− Calculate the arithmetic mean 𝜎 of this set: 

 

𝜎 =
1

𝑀
∑ (𝑀
𝑖=1 𝑤𝑖)   (1) 

 

− Remove the mean 𝜎 from 𝑤𝑖  to obtain 𝜌𝑖: 
 

𝜌𝑖 = 𝑤𝑖 − 𝜎  (2) 

 

− Construct the covariance matrix 𝐶, where: 

 

𝐶𝑛×𝑛 =
1

𝑀
∑ (

𝑀

𝑖=1
𝜌𝑖𝜌𝑖

𝑇) = 𝐴𝐴𝑇  (3) 

 

and 𝐴𝑛×𝑀 =
1

√𝑀
𝜌𝑖  (4) 

 

Let 𝑈𝑘 be the 𝑘−𝑡ℎ eigenvector of 𝐶 corresponding to the 𝜆𝑘 associated eigenvalue. Form a matrix 

𝑈𝑛 × 𝑛′ = [𝑈1. . . 𝑈𝑛′] consisting of these eigenvectors, such that: 

 

𝐶𝑈𝑘 = 𝜆𝑘𝑈𝑘  (5) 

 

The first 𝑈𝑘 corresponding to the largest eigenvalues 𝜆𝑘 are termed principal components (PCs). 

 

2.3.2. Kernel principal component analysis 

Kernel principal component analysis (kernel PCA) [26] is an extension of PCA that uses kernel 

methods to perform nonlinear dimensionality reduction. The basic idea behind kernel PCA is to implicitly 

map the input data into a higher-dimensional feature space, where it becomes linearly separable, and then 

perform PCA in that space. This allows kernel PCA to capture nonlinear relationships between the original 

features. The kernel trick is used to compute the dot product in the higher-dimensional feature space 

efficiently without explicitly computing the transformation. Given a kernel function 𝐾(𝑥𝑖 , 𝑥𝑗), where 𝑥𝑖 and 

𝑥𝑗 are input data points, the kernel PCA algorithm can be summarized as (6)-(11):  

− Compute the kernel matrix K: 

 

𝐾𝑖𝑗 = 𝐾(x𝑖 , x𝑗)   (6) 

 

− Center the kernel matrix: 

 

𝐾′ = 𝐾 − 1𝐾 − 𝐾1 + 1𝐾1  (7)  

 

where 1 denotes a matrix of ones.  

− Compute the eigenvectors 𝛼𝑖 and eigenvalues 𝜆𝑖 of the centered kernel matrix 𝐾′: 
 

𝐾′𝛼𝑖 = 𝜆𝑖𝛼𝑖  (8) 

 

Select the first n′ eigenvectors corresponding to the largest eigenvalues to form the principal components 

the RBF kernel is defined as (9): 

 

𝐾(𝐱𝑖, 𝐱𝑗) = exp(−
‖𝐱𝑖−𝐱𝑗‖

2

2𝜎2
)  (9) 

 

where 𝜎 is the kernel bandwidth parameter. The Polynomial kernel is defined as (10): 

 

𝐾(𝐱𝑖, 𝐱𝑗) = (𝐱𝑖
𝑇𝐱𝑗 + 𝑐)𝑑  (10) 

 

where 𝑑 is the degree of the polynomial and 𝑐 is a constant term. The sigmoid kernel is defined as (11): 
 

𝐾(𝐱𝑖, 𝐱𝑗) = tanh(𝛼𝐱𝑖
𝑇𝐱𝑗 + 𝛽)  (11) 

 

where α and β are scaling parameters. 
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2.4.  k-nearest neighbors  

In order to classify a data point, KNN looks at the majority class of its k-nearest neighbors in the 

feature space. Given a dataset (𝑥1, 𝑦1), (𝑥2, 𝑦2) … (𝑥𝑛, 𝑦𝑛) where 𝑥𝑖 represents the feature vector and 𝑦𝑖 is 

the corresponding class label, the KNN algorithm operates as: i) Choose the number of neighbors 𝑘;  

ii) Compute the distance between the target point and each data point in the training set; iii) Determine the 𝑘 

closest neighbors based on the computed distances; and iv) For classification, assign the class label by 

majority vote among the 𝑘 neighbors. For regression, predict the arithmetic mean of the 𝑘 neighbors target 

values. Various distance metrics and similarity measures are used to quantify the dissimilarity or similarity 

between data points. 

− Manhattan distance: The Manhattan distance, also known as Taxicab or 𝐿1 norm, between two points 𝑝 

and 𝑞 in an n-dimensional space is given by (12). 

