
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 14, No. 6, December 2024, pp. 6642~6655

ISSN: 2088-8708, DOI: 10.11591/ijece.v14i6.pp6642-6655 6642

Journal homepage: http://ijece.iaescore.com

A comparative study of machine learning tools for detecting

Trojan horse infections in cloud computing environments

Hasan Kanaker1, Monther Tarawneh2, Nader Abdel Karim3, Adeeb Alsaaidah4, Maher Abuhamdeh5,

Osama Qtaish6, Essam Alhroob1, Zaid Alhalhouli7
1Department of Cyber Security, Faculty of Information Technology, Isra University, Amman, Jordan

2Department of Information Technology, College of Information Technology, Tafila Technical University, Altafila, Jordan
3Department of Intelligent Systems, Faculty of Artificial Intelligence, Al-Balqa Applied University, Al-Salt, Jordan

4Department of Networks and Cyber Security, Faculty of Information Technology, Al-Ahliyya Amman University, Amman, Jordan
5Department of Computer Information System, Faculty of Information Technology, Isra University, Amman, Jordan

6Department of Software Engineering, Faculty of Information Technology, Isra University, Amman, Jordan
7Department of Data Science and Artificial Intelligence, Faculty of Information Technology, Isra University, Amman, Jordan

Article Info ABSTRACT

Article history:

Received May 2, 2024

Revised Jul 20, 2024

Accepted Aug 6, 2024

 Cloud computing offers several advantages, including cost savings and easy

access to resources, it is also could be vulnerable to serious security attacks

such as cloud Trojan horse infection attacks. To address this issue, machine

learning is a promising approach for detecting these threats. Thus, different

machine learning tools and models have been employed to detect Trojan

horse infection such as Weka and Python Colab. This study aims to compare

the performance of Weka and Python Colab, as popular tools for building

machine learning models. This study evaluates the recall, accuracy, and

F1-score of machine learning models built with Weka and Python Colab and

compares their computational resources required employing several machine

learning algorithms. The dataset collected and analyzed using dynamic

analysis of Trojan horse infection in control lab environment. The findings

of this study can help determine the decision about which tool to use to

detect Trojan horse infections and provide insights into the strengths and

limitations of Weka and Python Colab for building machine-learning models

in general.

Keywords:

Cloud computing

Control lab

Cybersecurity

Machine learning

Python

Trojan horse infection

Weka

 This is an open access article under the CC BY-SA license.

Corresponding Author:

Hasan Kanaker

Department of Cyber Security, Faculty of Information Technology, Isra University

Amman, 11622, Jordan

Email: hasan.kanaker@iu.edu.jo

1. INTRODUCTION

 Cloud computing, an innovative method of information technology, uses the internet and remote

servers to deliver a common set of computing resources and applications to meet customer requirements [1].

The advent of cloud computing technologies in the first decade of this century ushered in a new era in the

development of information technology (IT) infrastructure, as users can now obtain software and computing

power over the Internet or networks. This has also led to the emergence of new models for hosting and

distributing online services [2], [3]. Cloud computing allows users to easily access services, facilitating

seamless access to data and program execution on a large number of connected computers. Moreover, it

removes the requirement for users to install software on their personal computers and instead provides access

to resources and applications via an internet connection at any time and from any location [2], [4].

Cloud computing has been widely adopted by public-sector businesses in many countries, including

Australia, the United Kingdom (UK), the United State (US), and various European countries [5]–[7]. The

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 A comparative study of machine learning tools for detecting Trojan horse … (Hasan Kanaker)

6643

government cloud (G-Cloud) infrastructure was introduced by the UK government in 2010, saving an

estimated £3.2 billion [5], [8], [9]. The cloud computing mall was also introduced by the US government in

2009 [8]. Cloud computing offers numerous benefits such as shared asset pooling, tremendous versatility,

cost savings, flexibility, pay-as-you-go pricing, self-provisioning of resources, and multi- tenancy [10]–[12].

However, there are still security concerns and risks associated with cloud computing [13], particularly the

risk of security attacks. As a result, both service providers and clients are concerned about these attacks [14].

Various forms of attacks pose a threat to cloud computing, including phishing, authentication,

service denial, man-in-the-middle, and malware insertion, among others [2], [15]–[18]. Among them,

malware attacks are a significant risk to the cloud computing ecosystem. One such attack is the "cloud Trojan

injection attack," which involves injecting a malicious program into cloud services to cause harm. These

programs can be disguised as normal commands and executed as such [19]. Cloud Trojan injection attacks

can introduce malicious services, virtual machines, and applications into cloud systems, which can affect

cloud functionality by interfering with or altering it [20], [21]. Attackers upload a malicious version of

application, virtual machine or service to a cloud system so that it will think it is a real instance of that

application virtual machine or service. When a normal user requests an instance of the malicious service to

run, the malicious code is executed [20]. Trojan horses are challenging to detect using signature-based

technologies, which is the most common anti-virus system detection method [22]. Furthermore, only well-

known signatures can be used with signature-based anti-virus to achieve high accuracy. This type of

detection has a drawback in that it frequently misses fresh attacks when malware completely changes its

signature.

With the increasing number of cyber-attacks, the need for effective tools to detect malware and

Trojan horse infections is more important than ever. To protect and reduce damage caused by Trojan horse

infection, machine learning tools have been proven as an effective technique used to detect such threats by

analyzing patterns in the data and identifying possible dangerous behavior. Weka and Python Colab are

known tools to use and implement machine learning models. Weka is a Java-based program that provides a

graphical user interface exploited ready-to-use machine learning models, while Python Colab is an online

Jupyter notebook environment that allows users to utilize to implement and run Python machine learning

libraries in the cloud. Although, it is possible to create and utilize machine learning models to identify Trojan

horse infections using either Weka or Python Colab, there is limited researches comparing the performance

of these two tools.

The goal of this study is to compare the performance of Weka and Python Colab in detecting Trojan

horse infections. We will evaluate the recall, accuracy, and F1-score of machine learning models built with

Weka and implanted using Python Colab. We will also compare the computational resources required to

build and train the models, including processing time and memory usage. The results of this study help to

determine the decision about which tool to use to detect Trojan horse infections. Furthermore, this study

provides insights into the strengths and limitations of Weka and Python Colab for building machine-learning

models in Trojan horse detection.

2. BACKGROUND AND RELATED WORKS

Trojan horses are a type of malicious software that pose as legitimate or helpful programs to gain

access to users' computers. Cybercriminals frequently use social engineering tactics to trick users into

unintentionally installing them [23]. Once installed, Trojan horses have the ability to remotely manipulate the

victim's device, steal sensitive data, watch user activities, and corrupt, destroy, or modify system files [24],

[25]. Unlike viruses and worms, Trojans require user interaction to propagate. They are considered among

the most dangerous forms of malware due to their prevalence [24]–[26].

