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 This paper provides a review and comparative analysis of trajectory outlier 

detection methods. It presents the definition of outliers in trajectory data and 

the existing types to further examine the advanced approaches. Basic steps 

for detecting an outlier, which include data preprocessing, feature extraction, 

modeling, and similar, have been presented. Moreover, advanced methods 

such as autoencoders and the use of deep learning for outlier detection have 

been explored. In the end, this paper evaluates the techniques and compares 

them using common metrics, mainly focusing on the techniques based on 

autoencoders or deep learning. It covers applications in real life and practice 

along with any limitations, challenges, and perspective ideas for the future. 

Ultimately, it can be a useful resource for expanding the understanding of 

domain researchers and practitioners. 
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1. INTRODUCTION  

Detecting outliers in trajectories is a fundamental problem in many fields such as traffic monitoring, 

fleet management, and intrusion detection. The analysis of a trajectory as a sequence of points that describes 

the movement of an object in space and time helps identify abnormal behavior or rare and significant events. 

Detecting outliers in trajectories is critical to ensuring safety, optimizing resources, preventing accidents, and 

promoting informed decision-making. Trajectories represent the movement of objects in space and time, and 

identifying outliers on trajectories aims to detect abnormal behaviors or rare and significant events. 

Trajectory anomalies can be defined as typical behaviors or movements compared to normal conditions. 

These may include sudden changes in direction, unusual speeds, or deviations from expected spatial patterns. 

Figure 1 illustrates the case of expected trajectory outliers that can be extracted between two regions. Outliers 

are expected to be sub-trajectories that have some neighbors nearby, while normal trajectories have more 

neighbors nearby [1]. 

The initial part of this extensive research focuses on the significant issue of identifying outliers in 

trajectories, which is crucial in various fields such as traffic monitoring, fleet management, and intrusion 

detection [2]. By examining trajectories as sequences of points that represent an object's movement in both 

space and time [3], [4], it becomes feasible to detect abnormal behavior or rare, significant events. The ability 

to detect outliers within trajectories is essential for ensuring safety, optimizing resources, preventing 

accidents, and facilitating informed decision-making. Our main emphasis in this study is on the detection of 

outliers within trajectories, with a specific focus on recent advancements that encompass classical methods, 

machine learning algorithms, and deep learning-based techniques. We explore various definitions of 
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trajectory outliers, traditional detection methods, associated challenges, constraints, and innovative 

approaches rooted in machine learning principles [5]. Additionally, we investigate the recent progress in 

utilizing deep learning for identifying trajectory outliers and engage in insightful discussions regarding 

applications and potential areas for further research. 

 

 

 
 

Figure 1. Outliers between two regions 

 

 

The primary goal of this paper is to provide a comprehensive overview of trajectory outlier 

detection methods, highlighting the advantages, disadvantages, and performance metrics of different 

approaches. We seek to clarify current limitations and challenges in trajectory outlier detection using existing 

methods, identify opportunities for future research endeavors, and offer practical insights through case 

studies. We aim to present a detailed overview of trajectory outlier detection, covering classical methods, 

recent advancements in machine learning techniques, and the incorporation of deep learning methodologies, 

thereby contributing to the advancement of anomaly detection protocols in trajectory data analysis [6].  

The remaining sections of this paper are structured as follows: section 2 will discuss the common 

steps to detect outliers in trajectories, while section 3 will cover advanced techniques for outlier detection in 

trajectories. In section 4, an evaluation and comparison of outlier detection techniques will be provided, and 

section 5 will focus on applications of outlier detection in trajectories. Lastly, section 6 will address 

limitations and challenges, and the final section will present the conclusion. 

 

 

2. COMMON STEPS TO DETECT OUTLIERS 

2.1.   Trajectory data pre-processing 

Before starting the identification of outliers, it is typically essential to preprocess the trajectory data 

to prepare it for analysis. This preprocessing stage encompasses various steps, including data normalization 

to eliminate any discrepancies in scale between trajectory variables, as well as trajectory sampling to address 

issues related to variable density [7]. Trajectory data pre-processing passes through a set of micro-points 

which are: 

− Data cleaning: this step involves handling missing values, removing outliers, and resolving inconsistencies 

within the trajectory data. Techniques such as imputation and statistical methods are commonly employed 

to accomplish this task.  

− Coordinate system conversion: convert trajectory data into a standardized coordinate system for 

consistency and ease of analysis.  

− Noise reduction and smoothing: to enhance the quality of the trajectory data, noise reduction techniques are 

applied. These techniques, such as moving average or Gaussian filtering, help to smoothen the trajectory 

and eliminate any irregularities present.  

− Data normalization: the data is normalized using the min-max normalization technique, which brings the 

trajectory values within the range of 0 to 1. This normalization process is crucial as it eliminates any scale 

differences that may exist between the variables [8]. 

