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 Brain tumor diagnosis and treatment are primarily reliant on medical 

imaging, necessitating precise segmentation methodologies for practical 

clinical solutions. Tumor boundaries are difficult to consistently identify, 

even with breakthroughs in deep learning. To address this challenge, we 

propose a novel approach that combines an upgraded 3D U-Net architecture 

for brain tumor segmentation with cross-shaped window attention (CSWA-

U-Net). Current segmentation techniques have limitations, particularly in 

capturing amorphous tumor shapes and fuzzy boundaries. Our strategy aims 

to overcome these constraints by combining the complementary capabilities 

of the expanded 3D U-Net, which is efficient at managing volumetric data 

and maintaining spatial features, with the cross-shaped window attention, 

which is well-known for capturing long-range relationships and contextual 

information. We evaluate our method's efficacy using a variety of 

performance measures, including specificity, sensitivity, and the Dice score. 

Our results demonstrate increased performance, with Dice scores of 94.7% 

for the whole tumor, 93.4% for the enhanced tumor region, and 90.5% for the 

tumor core. Furthermore, our technique has high sensitivity and specificity, 

highlighting its potential for improving medical imaging analysis. 
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1. INTRODUCTION 

Brain tumors result from abnormal cell proliferation, they significantly increase the global mortality 

rates for both adults and children [1]. The wide array of brain tumors, exceeding 150 types, presents a 

classification challenge due to their distinct origins within intracranial tissues [2]. Categorizing them into 

cancerous and noncancerous types is complicated by their individual biology, treatment trajectories, and 

prognostic factors. 

The growing number of brain tumors is probably caused by multiple factors. This tendency can be 

attributed to various variables such as genetic predisposition, aging populations, potential environmental 

exposures, diagnostic technological developments, and lifestyle choices. Better imaging methods allow for 

earlier and more precise identification, but aging populations and possible environmental exposures might 

make people more susceptible. 

Traditional methods for detecting brain tumors have many shortcomings that may affect the 

accuracy and validity of the diagnosis. Inter-observer variability and impracticality in the event result from 

the subjectivity and time-consuming nature of manual segmentation and region of interest (ROI) selection. In 

https://creativecommons.org/licenses/by-sa/4.0/
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addition, differences in detection images used by different observers may cause inconsistent results and affect 

the accuracy of tumor margin identification. In addition, manual feature extraction may not adequately 

capture different features of tumor cells, reducing the sensitivity of detection [3]. Conventional methods may 

encounter problems with visual changes and artifacts and detect small tumors. To overcome these problems, 

the researchers used methods such as deep learning algorithms that can change and improve the diagnosis of 

brain diseases. These algorithms are capable of increasing accuracy and efficiency when analyzing large 

volumes of data and improving patient outcomes. 

The ROIs help in tumor characterization, growth assessment, and treatment response evaluation by 

offering useful information for quantitative analysis. The quality and consistency of the results can be 

impacted by the subjectivity and inter-observer variability of manual ROI segmentation. Deep learning 

algorithms are one of the automatic and semi-automatic segmentation techniques [4] that are being developed 

as alternatives to increase effectiveness and reduce subjectivity in brain tumor ROI segmentation. 

Several innovative approaches have been proposed for brain tumor segmentation from magnetic 

resonance imaging (MRI). MBANet [5], leveraging the BraTS 2018 and 2019 datasets, employs a 3D 

convolutional neural network with multi-branch attention, achieving superior Dice scores compared to 

conventional techniques, notably due to the integration of cutting-edge modules like 3D Shuffle Attention. 

Similarly, DPAFNet [6] introduces a combination of dual-path (DP) and multi-scale attention fusion (MAF) 

modules alongside 3D feature extraction blocks with residual links and a 3D IDCM module, enhancing 

context awareness and competitiveness in BraTS2019 Dice scores. Additionally, Ranjbarzadeh et al. [7] 

introduced a novel framework, integrating data from multiple MRI modalities and employing the improved 

chimp optimization algorithm, showcases advancements in brain tumor segmentation by utilizing support 

vector machine (SVM) for feature selection and addressing overfitting through data balancing techniques. 