Trojan horses can come in two types: general and remote-access Trojans [24]. General Trojans

perform a variety of malicious actions, including jeopardizing the data integrity of victim machines, directing

users' workstations to specific websites via system files, and running additional harmful programs [26]. They

have the ability to track user behavior and provide the information to the attacker. Remote-access Trojans, on

the other hand, have a special capacity that allows hackers to remotely manipulate the target machine across

the internet or a local area network (LAN). This type of Trojan is particularly dangerous as it can be used to

steal confidential information from the victim's personal computer (PC) and carry out other nefarious

activities.

Machine learning methods have become increasingly popular for malware detection in cloud

environments, as well as in various other areas [27]–[32]. Support vector machines (SVM), decision trees

(DT), random forest (RF), and naive Bayes (NB) are some of the machine learning techniques that have been

used to successfully find malware in practical applications [30], [33], [34]. The size of the training dataset and

the number of features that can be retrieved from it, however, determine how accurate these algorithms are.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6642-6655

6644

In a recent study [23], an approach based on convolutional neural networks (CNN) for virus

detection in cloud platforms has been suggested. For identifying malware, the authors used a CNN model

with two dimensions (2D) and a CNN model with three dimensions (3D). Also, they conducted experiments

by installing various infections on simulated PCs and achieved 79% accuracy with the 2D CNN model and

90% accuracy with the 3D CNN model. However, this study did not compare CNN to conventional machine

learning techniques; it only focused on CNN [29].

The efficacy of various machine learning methods, such as DT and SVM, was proved using a

system based on machine learning for malware detection [30]. The researchers employed the Cuckoo

Sandbox to test different malware kinds in a simulated environment, producing an analysis report depending

on how the malware samples act in the setting. The Cuckoo Sandbox has been utilized by numerous

researchers to examine malware [30], [35]–[38] examined the viability of using CNN, RF, and k-nearest

neighbors (KNN) models and used features from application programming interface (API) calls to identify

malware. Additionally, Watson et al. [31] utilized the random forest classifier to keep track of a virtual

machine's process activity.

Weka has been used in studies on malware detection by numerous security researchers, including

[24], [26], [39], [40]. On the other hand, several researchers, including [40]–[43] have utilized Python in their

studies. Kumar et al. [44] reportedly demonstrated a machine learning-based approach to accurately and

efficiently determine whether a sample is malware or benign. Weka was utilized by the authors to implement

six classification algorithms. As a result of applying 10-fold cross-validation, the random forest classifier was

able to achieve an accuracy of 98.4%.

J45, logistic model tree (LMT), naive Bayes (NB), random forest (RF), multilayer perceptron

(MLP) algorithm, random tree (RT), reduced error pruning tree (REPTree), Bagging, AdaBoost, KStar,

simple logistic, lazy k-nearest neighbor (IBK), locally weighted learning (LWL), support vector machine

(SVM), and radial basis function (RBF) network are among the fifteen different machine learning algorithms

used, this report [26] provided a comparative analysis of malware identification. The experiment was carried

out in the Weka environment using the classification of malware with portable executable (PE) headers

(ClaMP) dataset. The accuracy rate is still poor even if the RF method performs better than the other

techniques.

In accordance with a study [24], this study examined eight machine learning classifiers to detect

Trojan horses in cloud environments. Investigations examining the accuracy of the cloud Trojan horse

detection rate have been conducted using the data mining tool Weka. The most effective classifiers for

identifying Trojan horses in a cloud-based setting have been shown to be the sequential minimal optimization

(SMO) and multilayer perceptron based on the studies that have been done. With a 95.86% accuracy rate,

SMO and multilayer perceptron have the greatest rate.

According to their research paper, Kanaker et al. [24] proposed a hybrid machine learning algorithm

that merged KNN and NB for detecting Trojan horses, and they executed their work using Python in the

Colab environment, where certain machine-learning techniques are tested with 99.5% accuracy. The

empirical results of this study demonstrate that the hybrid algorithm is the most effective algorithm for

detecting a Trojan horse.

Sethi et al. [45] develop a machine learning-based malware analysis framework for rapid and

accurate malware detection. A Python package was developed for feature selection, feature extraction, and

the building of training and testing datasets. For the detection and classification of the provided dataset, they

made use of numerous machine learning techniques offered by the Python Scikit-learn framework. A

decision tree with an accuracy of 99.37% has a high detection rate, according to experimental results.

In a publication [46], a unique machine learning approach is suggested and implemented in Python

and MATLAB to recognize the Mirai malware. This study compares the performance of artificial neural

network (ANN) and RF models using a dataset created by combining the benign and malicious datasets for

seven internet of things (IoT) devices. Because of the greatest performance, which had an accuracy of 92.8%,

the results are deemed to be reliable and accurate.

The first step in the malware detection procedure is malware analysis. Malware cannot be

discovered until it is observed and its behavior is understood. As a result, it is easy to add security measures

to malware detectors. There are two categories of malware analysis techniques: static and dynamic,

depending on the amount of time and technology required to complete the investigation.

Without actually running them, static analysis examines malware executable files in a controlled

environment [47]–[49]. Static data is extracted from the code and used to determine whether the software

contains malicious code [47]. The executable file contains a lot of static features, like memory compactness.

To do static analysis, a variety of tools can be employed, including decompilers, disassemblers, source code

analyzers, and debuggers [47]. Furthermore, only known malware signatures can be reliably detected via

static analysis. Because of this, it could rarely be unable to assess malware signatures that are unknown and

Int J Elec & Comp Eng ISSN: 2088-8708

 A comparative study of machine learning tools for detecting Trojan horse … (Hasan Kanaker)

6645

not in its database. Regular updating and production by humans with specific knowledge are required for the

signatures used in standard static analysis [4], [7], [24], [39]. It is not employed in this study due to the

reasons mentioned above.

Dynamic analysis evaluates malware behavior in a dynamically controlled environment. In addition

to starting in privileged mode, the virus modifies the registry as it runs. When the malware switches to

privilege mode, the operating system will be completely under its control. All resources are completely under

the control of dynamic analytic software. It is able to function in a secure environment as a result. The

program can operate in debug mode and alter computer registry keys in a controlled environment The

dynamic environment returns to the initial snapshot that was taken at the start of environment development

after executing and analyzing a malware sample. Before looking at another malware sample, this makes sure

the area is clean.

