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 Cloud computing offers several advantages, including cost savings and easy 

access to resources, it is also could be vulnerable to serious security attacks 

such as cloud Trojan horse infection attacks. To address this issue, machine 

learning is a promising approach for detecting these threats. Thus, different 

machine learning tools and models have been employed to detect Trojan 

horse infection such as Weka and Python Colab. This study aims to compare 

the performance of Weka and Python Colab, as popular tools for building 

machine learning models. This study evaluates the recall, accuracy, and 

F1-score of machine learning models built with Weka and Python Colab and 

compares their computational resources required employing several machine 

learning algorithms. The dataset collected and analyzed using dynamic 

analysis of Trojan horse infection in control lab environment. The findings 

of this study can help determine the decision about which tool to use to 

detect Trojan horse infections and provide insights into the strengths and 

limitations of Weka and Python Colab for building machine-learning models 

in general. 
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1. INTRODUCTION  

 Cloud computing, an innovative method of information technology, uses the internet and remote 

servers to deliver a common set of computing resources and applications to meet customer requirements [1]. 

The advent of cloud computing technologies in the first decade of this century ushered in a new era in the 

development of information technology (IT) infrastructure, as users can now obtain software and computing 

power over the Internet or networks. This has also led to the emergence of new models for hosting and 

distributing online services [2], [3]. Cloud computing allows users to easily access services, facilitating 

seamless access to data and program execution on a large number of connected computers. Moreover, it 

removes the requirement for users to install software on their personal computers and instead provides access 

to resources and applications via an internet connection at any time and from any location [2], [4]. 

Cloud computing has been widely adopted by public-sector businesses in many countries, including 

Australia, the United Kingdom (UK), the United State (US), and various European countries [5]–[7]. The 
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government cloud (G-Cloud) infrastructure was introduced by the UK government in 2010, saving an 

estimated £3.2 billion [5], [8], [9]. The cloud computing mall was also introduced by the US government in 

2009 [8]. Cloud computing offers numerous benefits such as shared asset pooling, tremendous versatility, 

cost savings, flexibility, pay-as-you-go pricing, self-provisioning of resources, and multi- tenancy [10]–[12]. 

However, there are still security concerns and risks associated with cloud computing [13], particularly the 

risk of security attacks. As a result, both service providers and clients are concerned about these attacks [14]. 

Various forms of attacks pose a threat to cloud computing, including phishing, authentication, 

service denial, man-in-the-middle, and malware insertion, among others [2], [15]–[18]. Among them, 

malware attacks are a significant risk to the cloud computing ecosystem. One such attack is the "cloud Trojan 

injection attack," which involves injecting a malicious program into cloud services to cause harm. These 

programs can be disguised as normal commands and executed as such [19]. Cloud Trojan injection attacks 

can introduce malicious services, virtual machines, and applications into cloud systems, which can affect 

cloud functionality by interfering with or altering it [20], [21]. Attackers upload a malicious version of 

application, virtual machine or service to a cloud system so that it will think it is a real instance of that 

application virtual machine or service. When a normal user requests an instance of the malicious service to 

run, the malicious code is executed [20]. Trojan horses are challenging to detect using signature-based 

technologies, which is the most common anti-virus system detection method [22]. Furthermore, only well-

known signatures can be used with signature-based anti-virus to achieve high accuracy. This type of 

detection has a drawback in that it frequently misses fresh attacks when malware completely changes its 

signature. 

With the increasing number of cyber-attacks, the need for effective tools to detect malware and 

Trojan horse infections is more important than ever. To protect and reduce damage caused by Trojan horse 

infection, machine learning tools have been proven as an effective technique used to detect such threats by 

analyzing patterns in the data and identifying possible dangerous behavior. Weka and Python Colab are 

known tools to use and implement machine learning models. Weka is a Java-based program that provides a 

graphical user interface exploited ready-to-use machine learning models, while Python Colab is an online 

Jupyter notebook environment that allows users to utilize to implement and run Python machine learning 

libraries in the cloud. Although, it is possible to create and utilize machine learning models to identify Trojan 

horse infections using either Weka or Python Colab, there is limited researches comparing the performance 

of these two tools.  