Furthermore, a patch-based convolutional neural network (CNN) [8] architecture demonstrates robustness 

and accuracy in segmentation by leveraging convolutional layers for spatially invariant feature learning and 

integrating various input modalities. 

GMetaNet [9], incorporating MetaFormer decoding and a 3D lightweight Ghost CNN, introduces 

innovative modules for multi-scale feature capture, while AD-Net [10] addresses multimodal feature 

extraction challenges through efficient channel feature separation learning and regularization techniques 

using Jensen-Shannon divergence. Finally, a hierarchical multi-view convolution technique, proposed by 

Guan et al. [11], enhances brain tumor segmentation accuracy by obtaining complementary features through 

decoupling 3D convolution into axial, coronal, and sagittal perspectives, while ensuring parameter 

consistency via a multi-branch kernel-sharing system with dilated rates.  

Montaha et al. [12] introduced the use of a 2D U-Net architecture on the BraTS2020 dataset, 

achieving 99.41% accuracy and 93% dice similarity coefficient (DSC) on T1 MRI sequences. The use of 

single slices, ablation experiments, and sequence validation improves the robustness and consistency of 

performance. Furthermore, Edge U-Net model [13], which emphasizes boundary information in MRI images, 

leads to improved segmentation accuracy through the incorporation of an EGB module and contrast 

enhancement techniques like CLAHE. Additionally, Aboussaleh et al. [14] developed Inception U-Net, a 

refined U-Net design leveraging inception blocks to enhance performance across multiple BraTS datasets. 

Subsequently, a multi-input UNet model [15] and scale-wise global contextual axile reverse attention 

network (SGCARANet) [16], each addressing specific challenges in brain tumor segmentation. These 

methodologies integrated advanced techniques such as integrated blocks, multiscale dilated features, and 

attention mechanisms to enhance segmentation accuracy and robustness. MDFU-Net [17], is a unique 

technique that integrates multiscale dilated features (MDF) and manages heterogeneous data for accurate 

brain tumor segmentation. This method uses a new Upblock and C-block in the decoder for segmenting and 

upscaling spatial features, as well as an encoder module using Atr-blocks from deepLabV3+ for multiscale 

contextual feature extraction. 

Continuing their efforts to advance brain tumor segmentation, Jenisha and Shiniha [18] introduced 

the 3D UNet++ model, a lightweight pseudo-3D architecture combining dense skip connections with 3D 

convolutions. Metlek and Çetıner [19] presented a novel pre-processing technique focusing on improving 

tumor visibility in multi-modal images, incorporating a hybrid method with residual blocks to enhance UNet 

model performance on fine-detail images. Moreover, they demonstrated the effectiveness of focusing solely 

on the ROI for segmentation tasks.  

First of all, CKD-TransBTS [20] presents a clinical knowledge driven model that employs a dual-

branch hybrid encoder with modality-correlated cross-attention blocks to reorganize input modalities in 

accordance with MRI principles. To close the gap between the transformer [21] and CNN features in the 

decoder [22], it also incorporates a trans and CNN feature calibration block. Second, Datta and Rohilla [23] 

propose a brain tumor detection and segmentation method that improves feature extraction both locally and 

globally by utilizing standalone GANs and a vision transformer (ViT) to create artificial images. Last but not 
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least, AugTransU-Net [24] improves feature variety preservation in transformer-based U-Net models by 

adding enhanced shortcuts inside these modules and connected attention modules for long-range spatial and 

channel linkages. Together, these approaches improve brain tumor segmentation by tackling problems with 

feature extraction, data availability, and processing effectiveness. 

Several approaches using Swin transformers have also been proposed with each one providing 

unique enhancements. BTSwin-Unet presented by Liang et al. [25], a 3D U-shaped Swin transformer-based 

network with self-supervised learning integrated for model pre-training. By utilizing ViTs'  multi-head self-

attention mechanism, Ghazouani et al. [26] suggested a Swin transformer-based network designed for 

semantic brain tumor segmentation. Zhang et al. [27] present IMS2Trans, a scalable and lightweight Swin 

transformer network that addresses incomplete modalities and multi-modal MRI data processing effectively. 