By strengthening threat identification and prediction, automating and streamlining threat response,

and fortifying and adapting security measures, the literature in the field of machine learning and

cybersecurity advances our understanding and capacities. It advances the discipline by introducing novel

approaches and offering useful case studies that illustrate their effectiveness in the real world. This helps to

better protect digital infrastructures by providing both theoretical understanding and useful tools.

3. RESEARCH METHOD

In order to compare the effectiveness of Weka and Python Colab in detecting Trojan horse infections,

we will use a dataset consisting of known malware and benign files. We utilized several tools, including

Sandbox, NEWT Pro, PromiscDetect, ProcessExplorer, PortMon, and Wireshark. Dynamic analysis was used in

this study since it is more effective, powerful, and reliable. The analysis was carried out in four stages:

− Data collection: We gathered benign and Trojan horse samples from VirusShare.com and VirusTotal [4],

[24], [30], [39], [50], [51]. One of the largest publicly available virus repositories on the internet is called

VirusShare, whereas VirusTotal serves as a repository for malware samples. We obtained 3,000

executable Trojan horses from samples made available on VirusTotal and VirusShare, which were

detected by powerful antivirus systems such as Avast, F-Secure, Kaspersky, Comodo, Avira, Bitdefender,

and others. Machine learning techniques will be applied on this dataset for further malware research.

− Data analysis: A controlled lab environment is necessary for Trojan horse analysis. To establish a

completely controlled, segregated environment and prevent the spread of Trojan horses, the physical

network link must be severed. However, without a network connection it is impossible to do dynamic

analysis on Trojan horse samples. A virtual cloud environment is created using virtualization

technologies, and 𝑉𝑚𝑛𝑒𝑡 is used to link a dissimilar server (monitoring host and the attacker) to the cloud.

This controlled lab architecture is comparable to that used by [2], [24], [25], [30]

− Feature extraction: This stage involves determining the significance of the dataset's current features. It

retains the crucial components while eliminating the superfluous ones [52]. Feature extraction can be used

to achieve higher accuracy rates.

− Testing framework: In this stage, we perform machine learning algorithms on the dataset using Weka and

Python independently after feature extraction.

4. DATA ANALYSIS

Figure 1 demonstrates a controlled lab setup [2], [24] where a real device is used to host a

virtualized version of the cloud, isolated from the internet. The attacker initiates the attack from outside the

cloud situation, whereas the server in the cloud has monitoring tools installed to track activities such as

process monitoring, file monitoring, network monitoring, and registry monitoring. Dynamic analysis and

behavior monitoring through the Cuckoo Sandbox were used to assess the detection of Trojan horses in the

controlled lab environment. A similar approach has been adopted in [2], [24], [39], [45]. The accuracy of

detection was calculated separately using two different environments: Python Colab and the Weka data

mining tool.

The dynamic and Cuckoo Sandbox analysis have been performed on all files. Each file is executed

and its runtime operations are examined to determine the behavior of the virus in a newly installed operating

system. The Trojan horse samples are tested in a controlled environment mode for dynamic analysis. Once

the testing is complete, the Deepfreeze computer program is used to restore the controlled environment to its

original uninfected state. During the dynamic analysis stage, the behavior of each injected Trojan sample is

observed on the host machine. The monitoring tools used in this stage include listening ports, registry,

network, random-access memory (RAM), files, transmission control protocol (TCP), processes, and

dynamic-link libraries (DLLs). Any suspicious behavior detected by these tools, the sample is identified and

labeled as Trojan.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6642-6655

6646

Figure 1. Controlled laboratory setup [2], [24]

4.1. Feature extraction

The process of evaluating an existing feature's relevance in a dataset is called feature extraction. The

salient characteristics are kept while the irrelevant ones are removed [24]. Selecting features aids in

improving accuracy rates. For this study, we have collected 3000 Trojan horse samples from VirusTotal and

VirusShare. The process of feature extraction employed the Cuckoo Sandbox analysis report and dynamic

analysis. Through analysis carried out in a controlled lab environment, the qualities that were recognized as

properties of each Trojan horse were identified, and a relevant dataset was established. This phase is finished

with the creation of an extensive output analysis report. This report contains details on the creation,

modification, deletion, and access to files and registry keys as well as DLLs, RAM, and networking

protocols. Nine features make up the output file, which has been translated to the suitable file format arff.

The output data is encoded in this file format so that it may be used as input data in the machine learning

simulation environments of Python Colab and WEKA. The trojan horse dataset was successfully classified in

this study using a 10-fold cross-validation along with a number of classifiers, including NB, IBK, RF, J48,

and regression.

4.2. Testing framework

The framework depicted in Figure 2 is developed using Python in the Colab environment and Weka

machine learning technique, where certain machine-learning algorithms are tested and implemented. The

Trojan horse dataset is classified using classifiers including 10-fold cross-validation, J48, RF, MLP, IBK,

regression, NB, and others.

Figure 2. Framework for testing trojan attack detection

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this experiment, a variety of machine-learning techniques were applied using both the Weka tool

and Python Colab. Python is a widely used programming language in data science, scientific computing, and

machine learning, and has an extensive library of tools for these fields [38]. Weka, on the other hand, is a

Java-based tool designed specifically for data mining and includes a range of machine learning techniques

[53]. Researchers have used both Weka and Python in clustering, classification, and detection studies [24],

[26], [39]–[43].

For this experimentation, a 10-fold cross-validation dataset was generated using both Weka and

Python. An approach that is frequently used to evaluate the error rate of a learning strategy on a particular

Int J Elec & Comp Eng ISSN: 2088-8708

 A comparative study of machine learning tools for detecting Trojan horse … (Hasan Kanaker)

6647

dataset is the 10-fold cross validation method [54], [55]. The dataset was divided into ten parts, or "folds,"

and each fold was utilized nine times for training and once for testing. The usage of a 10-fold cross-

validation approach has two main advantages: Because it uses data as possible for both the training and

testing phases, it is more accurate [24].

Various established performance metrics, including accuracy rate, F-measure, precision, and recall,

have been employed to assess the classifiers' efficacy. Table 1 shows the performance metrics of various

machine learning algorithms applied in the experiment using both WEKA and Python. The algorithms

include J48, IBK, NB, regression, RF, SMO and MLP. From subsections 5.1 to 5.4, explains the

experimental results in detail.