− Trajectory sampling: to select a representative subset of trajectories or trajectory points, while maintaining 

the integrity of the dataset, trajectory sampling techniques are employed. Importance measures or 

clustering methods are commonly used to achieve this. For example, Mirge et al. [9] proposed a sampling 

method based on the use of importance measures to select the most significant trajectory points. 
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2.2.   Extraction of trajectory features 

Once the data has been pre-processed, it is necessary to extract trajectory features that will serve as a 

basis for outlier detection. This can include measures based on distance, density, or specific indicators related 

to trajectory behavior. Noulas et al. [10] identified various features from trajectory data to identify outliers. 

One of the methods used involved extracting points, lines, and significant regions [11]. The process 

commences with defining the scope and determining specific trajectory features based on the research 

objectives or problem requirements. Subsequently, it computes distance-based features like total distance 

traveled, distance between consecutive points, or distance from reference points using appropriate distance 

metrics. Additionally, density-based features are extracted, including point density, cluster density, or area 

coverage using density metrics like kernel density estimation or spatial grid-based counting techniques. 

Duration-based features are also considered by analyzing timestamps associated with trajectory points to 

calculate features related to total duration, segment durations, or time spent in specific regions. Furthermore, 

speed and acceleration indicators are captured by extracting features such as average speed, maximum speed, 

changes in speed over time, average acceleration, maximum acceleration, or sudden changes in acceleration. 

Trajectory direction and turning behavior are quantified through features like average direction, direction 

deviation, or the number of turns, utilizing techniques like angular deviation or angle calculations. Moreover, 

contextual features relevant to the application or research context, such as road types, traffic conditions, or 

weather conditions, are extracted. Finally, feature extraction techniques, including simple calculations, 

statistical measures, or specialized algorithms like Fréchet distance or dynamic time warping, are applied to 

extract the trajectory features. 

 

2.3.  Modeling approaches for outlier detection 

Once the features have been extracted, various modeling approaches can be employed to identify 

outliers in trajectories [12]. One commonly used method is mixture models, which are statistical models that 

represent normal trajectories and identify outliers by comparing trajectory points with the models. These 

models assume that the trajectory data consists of a mixture of multiple distributions, with outlier trajectories 

represented by a distinct distribution. Unsupervised mixture models like Gaussian mixture models (GMM) or 

Dirichlet process mixture models can be employed for this purpose. For instance, in [12], unsupervised 

mixture models were applied to identify anomalies in vehicle trajectory data. Another method is statistical 

techniques, often used for outlier detection in trajectory data. These techniques involve analyzing the 

statistical properties of trajectory features to detect deviations from the normal pattern. This may include 

metrics such as z-scores: This paper aims to solve two enduring challenges in existing trajectory similarity 

measures: computational inefficiency and the absence of the ‘uniqueness’ property that should be guaranteed 

in a distance function: 𝑑𝑖𝑠𝑡(𝑋, 𝑌) = 0 if and only if 𝑋 = 𝑌, where 𝑋 and 𝑌 are two trajectories. In this work, 

we present a novel approach utilizing a distributional kernel for trajectory representation and similarity 

measurement, based on the kernel mean embedding framework. It is the very first time a distributional kernel 

is used for trajectory representation and similarity measurement. Our method does not rely on point-to-point 

distances which are used in most existing distances for trajectories. Unlike prevalent learning and deep 

learning approaches, our method requires no learning. We show the generality of this new approach in 

anomalous trajectory and sub-trajectory detection. We identify that the distributional kernel has i) a data-

dependent property and the ‘uniqueness’ property which are the key factors that lead to its superior task-

specific performance, and ii) runtime orders of magnitude faster than existing distance measures, 

Mahalanobis distance, or statistical tests like the Grubbs' test or the Dixon's test. The third approach 

discussed is ensemble approaches, which combine multiple outlier detection models to improve the accuracy 

and reliability of the detection process. These approaches may entail aggregating the outcomes of various 

models, each utilizing a different algorithm or feature set, to make a final decision on outlier detection. 

Boosting, bagging, or random forest methods are commonly employed in ensemble approaches. The final 

approach mentioned is the trajectory-specific model, where certain outlier detection techniques are 

specifically tailored for trajectory data analysis. These models take into account the temporal and spatial 

characteristics of trajectories and integrate domain-specific knowledge. Examples include moving object 

trajectory outliers (MOTO) and trajectory outlier detection (TOD) methods. It is crucial to consider the 

specific characteristics of the data when selecting the appropriate modeling approach [13]. 

 

 

3. ADVANCED TECHNIQUES FOR OUTLIER DETECTION 

In this segment, we shall delve into various sophisticated methodologies employed for identifying 

outliers in trajectories. As previously stated, outliers, also known as anomalous values, refer to trajectory 

points that exhibit substantial deviation from the overall pattern of the data. Precise identification of these 

outliers holds utmost importance in guaranteeing the accuracy of analyses and models reliant on trajectories. 
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We shall thoroughly investigate these advanced techniques, encompassing their mechanisms, benefits, and 

constraints, to present a comprehensive outline of the most efficient approaches for outlier detection in 

trajectories. A summary of all the approaches discussed will be provided in Table 1. 