To extract features for all observable modalities, this technique uses a single encoder with common weights. 

It also uses a feature distillation strategy for consistency regularization, which is then aggregated in the 

decoder. The last contribution from ZongRen et al. [28] is DenseTrans, which incorporates Swin transformer 

into the UNet++ architecture for brain tumor segmentation. It emphasizes the use of control mechanisms and 

deep separable convolution to strike a compromise between computing complexity and accuracy. 

With a reported frequency of 5-10 occurrences per 100,000 persons, brain tumors are a serious 

health risk in India, accounting for over 28,000 cases and over 24,000 fatalities annually [29]. Brain tumors 

can be generically categorized as benign, which usually grows slowly with defined borders, or malignant, 

which is characterized by uncontrollably growing and spreading. The primary objectives of this research 

paper that focus on contributing to the brain tumor segmentation paradigm are: 

− Development of a new medical imaging technique CSWA-UNet by combining an enhanced 3D U-Net 

with cross-shaped window attention to accurately segment brain tumors. 

− Validate the integrated model's performance in precisely identifying the borders of brain tumors in 

medical images. 

The paper is organized systematically. Section 2 describes the study's methodology, focusing on the 

dataset, core framework, and approaches. Sections 3 and 4 contain the experimental results and a detailed 

analysis of the model's performance. Section 5 finishes the work by summarizing its contributions and 

proposing future research possibilities. 

 

 

2. METHOD 

Research on brain tumor segmentation uses a dataset called BraTS 2020 (brain tumor segmentation), 

which is a collection of multimodal MRI images in NIfTI file format (.nii.gz). It consists of T1-weighted,  

T1-weighted contrast-enhanced, T2-weighted, and fluid attenuated inversion recovery (FLAIR) volumes that 

were acquired from different clinical regimens and scanners at different institutions as shown in Figure 1. 

One to four raters followed the same technique and competent neuro-radiologists authorized the manual 

segmentations of GD-enhancing tumor (ET), peritumoral edema (ED), and necrotic and non-enhancing tumor 

core (NCR/NET) annotations that are included in the dataset as shown in Figure 2.  

These annotations are made available after pre-processing procedures such as skull-stripping,  

co-registration, and interpolation to a uniform resolution (1 mm3). There are 369 folders in the BraTS 2020 

Training Data directory, each of which represents a different dataset case. Essential MRI modalities are in 

these folders and supplied as NIfTI files (.nii). These modalities provide thorough imaging data that is 

essential for precise segmentation and analysis of brain tumors. In addition, every case has a segmentation 

mask file called "seg.nii" that has annotations that show the locations of the tumors. 

Two CSV files, "Namemapping.csv" and "survivalinfo.csv," which provide further information and 

data annotations, are also included in the directory. When combined, these resources provide researchers with 

important information for improving algorithms and techniques related to the diagnosis and planning of brain 

tumors. The preprocessing procedures include importing the MRI images and related segmentation masks, 

cropping them to a consistent size, normalizing the image data, and preprocessing the masks to designate 

various tumor locations. During training, augmenting techniques such as rotation and flipping are used. 

Finally, the data is returned as tensors, ready to be trained. 

Data mapping and patient survival statistics for brain tumors are loaded and combined from CSV 

files to start the preprocessing process. Paths to specific patient data files are then created based on the 

patients' IDs and whether or not they are part of the testing or training stages. Next, using stratified Kfold 

cross-validation with K value 7, the dataset is divided into training and validation subsets to guarantee 

proportionate representation across age groups. 

Segmentation masks are used to analyze brain tumors. As shown in Figure 3 divides the original 

mask into three binary masks that represent different tumor regions: the whole tumor (WT), the tumor core 

(TC), and the enhancing tumor (ET). The WT mask includes all important tumor regions. Still, the TC mask 

concentrates on the necrotic/non-enhancing and enhancing core regions, and the ET mask isolates the 
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enhancing core region. These masks are then integrated into a multi-channel mask, with each channel 

representing a distinct tumor location. This pre-processing simplifies the segmentation effort by categorizing 

tumor regions and preparing masks for use in neural network models, allowing for more accurate 

segmentation of various tumor sub-regions. 