Table 1. Trojan horse detection results using Weka and Python various machine learning methods
 WEKA Python

Algorithm Precision Recall F-Measure Accuracy (%) Precision Recall F-Measure Accuracy (%)
Naïve Bayes 0.957 0.957 0.953 95.6 1 0.823 0.903 84.5

Random forest 0.957 0.957 0.953 95.6 0.958 0.977 0.968 94.3

IBK 0.957 0.957 0.953 95.6 0.962 1 0.981 96.6
Regression 0.957 0.957 0.953 95.6 0.876 1 0.934 87.6

J48 0.957 0.957 0.953 95.6 0.953 0.977 0.974 95.4

Multilayer perceptron 0.959 0.959 0.955 95.8 0.876 1 0.934 87.6
SMO 0.959 0.959 0.955 95.8 0.876 1 0.934 87.6

5.1. Precision rate results in Weka and Python

Precision provides an explanation for the percentage of genuine positive classifications in all

positive findings. It is the quantity of samples that are correctly recognized and do not represent false

positives. Equation (1) states that precision is calculated using the TP and FP rates. Greater precision is

indicated by a higher TP.

Precision =
TP

(TP+FP)
 (1)

The precision findings for each of the classifiers used in this experiment are displayed in Table 1

and Figure 3. For WEKA, all the algorithms have the same precision rate value of 0.957% except for SMO

and Multilayer Perceptron, which have a slightly higher precision rate value of 0.959%. However, for

Python, the naïve Bayes algorithm has the highest precision rate value at 100%.

Figure 3. Precision rate of numerous classification algorithms

5.2. Recall rate results in Weka and Python

Recall is a statistic that quantifies the frequency with which a machine learning model properly

selects positive samples (true positives) from all of the real positive samples in the dataset. On the other

hands, truly positive (TP) samples are those from predicted clouds trojan horse samples that are correctly

categorized and tagged as dangerous. Calculating recall is done using (2).

0.957 0.957 0.957 0.957 0.957 0.959 0.959

1

0.958 0.962

0.876

0.953

0.876 0.876

0.8

0.85

0.9

0.95

1

1.05

Naïve Bayes Random
Forest

IBK Regression J48 Multilayer
Perceptron

SMO

P
er

ce
n

ta
g
e

Machine Learning Algorithms

Precision

WEKA Precision PYTHON Precision

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6642-6655

6648

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (2)

From the experimental results in Table 1 and Figure 4, it is clearly seen that for WEKA, all the algorithms

have the same recall rate value of 0.957%, except for MLP and SMO, which have a slightly higher recall rate

value of 0.959%. For Python, IBK, regression, SMO and the multilayer perceptron algorithm have the

highest recall rate value at 100%.

Figure 4. Recall rate of numerous classification algorithms

5.3. F-Measure rate results in Weka and Python

The F-Measure is a system performance metric that aggregates recall and precision into a single

number. The calculation of the F-measure is shown in (3).

F − Measure =
2 x Recall x precision

 Recall+ precision
 (3)

The experimental results in Table 1 and Figure 5 show that for WEKA, all the algorithms have the same

F-measure rate value of 0.953%, except for MLP and SMO, which have slightly higher F-measure rate values

of 0.955%. While, for Python, IBK has the highest F-measure rate value at 0.981% and naïve Bayes

algorithm has the lowest F-measure rate value at 0.903%.

Figure 5. F-Measure rate of numerous classification algorithms

0.957 0.957 0.957 0.957 0.957 0.959 0.959
0.823

0.977 1 1 0.977 1 1

0

0.2

0.4

0.6

0.8

1

1.2

Naïve Bayes Random Forest IBK Regression J48 Multilayer
Perceptron

SMO

P
er

ce
n

ta
g
e

Machine Learning Algorithms

Recall

WEKA Recall PYTHON Recall

0.953
0.953 0.953 0.953 0.953 0.955 0.955

0.903

0.968

0.981

0.934

0.974

0.934 0.934

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Naïve Bayes Random
Forest

IBK Regression J48 Multilayer
Perceptron

SMO

P
er

ce
n

ta
g
e

Machine Learning Algorithms

F-Measure

WEKA F-Measure PYTHON F-Measure

Int J Elec & Comp Eng ISSN: 2088-8708

 A comparative study of machine learning tools for detecting Trojan horse … (Hasan Kanaker)

6649

5.4. Accuracy rate results in Weka and Python

Accuracy is often referred to as correct classification. The percentage of accurate predictions is

expressed by the performance statistic accuracy. Table 1 and Figure 6 show the accuracy rates for the

different classifiers.

The experimental results for the various classifiers in this study have shown that for WEKA,

multilayer perceptron and SMO have slightly higher accuracy rates at 95.8%. In contrast, all other classifiers

accuracy rates are equal, and their accuracy rates are equal to 95.6%. While, for Python, the experimental

results have shown that the IBK has the highest accuracy rate value of 96.6% and the naïve Bayes has the

lowest accuracy rate value at 84.5%.

Depending on the findings in Table 1 and Figures 3 to 6, it can be concluded that for WEKA, all the

algorithms have the same precision, recall, F-measure, and accuracy rate values of 95.7% except for

multilayer perceptron and SMO, which have slightly higher precision, recall, and F-measure rate values at

95.9% and accuracy rate values at 95.8%. On the other hand, for Python, naïve Bayes has the highest

precision rate value at 100%, while IBK, regression, SMO and multilayer perceptron, have the highest recall

rate value at 100%. IBK has the highest F-measure and accuracy rate values at 98.1% and 96.6%,

respectively. However, regression, multilayer perception, and SMO have the lowest precision rate value at

87.6%. Naïve Bayes has the lowest recall, F-measure, and accuracy rate values at 82.3%, 90.3%, and 84.5%,

respectively.

Figure 6. Accuracy rate of numerous classification algorithms

Different machine learning algorithms perform differently in Trojan horse detection. Multilayer

perceptron and sequential minimal optimization classifiers have shown better results in Weka, while IBK and

J48 classifiers have performed better in Python. Overall, the findings show that machine learning techniques

are effective at finding Trojan horses, with high recall, precision, and F-Measure scores. The choice of

algorithm and tool (WEKA or Python) may depend on the dataset, specific requirements and constraints of

the application.

A comparison between Python and Weka for various machine learning algorithms in term of the

execution time is shown in Table 2. We can see that Python has outperform Weka in lower for most of the

algorithms. Python execution time for naïve Bayes, random forest, IBK, J48, SMO is smaller than Weka's.

But the multilayer perceptron algorithm has shown more execution time in Weka. The reason for that

because Weka’s implementation of multilayer perceptron has complex computations than in Python. Overall,

the experimental findings demonstrate that Python is better in terms of execution time for the majority of

machine learning algorithms. However, we should not forget that the execution time can affected by the

hardware and software configurations of the computer systems used for the analysis.

This research employs the default parameter configurations for both Python-Colab and Weka. The

Tables 3 to 9 display the parameter settings for machine learning algorithms used in this study. They show

naive Bayes, random forest, IBK, regression, J48, multilayer perceptron, and sequential minimal optimization

classifiers using Python-Colab and Weka, respectively.