The goal of this study is to compare the performance of Weka and Python Colab in detecting Trojan 

horse infections. We will evaluate the recall, accuracy, and F1-score of machine learning models built with 

Weka and implanted using Python Colab. We will also compare the computational resources required to 

build and train the models, including processing time and memory usage. The results of this study help to 

determine the decision about which tool to use to detect Trojan horse infections. Furthermore, this study 

provides insights into the strengths and limitations of Weka and Python Colab for building machine-learning 

models in Trojan horse detection. 

 

 

2. BACKGROUND AND RELATED WORKS 

Trojan horses are a type of malicious software that pose as legitimate or helpful programs to gain 

access to users' computers. Cybercriminals frequently use social engineering tactics to trick users into 

unintentionally installing them [23]. Once installed, Trojan horses have the ability to remotely manipulate the 

victim's device, steal sensitive data, watch user activities, and corrupt, destroy, or modify system files [24], 

[25]. Unlike viruses and worms, Trojans require user interaction to propagate. They are considered among 

the most dangerous forms of malware due to their prevalence [24]–[26]. 

Trojan horses can come in two types: general and remote-access Trojans [24]. General Trojans 

perform a variety of malicious actions, including jeopardizing the data integrity of victim machines, directing 

users' workstations to specific websites via system files, and running additional harmful programs [26]. They 

have the ability to track user behavior and provide the information to the attacker. Remote-access Trojans, on 

the other hand, have a special capacity that allows hackers to remotely manipulate the target machine across 

the internet or a local area network (LAN). This type of Trojan is particularly dangerous as it can be used to 

steal confidential information from the victim's personal computer (PC) and carry out other nefarious 

activities. 

Machine learning methods have become increasingly popular for malware detection in cloud 

environments, as well as in various other areas [27]–[32]. Support vector machines (SVM), decision trees 

(DT), random forest (RF), and naive Bayes (NB) are some of the machine learning techniques that have been 

used to successfully find malware in practical applications [30], [33], [34]. The size of the training dataset and 

the number of features that can be retrieved from it, however, determine how accurate these algorithms are. 
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In a recent study [23], an approach based on convolutional neural networks (CNN) for virus 

detection in cloud platforms has been suggested. For identifying malware, the authors used a CNN model 

with two dimensions (2D) and a CNN model with three dimensions (3D). Also, they conducted experiments 

by installing various infections on simulated PCs and achieved 79% accuracy with the 2D CNN model and 

90% accuracy with the 3D CNN model. However, this study did not compare CNN to conventional machine 

learning techniques; it only focused on CNN [29]. 

The efficacy of various machine learning methods, such as DT and SVM, was proved using a 

system based on machine learning for malware detection [30]. The researchers employed the Cuckoo 

Sandbox to test different malware kinds in a simulated environment, producing an analysis report depending 

on how the malware samples act in the setting. The Cuckoo Sandbox has been utilized by numerous 

researchers to examine malware [30], [35]–[38] examined the viability of using CNN, RF, and k-nearest 

neighbors (KNN) models and used features from application programming interface (API) calls to identify 

malware. Additionally, Watson et al. [31] utilized the random forest classifier to keep track of a virtual 

machine's process activity. 

Weka has been used in studies on malware detection by numerous security researchers, including 

[24], [26], [39], [40]. On the other hand, several researchers, including [40]–[43] have utilized Python in their 

studies. Kumar et al. [44] reportedly demonstrated a machine learning-based approach to accurately and 

efficiently determine whether a sample is malware or benign. Weka was utilized by the authors to implement 

six classification algorithms. As a result of applying 10-fold cross-validation, the random forest classifier was 

able to achieve an accuracy of 98.4%. 

J45, logistic model tree (LMT), naive Bayes (NB), random forest (RF), multilayer perceptron 

(MLP) algorithm, random tree (RT), reduced error pruning tree (REPTree), Bagging, AdaBoost, KStar, 

simple logistic, lazy k-nearest neighbor (IBK), locally weighted learning (LWL), support vector machine 

(SVM), and radial basis function (RBF) network are among the fifteen different machine learning algorithms 

used, this report [26] provided a comparative analysis of malware identification. The experiment was carried 

out in the Weka environment using the classification of malware with portable executable (PE) headers 

(ClaMP) dataset. The accuracy rate is still poor even if the RF method performs better than the other 

techniques. 

In accordance with a study [24], this study examined eight machine learning classifiers to detect 

Trojan horses in cloud environments. Investigations examining the accuracy of the cloud Trojan horse 

detection rate have been conducted using the data mining tool Weka. The most effective classifiers for 

identifying Trojan horses in a cloud-based setting have been shown to be the sequential minimal optimization 

(SMO) and multilayer perceptron based on the studies that have been done. With a 95.86% accuracy rate, 

SMO and multilayer perceptron have the greatest rate. 