The process starts with data preprocessing as demonstrated in the Figure 4, in which MRI images 

and segmentation masks are loaded, normalized, and augmented to increase the dataset's diversity. Stratified 

K-Fold cross-validation ensures a balanced distribution across folds, allowing for more robust model 

evaluation. The modified U-Net with cross-shaped window attention serves as the pipeline's heart. In the 

network's forward pass, the input is a feature extracted via the context route, which extracts hierarchical 

features at several scales. Then, a cross-shaped window attention method is used to improve the informative 

content of the features retrieved from the context pathway. These increased features are subsequently 

combined with features from the localization route, which is in charge of reconstructing spatial resolution. 

 

 

 
 

Figure 1. Multi-modal MRI: FLAIR, T1, T1-CE, and T2 volumes for detailed tissue analysis 

 

 

 
 

Figure 2. Segmentation mask with annotated labels 

 

 

 
 

Figure 3. Visualization of whole tumor (WT), tumor core (TC), and enhancing tumor (ET) 

 

 

 
 

Figure 4. Brain tumor segmentation algorithm 
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This concatenated feature representation is subsequently processed to yield the final segmentation 

output. Throughout the network, residual connections are used to handle the vanishing gradient problem, in 

which a layer's input is added to its output via element-wise summing, allowing for smoother gradient flow 

during training and preserving fine-grained spatial features. 

 

2.1.  Context pathway 

The context pathway in the model architecture is divided into layers as seen in Figure 5, each designed 

to extract hierarchical aspects from the input data while gradually widening the receptive area. Initially, a 3D 

convolutional operation is used to keep the input size constant as shown in Algorithm 1, followed by another 

convolutional layer with a stride of 2 to collect more context. Instance normalization and LeakyReLU activation 

stabilize training while introducing nonlinearity. Subsequent levels double the number of filters to improve 

feature representation, with downsampling only used at the initial level to retain spatial resolution. Furthermore, 

residual connections improve information flow and alleviate the vanishing gradient problem. 

 

 

 
 

Figure 5. Context pathway block diagram 

 

 

Algorithm 1. Context pathway algorithm 
xconv1 ← Conv(x, W1) + b1 

xnorm1 ← ReLU(Norm(xconv1)) 

xconv2 ← Conv(xnorm1, W2) + b2 

xnorm2 ← ReLU(Norm(xconv2)) 

xconv3 ← Conv(xnorm2, W3) + b3 

xresidual ← xconv3 + xnorm2 

xnorm3 ← ReLU(Norm(xresidual)) 

return xnorm3 

 

Furthermore, 3D instances normalization enables consistent training dynamics following each 

convolutional operation. The initial layer's output feeds subsequent layers and a cross-shaped window 

attention mechanism, which improves features by capturing spatial dependencies. By incorporating insights 

from the following layers and the attention mechanism [30], [31], the model successfully captures contextual 

information while focusing on relevant features, increasing performance in tasks such as segmentation and 

classification. 
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2.2.  Cross-shaped window attention layer 

Cross-shaped windows self-attention (CSWA) is a novel attention mechanism developed for 

processing 3D data in convolutional neural networks (CNNs) [32] as shown in Figure 6. It presents a novel 

method for capturing spatial interdependence within the input volume by splitting it into horizontal, vertical, 

and longitudinal stripes and paying attention to each stripe independently. The attention layer subdivides the 

input into G heads. The initial G/3 heads concentrate on horizontal attention, the following G/3 on vertical 

attention, and the remaining heads on longitudinal attention. Each attention mechanism operates on a subset 

of the input tensor defined by the strip width parameter (𝑠𝑤). Horizontal attention focuses on regions of 

𝑠𝑤 ×𝑊 × 𝐷, vertical attention on 𝑠𝑤 × 𝐻 × 𝐷 and longitudinal attention on 𝑠𝑤 × 𝐻 ×𝑊. This structured 

technique allows the model to efficiently capture information from several dimensions of the input tensor. 