95.6 95.6 95.6 95.6 95.6 95.8 95.8

84.5

94.3

96.6

87.6

95.4

87.6 87.6

78

80

82

84

86

88

90

92

94

96

98

Naïve Bayes Random Forest IBK Regression J48 Multilayer
Perceptron

SMO

P
er

ce
n

ta
g
e

Machine Learning Algorithms

Accuracy (%)

WEKA Accuracy (%) PYTHON Accuracy (%)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6642-6655

6650

Table 2. Time comparison between Python and Weka
Machine learning algorithm Python execution time (s) Weka execution time (s)

Naïve Bayes 0.003 0.02

Random forest 0.001 0.05

IBK 0.002 0.01

Regression 0.004 0.07

J48 0.002 0.01

Multilayer perceptron 0.003 0.79
SMO 0.002 0.03

Table 3. Naive Bayes machine learning algorithm parameters in Python and Weka
Python Weka

Parameter Value Parameter Value

priors None UseKernelEstimator False

var_smoothing 1e-9 UseSupervisedDiscretization False

Table 4. Random forest machine learning algorithm parameters in Python and Weka
Python Weka

Parameter Value Parameter Value

n_estimators 500 bagSizePercent 100

criterion gini maxDepth 0

max_depth None numFeatures 0
min_samples_split 2 seed 1

min_samples_leaf 1 numExecutionSlots 1

min_weight_fraction_leaf 0 batchSize 100

max_features auto debug False

max_leaf_nodes None doNotCheckCapabilities False

min_impurity_decrease 0 breakTiesRandomly False

bootstrap True printClassifiers False
oob_score False printTrees False

n_jobs None inBagOutOfBagEvaluation False

random_state 1

verbose 0

warm_start False

class_weight None

ccp_alpha 0.0

max_samples None

Table 5. IBK machine learning algorithm parameters in Python and Weka
Python Weka

Parameter Value Parameter Value

n_neighbors 5 KNN 1

weights uniform DistanceWeighting No distance weighting

algorithm auto WindowSize 0

leaf_size 30 DistanceFunction EuclideanDistance

p 2 CrossValidate False

metric minkowski MeanSquared False

metric_params None Debug False
n_jobs None doNotCheckCapabilities False

Table 6. Regression machine learning algorithm parameters in Python and Weka
Python Weka

Parameter Value Parameter Value

penalty l2 Ridge 1.0E-8
dual False MaxIts -1

tol 1e-4 Debug False

C 100 doNotCheckCapabilities False

fit_intercept True BatchSize 100

intercept_scaling 1 NumDecimalPlaces 2

class_weight None

random_state 1

solver lbfgs
max_iter 100

multi_class ovr

verbose 0

warm_start False

n_jobs None

l1_ratio None

Int J Elec & Comp Eng ISSN: 2088-8708

 A comparative study of machine learning tools for detecting Trojan horse … (Hasan Kanaker)

6651

Table 7. J48 machine learning algorithm parameters in Python and Weka
Python Weka

Parameter Value Parameter Value

Criterion gini Criterion entropy

Splitter best Max depth None

Max depth None Min samples split 2
Min samples split 2 Min samples leaf 1

Min samples leaf 1 CCP alpha 0.25

Min weight fraction leaf 0.0 Subtree raising True
Max features None Use Laplace False

Random state None Binary splits False

Max leaf nodes None Save instance data False
Min impurity decrease 0.0

Class weight None

CCP alpha 0.0

Table 8. Multilayer perceptron machine learning algorithm parameters in Python and Weka
Python Weka

penalty None learningRate 0.3

alpha 0.0001 momentum 0.2
fit_intercept True hiddenLayers 'a'

max_iter 1000 trainingTime 500

tol 1e-3 validationThreshold 20
shuffle True seed 0

verbose 0 learningRateDecay False

eta0 0.1 convergeEpochs 0
n_jobs None convergeThreshold 0.001

random_state 1 normalizeAttributes True

early_stopping False normalizeClass True
validation_fraction 0.1 decay False

n_iter_no_change 5 reset True

class_weight None nominalToBinaryFilter True
warm_start False debug False

Table 9. SMO machine learning algorithm parameters in Python and Weka
Python Weka

C 1.0 C 1.0
kernel linear kernel PolyKernel

degree 3 filterType 2

gamma 'scale' toleranceParameter 0.001
coef0 0.0 epsilon 1.0E-12

shrinking True numFolds -1

probability False randomSeed 1
tol 1e-3 buildLogisticModels False

cache_size 200 debug False
class_weight None doNotCheckCapabilities False

verbose False

max_iter -1
decision_function_shape 'ovr'

break_ties False

random_state 1

6. CONCLUSION

This study explored the security risks and benefits associated with cloud computing and the usage of

machine learning for detecting Trojan horse infections. Weka and Python Colab, two well-known machine

learning tools, were tested in the study to see how well they performed at identifying Trojan horse infections.

The results show that both tools are effective in detecting Trojan horse infections, However, the instrument

selected will rely on the particular needs and resources offered. Furthermore, the study evaluated the

computational resources required by each tool and found that Python Colab generally had faster execution

times than Weka. This study helps researchers and practitioners in cybersecurity field to adopt the suitable

machine learning tools to detect the malware infection effectively based on performance and accuracy

detection rate using this study insights into the strengths and limitations of Weka and Python Colab for

building machine learning models and detecting Trojan horse infections.

This study limited by extracting nine features from the samples. However, it is crucial to emphasize

that additional study is required, such as by increasing feature extraction, in order to increase the success rate

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6642-6655

6652

of Trojan horse identification in the cloud computing environment. Future research can build upon this study

by exploring other machine learning algorithms and tools for detecting security threats in cloud computing

environments. Moreover, this research can be extended by comparing the Weka and Python Colab with

tuning and utilize the features selection to enhance and compare the performance and accuracy rate.

REFERENCES
[1] N. A. Karim et al., “Performance comparison of hyper-V and KVM for cryptographic tasks in cloud computing,” Computers,

Materials & Continua, vol. 78, no. 2, pp. 2023–2045, 2024, doi: 10.32604/cmc.2023.044304.

[2] H. M. Kanaker, M. M. Saudi, and M. F. Marhusin, “Detecting worm attacks in cloud computing environment: Proof of concept,”

in 2014 IEEE 5th Control and System Graduate Research Colloquium, Aug. 2014, pp. 253–256, doi:
10.1109/ICSGRC.2014.6908732.