 

𝑑Manhattan(𝑝, 𝑞) = ∑ |𝑛
𝑖=1 𝑝𝑖 − 𝑞𝑖| (12) 

 

− Minkowski distance: The Minkowski distance of order 𝑝 between two points 𝑝 and 𝑞 is a generalization 

of both the Euclidean and Manhattan distances. 

 

𝑑Minkowski(𝑝, 𝑞) = (∑ |𝑛
𝑖=1 𝑝𝑖 − 𝑞𝑖|

𝑝)
1

𝑝 (13) 

 

− Chebyshev distance: The Chebyshev distance, also known as L-infinity norm, between two points 𝑝 and 𝑞 

is the maximum absolute difference along any dimension. 

 

𝑑Chebyshev(p, q) = 𝑚𝑎𝑥
𝑖

|𝑝𝑖 − 𝑞𝑖| (14) 

 

− Cosine similarity: Cosine similarity measures the cosine of the angle between two non-zero vectors 𝑝  

and 𝑞. 

𝐶𝑜𝑠𝑖𝑛𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (p, q) =
∑ (

𝑛
𝑖=1 𝑝𝑖⋅𝑞𝑖)

√∑ (
𝑛
𝑖=1 𝑝𝑖

2)⋅√∑ (
𝑛
𝑖=1 𝑞𝑖

2)

 (15) 

 

− Hamming distance: The Hamming distance between two strings of equal length is defined as the count of 

positions where the corresponding symbols are different. 

 

𝑑𝐻𝑎𝑚𝑚𝑖𝑛𝑔(string
1
, string

2
) = ∑ (

𝑛

𝑖=1
(string

1
[𝑖] ≠ string

2
[𝑖]))  (16) 

 

− Jaccard similarity: Jaccard similarity measures the ratio of the size of the intersection to the size of the 

union of two sets. 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(set1, set2) =
|set1∩set2|

|set1∪set2|
 (17) 

 

− Correlation-based distances: Correlation-based distances consider the correlation coefficient between two 

vectors. The Pearson correlation coefficient is commonly used (18). 

 

Correlation(p, q) =
∑ (

𝑛
𝑖=1 (𝑝𝑖−𝑝)(𝑞𝑖−𝑞))

√∑ (
𝑛
𝑖=1 (𝑝𝑖−𝑝)

2)⋅√∑ (
𝑛
𝑖=1 (𝑞𝑖−𝑞)

2)

 (18) 

 

 

3. RESULTS AND DISCUSSION 

The accuracy of an IDS is a critical metric that measures its effectiveness in correctly identifying and 

classifying instances of intrusion or abnormal behavior within a network. The accuracy is generally 

calculated as the ratio of correctly identified instances (true positives and true negatives) to the total number of 

instances. The formula for accuracy is as follows: 

 

Accuracy =
True Positives + True Negatives

Total Instances
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where: 

− True positives (TP): instances correctly identified as intrusions. 

− True negatives (TN): instances correctly identified as normal. 

− Total instances: 𝑇𝑃 + 𝑇𝑁 + 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠. 

In the conducted experiments, we randomly selected 10,000 normal data and 1,000 malicious data 

for the training phase. For the testing phase, 5,000 normal data and 1,000 malicious data were selected. This 

selection process was repeated 20 times. 

This setting ensures the reliability and generalizability of findings by mitigating biases introduced 

by a single random split and assessing variability across iterations. By mimicking real-world scenarios and 

assessing system performance across diverse data samples, it enables insights into generalization capabilities 

and stability. Furthermore, statistical significance can be established, facilitating efficient resource utilization 

despite multiple repetitions. 

The experiments are divided in two parts, the first one concerns PCA/KNN and investigate the 

efficiency of other distances such as Manhattan distance, Minkowski distance, Chebyshev distance, cosine 

similarity, Hamming distance, Jaccard similarity, and correlation-based distances. We explored three 

different scaling techniques: StandardScaler, MinMaxScaler, and RobustScaler. When assessing the KNN 

distances using StandardScaler, we maintained a consistent number of principal components at “3” as shown 

in Figure 2, “5” as shown in Figure 3, and “7” as shown in Figure 4, while systematically adjusting the value 

of K. In another experiment as shown in Figure 5, we kept 𝐾 fixed at 1 and varied the number of principal 

components. Across both experiments involving MinMaxScaler and RobustScaler, we set 𝐾 to 1 while 

modifying the number of principal components. The results illustrated by Figure 6 and Figure 7 consistently 

indicated that cosine distance exhibited slightly better performance compared to other distance metrics. 