According to their research paper, Kanaker et al. [24] proposed a hybrid machine learning algorithm 

that merged KNN and NB for detecting Trojan horses, and they executed their work using Python in the 

Colab environment, where certain machine-learning techniques are tested with 99.5% accuracy. The 

empirical results of this study demonstrate that the hybrid algorithm is the most effective algorithm for 

detecting a Trojan horse. 

Sethi et al. [45] develop a machine learning-based malware analysis framework for rapid and 

accurate malware detection. A Python package was developed for feature selection, feature extraction, and 

the building of training and testing datasets. For the detection and classification of the provided dataset, they 

made use of numerous machine learning techniques offered by the Python Scikit-learn framework. A 

decision tree with an accuracy of 99.37% has a high detection rate, according to experimental results. 

In a publication [46], a unique machine learning approach is suggested and implemented in Python 

and MATLAB to recognize the Mirai malware. This study compares the performance of artificial neural 

network (ANN) and RF models using a dataset created by combining the benign and malicious datasets for 

seven internet of things (IoT) devices. Because of the greatest performance, which had an accuracy of 92.8%, 

the results are deemed to be reliable and accurate. 

The first step in the malware detection procedure is malware analysis. Malware cannot be 

discovered until it is observed and its behavior is understood. As a result, it is easy to add security measures 

to malware detectors. There are two categories of malware analysis techniques: static and dynamic, 

depending on the amount of time and technology required to complete the investigation. 

Without actually running them, static analysis examines malware executable files in a controlled 

environment [47]–[49]. Static data is extracted from the code and used to determine whether the software 

contains malicious code [47]. The executable file contains a lot of static features, like memory compactness. 

To do static analysis, a variety of tools can be employed, including decompilers, disassemblers, source code 

analyzers, and debuggers [47]. Furthermore, only known malware signatures can be reliably detected via 

static analysis. Because of this, it could rarely be unable to assess malware signatures that are unknown and 
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not in its database. Regular updating and production by humans with specific knowledge are required for the 

signatures used in standard static analysis [4], [7], [24], [39]. It is not employed in this study due to the 

reasons mentioned above. 

Dynamic analysis evaluates malware behavior in a dynamically controlled environment. In addition 

to starting in privileged mode, the virus modifies the registry as it runs. When the malware switches to 

privilege mode, the operating system will be completely under its control. All resources are completely under 

the control of dynamic analytic software. It is able to function in a secure environment as a result. The 

program can operate in debug mode and alter computer registry keys in a controlled environment The 

dynamic environment returns to the initial snapshot that was taken at the start of environment development 

after executing and analyzing a malware sample. Before looking at another malware sample, this makes sure 

the area is clean. 

By strengthening threat identification and prediction, automating and streamlining threat response, 

and fortifying and adapting security measures, the literature in the field of machine learning and 

cybersecurity advances our understanding and capacities. It advances the discipline by introducing novel 

approaches and offering useful case studies that illustrate their effectiveness in the real world. This helps to 

better protect digital infrastructures by providing both theoretical understanding and useful tools. 
 

 

3. RESEARCH METHOD 

In order to compare the effectiveness of Weka and Python Colab in detecting Trojan horse infections, 

we will use a dataset consisting of known malware and benign files. We utilized several tools, including 

Sandbox, NEWT Pro, PromiscDetect, ProcessExplorer, PortMon, and Wireshark. Dynamic analysis was used in 

this study since it is more effective, powerful, and reliable. The analysis was carried out in four stages: 

− Data collection: We gathered benign and Trojan horse samples from VirusShare.com and VirusTotal [4], 

[24], [30], [39], [50], [51]. One of the largest publicly available virus repositories on the internet is called 

VirusShare, whereas VirusTotal serves as a repository for malware samples. We obtained 3,000 

executable Trojan horses from samples made available on VirusTotal and VirusShare, which were 

detected by powerful antivirus systems such as Avast, F-Secure, Kaspersky, Comodo, Avira, Bitdefender, 

and others. Machine learning techniques will be applied on this dataset for further malware research. 