 

 

 
 

Figure 6. Cross-shaped window attention layer 

 

 

Suppose the projected queries (Q), keys (K), and values (V) of the k-th head all have dimension dk, 

then the output of the horizontal, vertical, and longitudinal stripes self-attention for k-th head is defined as  

(1)-(5): 

 

𝑇 = [𝑃ℎ1, … , 𝑃ℎ𝑀 , 𝑃𝑣1, … , 𝑃𝑣𝑀 , 𝑃𝑙1, … , 𝑃𝑙𝑀]  (1) 

 

𝐴𝑘𝑖 = Attention(𝑃𝑖𝑊𝑘
𝑄 , 𝑃𝑖𝑊𝑘

𝐾 , 𝑃𝑖𝑊𝑘
𝑉)  (2) 

 

HAttention𝑘(𝑋) = [𝑃𝑘
1 , 𝑃𝑘

2, … , 𝑃𝑘
𝑀], for 𝑘 = 1,2, … ,

𝐺

3
  (3) 

 

Adtention𝑘 (𝑋) = [𝑃𝑘
1, 𝑃𝑘

2, … , 𝑃𝑘
𝑀], for 𝑘 =

𝐺

3
+ 1,… ,2

𝐺

3
  (4) 

 

LAttention𝑘(𝑋) = [𝑃𝑘
1, 𝑃𝑘

2, … , 𝑃𝑘
𝑀], for 𝑘 = 2

𝐺

3
+ 1,… , 𝐺  (5) 

 

In CSWA, 𝐴𝑘𝑖 denotes the attention scores for the 𝑖-th stripe in the 𝑘-th head, computed by the attention () 

mechanism using projected queries, keys, and values represented as 𝑃𝑖𝑊𝑘
𝑄 , 𝑃𝑖𝑊𝑘

𝐾, and 𝑃𝑖𝑊𝑘
𝑉correspondingly. 

The outputs of the horizontal, vertical, and longitudinal attention mechanisms for the 𝑘-th head is denoted by 

𝐻𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑘(𝑋), 𝑉𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑘(𝑋), and 𝐿𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑘(𝑋), respectively. These outputs are concatenated 

using the 𝐶𝑜𝑛𝑐𝑎𝑡() method to produce the final CSWA output, indicated as 𝐶𝑆𝑊𝐴(𝑋). This approach 

effectively captures spatial dependency in 3D data by focusing on distinct parts of the input tensor in several 

dimensions. 

 

2.3.  Localization pathway 

A U-Net architecture's localization pathway as shown in Figure 7 receives feature maps from the 

corresponding level in the encoding pathway, which are concatenated with feature maps from the previous level 

in the localization pathway. Furthermore, at each stage of the localization route, the feature maps are 
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supplemented with refined features obtained via the cross-shaped windows attention method. This integration 

enables the model to incorporate spatial dependencies detected by the attention mechanism, hence improving 

the localization pathway's ability to refine and recover spatial features while maintaining semantic information. 

 

 

 
 

Figure 7. Localization pathway block diagram 

 

 

The concatenated feature maps are then subjected to convolutional processes before being 

normalized, which standardizes the features and helps to stabilize the learning process. In addition, the Leaky 

ReLU activation function is used to introduce non-linearity, allowing the model to detect complicated 

patterns in the data. Following that, the feature maps are upsampled to boost spatial resolution while 

preserving fine-grained features. Another convolutional layer is then used to refine the upsampled features. 

Finally, instance normalization and Leaky ReLU activation are used again to ensure consistency and non-

linearity in the revised feature representations as shown in Algorithm 2. This repeating procedure at various 

stages of the localization route helps to generate accurate segmentation predictions by effectively recovering 

spatial details and semantic information from encoded characteristics. 