[3] M. G. Avram, “Advantages and challenges of adopting cloud computing from an enterprise perspective,” Procedia Technology,

vol. 12, pp. 529–534, 2014, doi: 10.1016/j.protcy.2013.12.525.
[4] Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data security and privacy in cloud computing,” International Journal of Distributed

Sensor Networks, vol. 10, no. 7, Jul. 2014, doi: 10.1155/2014/190903.

[5] H. M. Kanaker, M. M. Saudi, and M. F. Marhusin, “A systematic analysis on worm detection in cloud-based systems,” ARPN
Journal of Engineering and Applied Sciences, vol. 10, no. 3, pp. 1405–1412, 2015.

[6] S. Jones, Z. Irani, U. Sivarajah, and P. E. D. Love, “Risks and rewards of cloud computing in the UK public sector: a reflection on

three organisational case studies,” Information Systems Frontiers, vol. 21, no. 2, pp. 359–382, Apr. 2019, doi: 10.1007/s10796-
017-9756-0.

[7] V. Kundra, Federal Cloud Computing Strategy, U.S: CreateSpace Independent Publishing Platform, 2021. Accessed: Mar. 24,

2024. [Online]. Available: https://www.amazon.com/Federal-Computing-Strategy-Information-Officer/dp/1477475567#
[8] I. Bojanova, J. Zhang, and J. Voas, “Cloud computing,” IT Professional, vol. 15, no. 2, pp. 12–14, Mar. 2013, doi:

10.1109/MITP.2013.26.

[9] B. Kepes, “A cautionary government cloud story--UK’s G-cloud. does the ‘G’ stand for gone?,” FORBES, 2015.
https://www.forbes.com/sites/benkepes/2015/01/27/a-cautionary-government-cloud-story-uks-g-cloud-does-the-g-stand-for-gone/

(accessed Mar. 24, 2024).

[10] S. P. Amjad Hussain Bhat and D. Jena, “Machine learning approach for intrusion detection on cloud virtual machines,”
International Journal of Application or Innovation in Engineering & Management (IJAIEM), vol. 2, no. 6, pp. 57–66, 2013.

[11] T. Campbell, “Cloud computing security,” Practical Information Security Management, pp. 193–204, 2016, doi: 10.1007/978-1-

4842-1685-9_12.
[12] M. Tarawneh, F. AlZyoud, Y. Sharrab, and H. Kanaker, “Secure e-health framework in cloud-based environment,” in 2022

International Arab Conference on Information Technology (ACIT), Nov. 2022, pp. 1–5, doi: 10.1109/ACIT57182.2022.9994164.

[13] M. Almorsy, J. Grundy, and I. Müller, “An analysis of the cloud computing security problem,” arXiv preprint arXiv:1609.01107,
2016.

[14] S. Subashini and V. Kavitha, “A survey on security issues in service delivery models of cloud computing,” Journal of Network

and Computer Applications, vol. 34, no. 1, pp. 1–11, Jan. 2011, doi: 10.1016/j.jnca.2010.07.006.
[15] N. A. Karim, H. Kanaker, S. Almasadeh, and J. Zarqou, “A robust user authentication technique in online examination,”

International Journal of Computing, pp. 535–542, Dec. 2021, doi: 10.47839/ijc.20.4.2441.

[16] N. A. Karim, O. A. Khashan, H. Kanaker, W. K. Abdulraheem, M. Alshinwan, and A.-K. Al-Banna, “Online banking user
authentication methods: a systematic literature review,” IEEE Access, vol. 12, pp. 741–757, 2024, doi:

10.1109/ACCESS.2023.3346045.

[17] N. A. Karim, H. Kanaker, W. K. Abdulraheem, M. A. Ghaith, E. Alhroob, and A. M. F. Alali, “Choosing the right MFA method
for online systems: a comparative analysis,” International Journal of Data and Network Science, vol. 8, no. 1, pp. 201–212, 2024,

doi: 10.5267/j.ijdns.2023.10.003.

[18] N. A. Karim et al., “Using interface preferences as evidence of user identity: a feasibility study,” International Journal of Data
and Network Science, vol. 8, no. 1, pp. 537–548, 2024, doi: 10.5267/j.ijdns.2023.9.003.

[19] T.-S. Chou, “Security threats on cloud computing vulnerabilities,” International Journal of Computer Science and Information
Technology, vol. 5, no. 3, pp. 79–88, Jun. 2013, doi: 10.5121/ijcsit.2013.5306.

[20] D. Jamil and H. Zaki, “Security issues in cloud computing and countermeasures,” International Journal of Engineering Science

and Technology, vol. 3, no. 4, pp. 2672–2676, 2011.
[21] C. Modi, D. Patel, B. Borisaniya, A. Patel, and M. Rajarajan, “A survey on security issues and solutions at different layers of

Cloud computing,” The Journal of Supercomputing, vol. 63, no. 2, pp. 561–592, Feb. 2013, doi: 10.1007/s11227-012-0831-5.

[22] Y.-F. Liu, L.-W. Zhang, J. Liang, S. Qu, and Z.-Q. Ni, “Detecting Trojan horses based on system behavior using machine learning
method,” in 2010 International Conference on Machine Learning and Cybernetics, Jul. 2010, pp. 855–860, doi:

10.1109/ICMLC.2010.5580591.

[23] N. L. Yer Fui, A. Asmawi, and M. Hussin, “A dynamic malware detection in cloud platform,” International Journal of Difference
Equations, vol. 15, no. 2, pp. 243–258, Dec. 2020, doi: 10.37622/IJDE/15.2.2020.243-258.

[24] H. Kanaker, N. Abdel Karim, S. A.B. Awwad, N. H.A. Ismail, J. Zraqou, and A. M. F. Al ali, “Trojan horse infection detection in

cloud based environment using machine learning,” International Journal of Interactive Mobile Technologies (iJIM), vol. 16,
no. 24, pp. 81–106, Dec. 2022, doi: 10.3991/ijim.v16i24.35763.