− Data analysis: A controlled lab environment is necessary for Trojan horse analysis. To establish a 

completely controlled, segregated environment and prevent the spread of Trojan horses, the physical 

network link must be severed. However, without a network connection it is impossible to do dynamic 

analysis on Trojan horse samples. A virtual cloud environment is created using virtualization 

technologies, and 𝑉𝑚𝑛𝑒𝑡  is used to link a dissimilar server (monitoring host and the attacker) to the cloud. 

This controlled lab architecture is comparable to that used by [2], [24], [25], [30] 

− Feature extraction: This stage involves determining the significance of the dataset's current features. It 

retains the crucial components while eliminating the superfluous ones [52]. Feature extraction can be used 

to achieve higher accuracy rates.  

− Testing framework: In this stage, we perform machine learning algorithms on the dataset using Weka and 

Python independently after feature extraction. 

 
 

4. DATA ANALYSIS 

Figure 1 demonstrates a controlled lab setup [2], [24] where a real device is used to host a 

virtualized version of the cloud, isolated from the internet. The attacker initiates the attack from outside the 

cloud situation, whereas the server in the cloud has monitoring tools installed to track activities such as 

process monitoring, file monitoring, network monitoring, and registry monitoring. Dynamic analysis and 

behavior monitoring through the Cuckoo Sandbox were used to assess the detection of Trojan horses in the 

controlled lab environment. A similar approach has been adopted in [2], [24], [39], [45]. The accuracy of 

detection was calculated separately using two different environments: Python Colab and the Weka data 

mining tool. 

The dynamic and Cuckoo Sandbox analysis have been performed on all files. Each file is executed 

and its runtime operations are examined to determine the behavior of the virus in a newly installed operating 

system. The Trojan horse samples are tested in a controlled environment mode for dynamic analysis. Once 

the testing is complete, the Deepfreeze computer program is used to restore the controlled environment to its 

original uninfected state. During the dynamic analysis stage, the behavior of each injected Trojan sample is 

observed on the host machine. The monitoring tools used in this stage include listening ports, registry, 

network, random-access memory (RAM), files, transmission control protocol (TCP), processes, and 

dynamic-link libraries (DLLs). Any suspicious behavior detected by these tools, the sample is identified and 

labeled as Trojan. 
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Figure 1. Controlled laboratory setup [2], [24] 

 

 

4.1.  Feature extraction 

The process of evaluating an existing feature's relevance in a dataset is called feature extraction. The 

salient characteristics are kept while the irrelevant ones are removed [24]. Selecting features aids in 

improving accuracy rates. For this study, we have collected 3000 Trojan horse samples from VirusTotal and 

VirusShare. The process of feature extraction employed the Cuckoo Sandbox analysis report and dynamic 

analysis. Through analysis carried out in a controlled lab environment, the qualities that were recognized as 

properties of each Trojan horse were identified, and a relevant dataset was established. This phase is finished 

with the creation of an extensive output analysis report. This report contains details on the creation, 

modification, deletion, and access to files and registry keys as well as DLLs, RAM, and networking 

protocols. Nine features make up the output file, which has been translated to the suitable file format arff. 

The output data is encoded in this file format so that it may be used as input data in the machine learning 

simulation environments of Python Colab and WEKA. The trojan horse dataset was successfully classified in 

this study using a 10-fold cross-validation along with a number of classifiers, including NB, IBK, RF, J48, 

and regression.  

 

4.2.  Testing framework 

The framework depicted in Figure 2 is developed using Python in the Colab environment and Weka 

machine learning technique, where certain machine-learning algorithms are tested and implemented. The 

Trojan horse dataset is classified using classifiers including 10-fold cross-validation, J48, RF, MLP, IBK, 

regression, NB, and others. 

 

 

 
 

Figure 2. Framework for testing trojan attack detection 

 

 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

In this experiment, a variety of machine-learning techniques were applied using both the Weka tool 

and Python Colab. Python is a widely used programming language in data science, scientific computing, and 

machine learning, and has an extensive library of tools for these fields [38]. Weka, on the other hand, is a 

Java-based tool designed specifically for data mining and includes a range of machine learning techniques 

[53]. Researchers have used both Weka and Python in clustering, classification, and detection studies [24], 

[26], [39]–[43]. 

For this experimentation, a 10-fold cross-validation dataset was generated using both Weka and 

Python. An approach that is frequently used to evaluate the error rate of a learning strategy on a particular 
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dataset is the 10-fold cross validation method [54], [55]. The dataset was divided into ten parts, or "folds," 

and each fold was utilized nine times for training and once for testing. The usage of a 10-fold cross-

validation approach has two main advantages: Because it uses data as possible for both the training and 

testing phases, it is more accurate [24]. 