However, it is worth noting that Jaccard distance did not yield favorable outcomes in any of the investigated 

scenarios. 

The robustness of cosine distance to noise and outliers contributes significantly to the obtained 

results. Unlike distance metrics that consider both the direction and magnitude of vectors, cosine distance 

focuses solely on directional similarity. By measuring the cosine of the angle between two vectors, it 

emphasizes the similarity in their directions rather than their magnitudes. This property enables cosine 

distance to effectively capture essential directional patterns in the data, even in the presence of noise or 

outliers. When vectors exhibit similar directions, cosine similarity remains high, indicating their similarity 

regardless of potential differences. 

In the second part of our experiments, we aimed to further enhance the accuracy of our IDS by 

employing kernel PCA while exploring various kernel functions. Specifically, we investigated the RBF, 

polynomial, and sigmoid functions, comparing their performance against PCA with both Euclidean and 

cosine distance metrics. The considered values of kernel parameters are given by: 𝜎 = 1/(𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓 

𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠) for radial basis function (RBF). 𝑑 = 3 is the degree and 𝑐 = 1 for polynomial 

kernel. α and β are scaling parameters and given by 𝛼 = 1/(𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠) and  

𝛽 = 1 for sigmoid kernel. 

 

 

  
  

Figure 2. K vs Accuracy (%) for 3 PC using 

StandardScaler 

Figure 3. K vs Accuracy (%) for 5 PC using 

StandardScaler 
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Figure 4. K vs Accuracy (%) for 7 PC using 

StandardScaler 

Figure 5. PC vs Accuracy (%) for K=1 using 

StandardScaler 

 

 

  
  

Figure 6. PC vs Accuracy (%) for K=1 using 

MinMaxScaler 

Figure 7. PC vs Accuracy (%) for K=1 using 

RobustScaler 

 

 

Figures 8 and 9 illustrate experiments where the number of principal components (PCs) was set to 3 

and 5 respectively, while the value of K in the K-nearest neighbors (KNN) algorithm varied from 1 to 10. 

The accuracy of the intrusion detection system (IDS) using Euclidean distance was visualized. Interestingly, 

the results indicate that KPCA outperformed traditional PCA under these conditions. 

 

 

  
  

Figure 8. K vs Accuracy (%) for 3 PC using 

Euclidean distance 

Figure 9. K vs Accuracy (%) for 5 PC using 

Euclidean distance 
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In Figures 10 and 11, similar experiments were conducted, but with cosine distance utilized instead. 

Here, we observed that the sigmoid function surpassed PCA and other kernel functions in terms of accuracy. 

One possible reason why the sigmoid function surpassed PCA and other kernel functions in terms of 

accuracy could be its ability to effectively capture complex, non-linear relationships present in the data. 

Unlike traditional PCA, which assumes linear relationships between variables, the sigmoid kernel introduces 

non-linearity into the feature space, allowing it to capture more intricate patterns and structures. While RBF 

and polynomial kernels are also effective in capturing non-linear relationships, the superiority of the sigmoid 

function in these experiments may be attributed to its ability to better handle non-linear data structures, 

adaptability in shaping decision boundaries, robustness to noise and outliers. In the last experiment illustrated 

by Figure 12, we modify the number of principal components and fix 𝐾 at 1, we observe that RBF and 

sigmoid kernels give the best results. 

 

 

 
 

Figure 10. K vs Accuracy (%) for 3 PC using cosine distance 

 

 

 
 

Figure 11. K vs Accuracy (%) for 5 PC using cosine distance 

 

 

 
 

Figure 12. PC vs. Accuracy (%) for K=1 using cosine distance 
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4. CONCLUSION 

This study evaluated the effectiveness of a novel deep learning-based IDS designed to identify IoT 

attacks by leveraging PCA and KPCA in conjunction with the KNN algorithm. We investigated various KNN 

distance metrics and found that the cosine distance consistently provided superior intrusion detection 

performance, especially in high-dimensional network data. Additionally, KPCA with sigmoid kernels 

outperformed traditional PCA, capturing complex non-linear relationships within the data. These findings 

underscore the potential for using cosine distance and advanced kernel functions to significantly enhance the 

accuracy and robustness of IDS. The implications of this study are far-reaching, suggesting pathways for 

developing more effective security solutions for IoT networks and other critical systems. Future research 

should focus on the scalability of these methods in large-scale networks and their application in real-time 

detection systems.  
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