 

Algorithm 2. Localization pathway algorithm 
xconv ← Conv(x, Wconv) + bconv 

xnorm ← Norm(xconv) 

xrelu ← ReLU(xnorm) 

xupsample ← Upsample(xrelu, Wupsample) + bupsample 

xconv2 ← Conv(xupsample, Wconv) + bconv 

xnorm2 ← Norm(xconv2) 

xrelu2 ← ReLU(xnorm2) 

return xrelu2 

 

During training, the model shown in the Figure 8 processes batches of medical pictures and masks 

across numerous epochs. It starts with a forward pass that generates predictions from the input images, and 

then calculates the loss by comparing the predictions to the ground truth masks. Gradients are then calculated 

via backpropagation, allowing the model parameters to be changed with the Adam optimizer. The learning 

rate may alter dynamically in response to validation loss trends. The model periodically stores its state, or 

checkpoint, to keep the best-performing version depending on validation results. After training, the model 

can create predictions for fresh pictures, and their accuracy is measured using evaluation metrics such as 

Dice score, sensitivity, and specificity, which provide information about segmentation accuracy. 
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Figure 8. Cross-shaped window attention (CSWA) block and enhanced 3D U-Net for brain tumor segmentation 

 

 

3. RESULTS AND DISCUSSION 

The performance of the trained model is evaluated using a variety of measures and compared to 

previous methodologies or baseline data. The section begins by showing the quantitative evaluation metrics 

from the validation dataset, such as the Dice score, sensitivity, and specificity for each class (e.g., total 

tumor, tumor core, and enhanced tumor). These measurements provide insight into the model's segmentation 

accuracy across various tumor regions. 

Additionally, qualitative assessments can be supplied by overlaying model predictions on the source 

photos or ground truth masks. This gives a more intuitive sense of how well the model reflects tumor 

boundaries and regions of interest. We employed the Tesla T4, equipped with 16 GB of GDDR6 memory and 

boasting 2,560 CUDA cores, for the computational tasks. Table 1 here shows the hyperparameters required 

for the training purpose. 

 

 

Table 1. Hyperparameters for training 
Parameter Value 

Number of workers for data loader 4 
Batch size during training 32 

Spatial size of training images 64 
Number of channels in the training images  3 

Number of training epochs 50 
The learning rate for optimizers 0.0005 

 

 

In image segmentation tasks, Dice scores are used as a statistic to quantify the similarity between 

anticipated and ground truth segmentations. The formula for the Dice score is stated as: 

 

Dice =
2×|𝐴∩𝐵|

|𝐴|+|𝐵|
  

 

where 𝐴 represents the set of pixels classified as positive in the ground truth, 𝐵 represents the set of pixels 

classified as positive in the prediction, and |𝐴 ∩ 𝐵| denotes the cardinality of a set. A Dice score of 1 

indicates perfect overlap between the prediction and ground truth, while a score of 0 indicates no overlap. 

The binary cross-entropy+dice loss (BCEDice) loss [33] is a composite loss function used for 

training image segmentation models. To optimize model parameters, it uses both binary cross-entropy (BCE) 

loss and Dice Loss. BCE Loss measures the dissimilarity between predicted probabilities and ground truth 

labels for individual pixels. Meanwhile, Dice Loss calculates dissimilarity using the overlap between 

expected and ground truth segmentations. By combining BCE Loss and Dice Loss, BCEDice Loss promotes 

accurate pixel classification and a significant overlap with ground truth. The BCEDice Loss formula is: 
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BCEDice Loss = BCE Loss + Dice Loss  

 

After analyzing the presented coefficients as shown in Figure 9, we find that the WT class performs 

the best across all parameters, with a Dice score of 94.7%, sensitivity of 93.7%, and specificity of 95.2%. 

The TC class likewise performs well, but slightly below WT, with a Dice score of 93.4%, sensitivity of 

94.4%, and specificity of 94.1%. On the other hand, the ET class does relatively poorly, with a Dice score of 

90.5%, sensitivity of 89.6%, and specificity of 89.9%. 