Various established performance metrics, including accuracy rate, F-measure, precision, and recall, 

have been employed to assess the classifiers' efficacy. Table 1 shows the performance metrics of various 

machine learning algorithms applied in the experiment using both WEKA and Python. The algorithms 

include J48, IBK, NB, regression, RF, SMO and MLP. From subsections 5.1 to 5.4, explains the 

experimental results in detail.  

 

 

Table 1. Trojan horse detection results using Weka and Python various machine learning methods 
 WEKA  Python 

Algorithm Precision Recall F-Measure Accuracy (%)  Precision  Recall F-Measure Accuracy (%) 
Naïve Bayes 0.957 0.957 0.953 95.6  1 0.823 0.903 84.5 

Random forest 0.957 0.957 0.953 95.6  0.958 0.977 0.968 94.3 

IBK 0.957 0.957 0.953 95.6  0.962 1 0.981 96.6 
Regression 0.957 0.957 0.953 95.6  0.876 1 0.934 87.6 

J48 0.957 0.957 0.953 95.6  0.953 0.977 0.974 95.4 

Multilayer perceptron 0.959 0.959 0.955 95.8  0.876 1 0.934 87.6 
SMO 0.959 0.959 0.955 95.8  0.876 1 0.934 87.6 

 

 

5.1.  Precision rate results in Weka and Python 

Precision provides an explanation for the percentage of genuine positive classifications in all 

positive findings. It is the quantity of samples that are correctly recognized and do not represent false 

positives. Equation (1) states that precision is calculated using the TP and FP rates. Greater precision is 

indicated by a higher TP. 

 

Precision =
TP

(TP+FP)
  (1) 

 

The precision findings for each of the classifiers used in this experiment are displayed in Table 1 

and Figure 3. For WEKA, all the algorithms have the same precision rate value of 0.957% except for SMO 

and Multilayer Perceptron, which have a slightly higher precision rate value of 0.959%. However, for 

Python, the naïve Bayes algorithm has the highest precision rate value at 100%. 

 

 

 
 

Figure 3. Precision rate of numerous classification algorithms 

 

 

5.2.  Recall rate results in Weka and Python 

Recall is a statistic that quantifies the frequency with which a machine learning model properly 

selects positive samples (true positives) from all of the real positive samples in the dataset. On the other 

hands, truly positive (TP) samples are those from predicted clouds trojan horse samples that are correctly 

categorized and tagged as dangerous. Calculating recall is done using (2). 

0.957 0.957 0.957 0.957 0.957 0.959 0.959

1

0.958 0.962

0.876

0.953

0.876 0.876

0.8

0.85

0.9

0.95

1

1.05

Naïve Bayes Random
Forest

IBK Regression  J48 Multilayer
Perceptron

SMO

P
er

ce
n

ta
g
e

Machine Learning Algorithms

Precision

WEKA Precision PYTHON Precision



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6642-6655 

6648 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (2) 

 

From the experimental results in Table 1 and Figure 4, it is clearly seen that for WEKA, all the algorithms 

have the same recall rate value of 0.957%, except for MLP and SMO, which have a slightly higher recall rate 

value of 0.959%. For Python, IBK, regression, SMO and the multilayer perceptron algorithm have the 

highest recall rate value at 100%. 

 

 

 
 

Figure 4. Recall rate of numerous classification algorithms 

 

 

5.3.  F-Measure rate results in Weka and Python 

The F-Measure is a system performance metric that aggregates recall and precision into a single 

number. The calculation of the F-measure is shown in (3). 

 

F − Measure =
2 x Recall x precision 

 Recall+ precision
  (3) 

 

The experimental results in Table 1 and Figure 5 show that for WEKA, all the algorithms have the same  

F-measure rate value of 0.953%, except for MLP and SMO, which have slightly higher F-measure rate values 

of 0.955%. While, for Python, IBK has the highest F-measure rate value at 0.981% and naïve Bayes 

algorithm has the lowest F-measure rate value at 0.903%. 

 

 

 
 

Figure 5. F-Measure rate of numerous classification algorithms 
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5.4.  Accuracy rate results in Weka and Python 

Accuracy is often referred to as correct classification. The percentage of accurate predictions is 

expressed by the performance statistic accuracy. Table 1 and Figure 6 show the accuracy rates for the 

different classifiers. 