[25] A. M. Abuzaid, M. M. Saudi, B. M. Taib, and Z. H. Abdullah, “An efficient Trojan horse classification (ETC),” IJCSI

International Journal of Computer Science Issues, vol. 10, no. Issue 2, No 3, pp. 96–104, 2013.
[26] Y. J. H. Emmanuel Gbenga Dada, Joseph Stephen Bassi and A. H. Alkali, “Performance evaluation of machine learning

algorithms for detection and prevention of malware attacks,” IOSR Journal of Computer Engineering (IOSR-JCE), vol. 21, no. 3,

pp. 18–27, 2019.
[27] M. Abdelsalam, R. Krishnan, and R. Sandhu, “Online malware detection in cloud auto-scaling systems using shallow

convolutional neural networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 11559 LNCS, pp. 381–397, 2019, doi: 10.1007/978-3-030-22479-0_20.
[28] M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu, “Malware detection in cloud infrastructures using convolutional neural

networks,” IEEE International Conference on Cloud Computing, CLOUD, vol. 2018-July, pp. 162–169, 2018, doi:

Int J Elec & Comp Eng ISSN: 2088-8708

 A comparative study of machine learning tools for detecting Trojan horse … (Hasan Kanaker)

6653

10.1109/CLOUD.2018.00028.
[29] J. C. Kimmell, M. Abdelsalam, and M. Gupta, “Analyzing machine learning approaches for online malware detection in cloud,”

in Proceedings - 2021 IEEE International Conference on Smart Computing, SMARTCOMP 2021, 2021, pp. 189–196, doi:

10.1109/SMARTCOMP52413.2021.00046.
[30] R. Kumar, K. Sethi, N. Prajapati, R. R. Rout, and P. Bera, “Machine learning based malware detection in cloud environment using

clustering approach,” in 2020 11th International Conference on Computing, Communication and Networking Technologies

(ICCCNT), Jul. 2020, pp. 1–7, doi: 10.1109/ICCCNT49239.2020.9225627.
[31] M. R. Watson, N. U. H. Shirazi, A. K. Marnerides, A. Mauthe, and D. Hutchison, “Malware detection in cloud computing

infrastructures,” IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 2, pp. 192–205, 2016, doi:

10.1109/TDSC.2015.2457918.
[32] A. Mousa, F. Alali, and H. Kanaker, “Advances in the processing and analysis of medical images using neural networks,”

NeuroQuantology, vol. 20, no. 6, 2023.

[33] S. Joshi, H. Upadhyay, L. Lagos, N. S. Akkipeddi, and V. Guerra, “Machine learning approach for malware detection using
random forest classifier on process list data structure,” in ACM International Conference Proceeding Series, 2018, pp. 98–102,

doi: 10.1145/3206098.3206113.

[34] A. Utku, İ. A. Doğru, and M. A. Akcayol, “Decision tree based android malware detection system,” in 2018 26th Signal
Processing and Communications Applications Conference (SIU), May 2018, pp. 1–4, doi: 10.1109/SIU.2018.8404151.

[35] C. T. Lin, N. J. Wang, H. Xiao, and C. Eckert, “Feature selection and extraction for malware classification,” Journal of

Information Science and Engineering, vol. 31, no. 3, pp. 965–992, 2015.
[36] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, “Malware detection with deep neural network using process

behavior,” in Proceedings - International Computer Software and Applications Conference, 2016, vol. 2, pp. 577–582, doi:

10.1109/COMPSAC.2016.151.
[37] R. S. Pirscoveanu, S. S. Hansen, T. M. T. Larsen, M. Stevanovic, J. M. Pedersen, and A. Czech, “Analysis of malware behavior:

type classification using machine learning,” in 2015 International Conference on Cyber Situational Awareness, Data Analytics

and Assessment (CyberSA), Jun. 2015, pp. 1–7, doi: 10.1109/CyberSA.2015.7166115.
[38] Y. Fan, Y. Ye, and L. Chen, “Malicious sequential pattern mining for automatic malware detection,” Expert Systems with

Applications, vol. 52, pp. 16–25, 2016, doi: 10.1016/j.eswa.2016.01.002.

[39] H. Kanaker, M. M. Saudi, and N. Azman, “Evaluation of EWCDMCC cloud worm detection classification based on statistical
analysis,” Advanced Science Letters, vol. 23, no. 6, pp. 5365–5369, 2017, doi: 10.1166/asl.2017.7377.

[40] K. Sethi, S. K. Chaudhary, B. K. Tripathy, and P. Bera, “A novel malware analysis framework for malware detection and

classification using machine learning approach,” in Proceedings of the 19th International Conference on Distributed Computing
and Networking, Jan. 2018, pp. 1–4, doi: 10.1145/3154273.3154326.

[41] S. Raschka and V. Mirjalili, “Python machine learning: Machine learning and deep learning with python. Scikit-Learn, and

TensorFlow,” in Taiwan Review, 2017, pp. 1–595.
[42] S. Raschka, J. Patterson, and C. Nolet, “Machine learning in python: main developments and technology trends in data science,

machine learning, and artificial intelligence,” Information (Switzerland), vol. 11, no. 4, 2020, doi: 10.3390/info11040193.

[43] V. Koutsokostas and C. Patsakis, “Python and malware: developing stealth and evasive malware without obfuscation,” in
Proceedings of the 18th International Conference on Security and Cryptography, 2021, pp. 125–136, doi:

10.5220/0010541500002998.

[44] A. Kumar, K. S. Kuppusamy, and G. Aghila, “A learning model to detect maliciousness of portable executable using integrated
feature set,” Journal of King Saud University - Computer and Information Sciences, vol. 31, no. 2, pp. 252–265, 2019, doi:

10.1016/j.jksuci.2017.01.003.

[45] K. Sethi, R. Kumar, L. Sethi, P. Bera, and P. K. Patra, “A novel machine learning based malware detection and classification
framework,” in 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Jun. 2019,

pp. 1–4, doi: 10.1109/CyberSecPODS.2019.8885196.

[46] T. G. Palla and S. Tayeb, “Intelligent Mirai malware detection in IoT devices,” in 2021 IEEE World AI IoT Congress (AIIoT),
May 2021, pp. 420–426, doi: 10.1109/AIIoT52608.2021.9454215.

[47] R. Tahir, “A study on malware and malware detection techniques,” International Journal of Education and Management
Engineering, vol. 8, no. 2, pp. 20–30, Mar. 2018, doi: 10.5815/ijeme.2018.02.03.

[48] A. G. Akintola et al., “Performance analysis of machine learning methods with class imbalance problem in android malware

detection,” International Journal of Interactive Mobile Technologies (iJIM), vol. 16, no. 10, pp. 140–162, May 2022, doi:
10.3991/ijim.v16i10.29687.

[49] M. Ijaz, M. H. Durad, and M. Ismail, “Static and dynamic malware analysis using machine learning,” in 2019 16th International

Bhurban Conference on Applied Sciences and Technology (IBCAST), Jan. 2019, pp. 687–691, doi:

10.1109/IBCAST.2019.8667136.

[50] “virusshare,” virusshare.com. https://virusshare.com/about (accessed Apr. 04, 2024).