 

 

 
 

Figure 9. Dice score, sensitivity and specificity for WT, TC, and ET classes 

 

 

 BCE Loss = −
1

𝑁
∑  𝑁
𝑖=1 (𝑦𝑖 ⋅ log(𝑝𝑖) + (1 − 𝑦𝑖) ⋅ log(1 − 𝑝𝑖))  

 

Where 𝑁 represents the total number of pixels in the image, 𝑦𝑖  denotes the ground truth label for each pixel 𝑖, 
which can take values of either 0 or 1, indicating the absence or presence of the target class, respectively. 

Similarly, 𝑝𝑖  signifies the predicted probability assigned to pixel 𝑖 by the model, reflecting the likelihood of it 

belonging to the positive class. 

 

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒𝑆𝑐𝑜𝑟𝑒  

 

The bar plot Figure 10 shows the Dice scores obtained by three different models - 3DUNet [31], 3D 

Attention U-Net [31], and our model - in three unique classes: WT, TC, and ET on BraTS 2020 dataset. The 

height of each bar relates to the Dice score achieved by the model for a specific class. Notably, our model 

consistently beats the other models in all classes, with the greatest Dice scores for WT, TC, and ET. 

This visualization provides vital insights into the models' segmentation performance and 

demonstrates Our Model's superior performance when compared to existing methodologies. Over 50 epochs 

in Figure 11 shows the model's performance over 50 epochs, with the loss curve in Figure 11(a) indicating 

better performance as the values decrease, and the Dice score curve in Figure 11(b) reflecting improved 

segmentation accuracy with higher values. Here the loss curve demonstrates how well the neural network 

model matches the training data, with decreasing values indicating better performance. In contrast, the Dice 

curve measures the model's segmentation accuracy, with higher values indicating greater overlap between 

anticipated and ground truth segmentations. Ideally, both curves should show decreasing loss and increasing 

Dice coefficient, suggesting successful training. 

As shown in the Figure 12 ground truth mask images exhibit hand-annotated segmentation maps, 

which serve as the gold standard for evaluating segmentation model performance. In contrast, the model 

generates predicted mask visuals, which represent its segmentation output based on learning parameters and 

input data. Comparing the images enabled us to evaluate the model's accuracy in segmenting objects or 

regions of interest. 
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Figure 10. Comparison of 3DUnet, 3D Attention U-Net and our model's Dice score for WT, TC, and 

ET classes 

 

 

  
(a) (b) 

 

Figure 11. Training and validation performance metrics over 50 epochs: 11(a) loss curve and  

11(b) Dice score curve for both training and validation sets 

 

 

 
 

Figure 12. Ground truth and the prediction masks 
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4. CONCLUSION 

In conclusion, segmenting brain tumor subregions is an important work in medical image 

processing, since it allows for proper diagnosis and therapy planning. This paper presents a novel strategy to 

doing this task that employs a modified 3D U-Net architecture with a context and localization pathway, as 

well as CrossShaped window attention. The model outperforms established benchmarks in segmenting tumor 

subregions, with validation Dice scores of 94.7% for WT, 93.4% for TC, and 90.5% for ET. These findings 

underscore the model's capacity to precisely identify tumor boundaries, which is critical for clinical decision-

making. 

For the research field, these findings signify a significant advancement in medical image processing. 

The model's high performance sets a new benchmark for brain tumor segmentation, encouraging further 

exploration and refinement of similar approaches. The integration of a context and localization pathway, 

along with CrossShaped Window Attention, offers a novel direction for future research, potentially 

applicable to other areas of medical imaging and beyond. 

The proposed model's improved feature extraction capabilities provide exceptional precision in 

identifying tumor subregions, even when data availability is low. In clinical practice, this precision enables 

healthcare providers to properly diagnose and arrange treatment plans for patients with brain tumors. In the 

future, the model's performance and computing efficiency could be improved by including 3D imaging 

techniques and further exploring quantum-inspired approaches, such as employing quantum-based feature 

extraction methods or reinforcement learning algorithms. Furthermore, examining object segmentation 

approaches may provide a more detailed understanding of tumor form. By addressing these areas for 

development, the potential for more precise and accurate brain tumor segmentation models becomes clear. 
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