The experimental results for the various classifiers in this study have shown that for WEKA, 

multilayer perceptron and SMO have slightly higher accuracy rates at 95.8%. In contrast, all other classifiers 

accuracy rates are equal, and their accuracy rates are equal to 95.6%. While, for Python, the experimental 

results have shown that the IBK has the highest accuracy rate value of 96.6% and the naïve Bayes has the 

lowest accuracy rate value at 84.5%. 

Depending on the findings in Table 1 and Figures 3 to 6, it can be concluded that for WEKA, all the 

algorithms have the same precision, recall, F-measure, and accuracy rate values of 95.7% except for 

multilayer perceptron and SMO, which have slightly higher precision, recall, and F-measure rate values at 

95.9% and accuracy rate values at 95.8%. On the other hand, for Python, naïve Bayes has the highest 

precision rate value at 100%, while IBK, regression, SMO and multilayer perceptron, have the highest recall 

rate value at 100%. IBK has the highest F-measure and accuracy rate values at 98.1% and 96.6%, 

respectively. However, regression, multilayer perception, and SMO have the lowest precision rate value at 

87.6%. Naïve Bayes has the lowest recall, F-measure, and accuracy rate values at 82.3%, 90.3%, and 84.5%, 

respectively. 

 

 

 
 

Figure 6. Accuracy rate of numerous classification algorithms 

 

 

Different machine learning algorithms perform differently in Trojan horse detection. Multilayer 

perceptron and sequential minimal optimization classifiers have shown better results in Weka, while IBK and 

J48 classifiers have performed better in Python. Overall, the findings show that machine learning techniques 

are effective at finding Trojan horses, with high recall, precision, and F-Measure scores. The choice of 

algorithm and tool (WEKA or Python) may depend on the dataset, specific requirements and constraints of 

the application. 
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But the multilayer perceptron algorithm has shown more execution time in Weka. The reason for that 

because Weka’s implementation of multilayer perceptron has complex computations than in Python. Overall, 

the experimental findings demonstrate that Python is better in terms of execution time for the majority of 

machine learning algorithms. However, we should not forget that the execution time can affected by the 

hardware and software configurations of the computer systems used for the analysis.  

This research employs the default parameter configurations for both Python-Colab and Weka. The 

Tables 3 to 9 display the parameter settings for machine learning algorithms used in this study. They show 

naive Bayes, random forest, IBK, regression, J48, multilayer perceptron, and sequential minimal optimization 

classifiers using Python-Colab and Weka, respectively. 

 

95.6 95.6 95.6 95.6 95.6 95.8 95.8

84.5

94.3

96.6

87.6

95.4

87.6 87.6

78

80

82

84

86

88

90

92

94

96

98

Naïve Bayes Random Forest IBK Regression  J48 Multilayer
Perceptron

SMO

P
er

ce
n

ta
g
e

Machine Learning Algorithms

Accuracy (%)

WEKA Accuracy (%) PYTHON Accuracy (%)



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6642-6655 

6650 

Table 2. Time comparison between Python and Weka  
Machine learning algorithm Python execution time (s) Weka execution time (s) 

Naïve Bayes 0.003 0.02 

Random forest 0.001 0.05 

IBK 0.002 0.01 

Regression 0.004 0.07 

J48 0.002 0.01 

Multilayer perceptron 0.003 0.79 
SMO 0.002 0.03 

 

 

Table 3. Naive Bayes machine learning algorithm parameters in Python and Weka 
Python Weka 

Parameter Value Parameter Value 

priors None UseKernelEstimator False 

var_smoothing 1e-9 UseSupervisedDiscretization False 

 

 

Table 4. Random forest machine learning algorithm parameters in Python and Weka 
Python Weka 

Parameter Value Parameter Value 

n_estimators 500 bagSizePercent 100 

criterion gini maxDepth 0 

max_depth None numFeatures 0 
min_samples_split 2 seed 1 

min_samples_leaf 1 numExecutionSlots 1 

min_weight_fraction_leaf 0 batchSize 100 

max_features auto debug False 

max_leaf_nodes None doNotCheckCapabilities False 

min_impurity_decrease 0 breakTiesRandomly False 

bootstrap True printClassifiers False 
oob_score False printTrees False 

n_jobs None inBagOutOfBagEvaluation False 

random_state 1   

verbose 0   

warm_start False   

class_weight None   

ccp_alpha 0.0   

max_samples None   

 