[51] “Virustotal,” virustotal.com. https://www.virustotal.com/gui/home/upload (accessed Apr. 04, 2024).
[52] A. R. Muhsen, G. G. Jumaa, N. F. A. L. Bakri, and A. T. Sadiq, “Feature selection strategy for network intrusion detection system

(NIDS) using meerkat clan algorithm,” International Journal of Interactive Mobile Technologies, vol. 15, no. 16, pp. 158–171,

2021, doi: 10.3991/ijim.v15i16.24173.
[53] M. Hall, G. Holmes, B. Pfahringer, P. Reutemann, E. Frank, and I. H. Witten, “The WEKA data mining software: An update,”

ACM SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2014, Accessed: Apr. 04, 2024. [Online]. Available:

https://www.researchgate.net/publication/221900777.
[54] R. R. Bouckaert et al., “WEKA manual for version 3-9-1,” University of Waikato, 2015.

[55] H. N. K. AL-Behadili and K. R. Ku-Mahamud, “Fuzzy unordered rule using greedy hill climbing feature selection method: an

application to diabetes classification,” Journal of Information and Communication Technology, vol. 20, no. 3, pp. 391–422, 2021,
doi: 10.32890/JICT2021.20.3.5.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 14, No. 6, December 2024: 6642-6655

6654

BIOGRAPHIES OF AUTHORS

Hasan Kanaker received his PhD. degree in cybersecurity from USIM

University, Malaysia, in 2018. Currently, he is an assistant professor at the Cybersecurity

Department, Faculty of Information Technology, Isra University, Jordan. His research interests

include security, intrusion detection, machine learning, malware, deep learning, malware

detection, network security, user authentication, cloud computing security, and information

security. He can be contacted at email: hasan.kanaker@iu.edu.jo.

Monther Tarawneh received his PhD. in computing from the University of

Sydney, Australia in 2009. Currently, he is an assistant professor at the Information

Technology Department, College of Information Technology, Tafila Technical University,

Jordan. His research interests include deep learning, security, eHealth, and IoT. He can be

contacted at email: mtarawneh@ttu.edu.jo.

Nader Abdel Karim received his PhD. degree in cybersecurity from UKM

University, Malaysia, in 2017. Currently, he is an assistant professor at the Cybersecurity

Department, College of Artificial Intelligence, Al-Balqa Applied University, Jordan. In the

areas of user authentication, cyber security, human-computer interaction (HCI), and online

learning, he has very strong experience. He has also participated in a number of research

projects, including ones on virtual privacy techniques and preferences-based authentication. He

can be contacted at email: nader.salameh@bau.edu.jo.

Adeeb Alsaaidah received his PhD. degree in computer network from USIM

University, Malaysia, in 2018. Currently, he is an assistant professor at the Network and

Cybersecurity Department, Faculty of Information Technology, Al-Ahliyya Amman

University, Jordan. His research interests include network performance, multimedia networks,

network quality of service (QoS), the IoT, network modeling and simulation, network security,

and cloud security. He can be contacted at email: A.alsaaidah@ammanu.edu.jo.

Maher Abuhamdeh received his PhD. degree in computer information systems

from the Arab Academy for Management, Banking and Financial Sciences, Jordan, in 2010.

Currently, he is an assistant professor at the Computer Information Systems Department,

Faculty of Information Technology, Isra University, Jordan. His research interests include

computer communications (networks), software engineering, big data, artificial intelligence,

data mining, and mobile learning. He can be contacted at email: maher.abuhamdeh@iu.edu.jo.

mailto:mtarawneh@ttu.edu.jo
mailto:A.alsaaidah@ammanu.edu.jo
mailto:maher.abuhamdeh@iu.edu.jo
https://orcid.org/0009-0000-9504-3844
https://scholar.google.com/citations?hl=en&user=wq9qbkEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56405546300
https://www.webofscience.com/wos/author/record/KUD-8542-2024
https://orcid.org/0000-0001-9893-5581
https://scholar.google.com/citations?user=t_1nGr4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=14632836800
https://www.webofscience.com/wos/author/record/AHE-8978-2022
https://orcid.org/0000-0001-8431-5218
https://scholar.google.com/citations?user=02nNM4oAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=56940295500
https://www.webofscience.com/wos/author/record/IQV-0515-2023
https://orcid.org/0000-0003-4380-7771
https://scholar.google.com/citations?user=cjq2qloAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=58167500100
https://www.webofscience.com/wos/author/record/KFS-1490-2024
https://orcid.org/0009-0009-1541-5050
https://scholar.google.com/citations?user=kMykTdsAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55496606300
https://www.webofscience.com/wos/author/record/KUF-1198-2024

Int J Elec & Comp Eng ISSN: 2088-8708

 A comparative study of machine learning tools for detecting Trojan horse … (Hasan Kanaker)

6655

Osama Qtaish received his PhD. degree in software engineering from Utara

University, Malaysia. In 2014. Currently, he is an assistant professor at the Software

Engineering Department, Faculty of Information Technology, Isra University, Jordan. His

research interest includes CRM, service-oriented architecture, web service, QoS, SOC, web

service composition, data mining and optimization. He can be contacted at email:

osama.qtaish@iu.edu.jo.

Essam Alhroob received his PhD. degree in artificial intelligence from UMP

University, Malaysia, in 2020. Currently, he is an assistant professor at the Cybersecurity

Department, Faculty of Information Technology, Isra University, Jordan. His research interests

include neural networks, artificial intelligence, machine learning, pattern classification, and

fuzzy neural networks. He can be contacted at email: essam.alhroob@iu.edu.jo.

Zaid Alhalhouli received his PhD. degree in information and communication

technology from UNITEN University, Malaysia, in 2015. Currently, he is an associate

professor at the Data Science and Artificial Intelligence Department, Faculty of Information

Technology, Isra University, Jordan. His research interests include machine learning, data

mining, database, NLP, knowledge sharing, and social network. He can be contacted at email:

zaid.alhalhouli@iu.edu.jo.

mailto:essam.alhroob@iu.edu.jo
https://scholar.google.com/citations?hl=en&view_op=search_authors&mauthors=label:database_and_nlp
mailto:Knowledge%20Sharing,%20and%20Social%20Netwo
mailto:zaid.alhalhouli@iu.edu.jo
https://orcid.org/0000-0003-4099-3062
https://scholar.google.com/citations?user=I7jJZ28AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57200166408
https://www.webofscience.com/wos/author/record/KUF-1339-2024
https://orcid.org/0000-0002-4205-6614
https://scholar.google.com/citations?user=-serfQ4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57208524932
https://www.webofscience.com/wos/author/record/KUF-1678-2024
https://orcid.org/0000-0001-9683-8155
https://scholar.google.com/citations?user=9812Hb4AAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55877228900
https://www.webofscience.com/wos/author/record/KUF-0927-2024