 

Table 5. IBK machine learning algorithm parameters in Python and Weka 
Python Weka 

Parameter Value Parameter Value 

n_neighbors 5 KNN 1 

weights uniform DistanceWeighting No distance weighting 

algorithm auto WindowSize 0 

leaf_size 30 DistanceFunction EuclideanDistance 

p 2 CrossValidate False 

metric minkowski MeanSquared False 

metric_params None Debug False 
n_jobs None doNotCheckCapabilities False 

 
 

Table 6. Regression machine learning algorithm parameters in Python and Weka 
Python Weka 

Parameter Value Parameter Value 

penalty l2 Ridge 1.0E-8 
dual False MaxIts -1 

tol 1e-4 Debug False 

C 100 doNotCheckCapabilities False 

fit_intercept True BatchSize 100 

intercept_scaling 1 NumDecimalPlaces 2 

class_weight None   

random_state 1   

solver lbfgs   
max_iter 100   

multi_class ovr   

verbose 0   

warm_start False   

n_jobs None   

l1_ratio None   
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Table 7. J48 machine learning algorithm parameters in Python and Weka 
Python  Weka 

Parameter Value Parameter Value 

Criterion gini Criterion entropy 

Splitter best Max depth None 

Max depth None Min samples split 2 
Min samples split 2 Min samples leaf 1 

Min samples leaf 1 CCP alpha 0.25 

Min weight fraction leaf 0.0 Subtree raising True 
Max features None Use Laplace False 

Random state None Binary splits False 

Max leaf nodes None Save instance data False 
Min impurity decrease 0.0   

Class weight None   

CCP alpha 0.0   

 

 

Table 8. Multilayer perceptron machine learning algorithm parameters in Python and Weka 
Python Weka 

penalty None learningRate 0.3 

alpha 0.0001 momentum 0.2 
fit_intercept True hiddenLayers 'a' 

max_iter 1000 trainingTime 500 

tol 1e-3 validationThreshold 20 
shuffle True seed 0 

verbose 0 learningRateDecay False 

eta0 0.1 convergeEpochs 0 
n_jobs None convergeThreshold 0.001 

random_state 1 normalizeAttributes True 

early_stopping False normalizeClass True 
validation_fraction 0.1 decay False 

n_iter_no_change 5 reset True 

class_weight None nominalToBinaryFilter True 
warm_start False debug False 

 

 

Table 9. SMO machine learning algorithm parameters in Python and Weka 
Python Weka 

C 1.0 C 1.0 
kernel linear kernel PolyKernel 

degree 3 filterType 2 

gamma 'scale' toleranceParameter 0.001 
coef0 0.0 epsilon 1.0E-12 

shrinking True numFolds -1 

probability False randomSeed 1 
tol 1e-3 buildLogisticModels False 

cache_size 200 debug False 
class_weight None doNotCheckCapabilities False 

verbose False   

max_iter -1   
decision_function_shape 'ovr'   

break_ties False   

random_state 1   

 

 

6. CONCLUSION  

This study explored the security risks and benefits associated with cloud computing and the usage of 

machine learning for detecting Trojan horse infections. Weka and Python Colab, two well-known machine 

learning tools, were tested in the study to see how well they performed at identifying Trojan horse infections. 

The results show that both tools are effective in detecting Trojan horse infections, However, the instrument 

selected will rely on the particular needs and resources offered. Furthermore, the study evaluated the 

computational resources required by each tool and found that Python Colab generally had faster execution 

times than Weka. This study helps researchers and practitioners in cybersecurity field to adopt the suitable 

machine learning tools to detect the malware infection effectively based on performance and accuracy 

detection rate using this study insights into the strengths and limitations of Weka and Python Colab for 

building machine learning models and detecting Trojan horse infections. 

This study limited by extracting nine features from the samples. However, it is crucial to emphasize 

that additional study is required, such as by increasing feature extraction, in order to increase the success rate 
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of Trojan horse identification in the cloud computing environment. Future research can build upon this study 

by exploring other machine learning algorithms and tools for detecting security threats in cloud computing 

environments. Moreover, this research can be extended by comparing the Weka and Python Colab with 

tuning and utilize the features selection to enhance and compare the performance and accuracy rate. 
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