 

 

Table 1. Advanced techniques for outlier detection in trajectories 
Approach Use Case Advantages Drawbacks Algorithms used 

Nearest 
neighbor 

outlier 

detection 
(NNOD) 

− Data streams with high 

velocity and continuous 

flow of data 

− Real-world dataset 

including text 

documents and images 

− Simplicity and 

robustness 

− Efficiency: 

significantly faster 

than alternative 

methods 

− Flexibility: applicable 

to any arbitrary 
distance measure 

− Applicable to various 

domain 

− Dependence on parameters 

such as the number of 

neighbors and the 

deviation threshold 

− Fine-tuning of parameters 

may be required for 
optimal performance 

− Computational complexity 

− k-nearest 

neighbors’ 

algorithm (k-NN) 

− Local Outlier 

Factors (LOF) 

− Exemplar-based 

Nearest Neighbor 

Outlier Detection 
(ENNOD) 

Trajectory 

shape-based 
outlier 

detection 

(TSOD) 

− Identify outliers in 

trajectory data by 
focusing on the shape 

of the trajectories 

− Behavior analysis in 

sports 

− Flexibility: Used with 

different types of 
trajectory data, such as 

vehicles, people, and 

animals 

− Consideration of 

spatial and Geometric 
context 

− Need to select appropriate 

similarity measures or 
modeling functions. 

− Significant data reduction 

is required to produce 

reasonable results 

− Dependence on feature 

extraction 

− Dynamic Time 

Warping (DTW) 

− Fourier Analysis-

Based Approaches 

Spatio-
temporal 

outlier 

detection 
(STOD) 

− Used to identify 

aberrant values in 

trajectory data, 

considering both 
spatial and temporal 

dimensions 

− Urban traffic trajectory 

data 

− Advanced approach 

used to identify 

anomalies in trajectory 

data, considering both 
spatial and temporal 

dimensions 

− Complexity of trajectory 

data, spatiotemporal 

dynamics, and the 

presence of noise 

− Clustering methods 

− Prediction models 

− Density-based 

approaches 

− DBSCAN 

Autoencoders 
for outlier 

detection 

(AEOD) 

Identify outliers in the 
case of: 

− Surveillance video 

data 

− Urban traffic trajectory 

data 

− Reduces the 

calculation amount, 

making it suitable for 
real-time detection 

scenarios. 

− Achieves high 

accuracy, with 

precision and recall 
rates exceeding 95%. 

− Requires a pre-training 

step 

− Performance heavily 

depends on the quality of 

the training data 

− Sensitivity to certain types 

of anomalies or specific 

data distributions 

− Deep spatial-

temporal 

autoencoders 
(DSTAE) 

− Variational 

Autoencoders 
(VAE) 

Deep learning 

for outlier 
detection 

(DLOD) 

− Advanced technique 

that has gained 
increasing popularity 

in outlier detection in 

trajectory data 

− Ability to extract 

important features 
from data 

− Requires large amounts of 

data for training 

− Challenges related to data 

availability and result 
interpretability 

− Convolutional 

neural networks 
(CNN) 

− Recurrent neural 

networks (RNN) 

 

 

3.1.  Nearest neighbor outlier detection  

The nearest neighbor outlier detection (NNOD) technique is a popular approach in the field of 

trajectory analysis. This method is based on the principle that outliers in trajectories can be identified by 

examining their distance from their nearest neighbors in the feature space. One commonly used method in 

nearest neighbor-based outlier detection is the k-nearest neighbors (k-NN) algorithm [12], [14]. In this 

algorithm, the k nearest neighbors of a given trajectory point is identified and used to measure the point's 

proximity and deviation from its surroundings. The main focus of the approach used is on the development 

and analysis of an efficient algorithm for computing minimax k-NN and its application to outlier detection. 

The minimax distance measure is a distance measure that seeks the minimum largest gap among all different 

routes between two objects. The minimax distance between objects 𝑖 and 𝑗 is computed as: 

 

𝐷_𝑀_𝑀_𝑖, 𝑗 = 𝑚𝑖𝑛_{𝑟 ∈ 𝑅_𝑖𝑗 (𝑂)} {𝑚𝑎𝑥_{1 ≤ 𝑙 < |𝑟|} 𝐷_𝑟(𝑙)𝑟(𝑙 + 1)} 

 

where 𝑅𝑖𝑗(𝑂) is the set of all routes between 𝑖 and 𝑗, and each route 𝑟 is specified by a sequence of object 

indices. The minimax distance is obtained by finding the minimum of the maximum edge weights along all 

the different routes between the two objects. To compute the minimax k-NN of a new object 𝑣, an 

incremental approach is used. The algorithm iteratively extends the set of partial neighbors of 𝑣 by adding 
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the next minimax nearest neighbor at each step, based on the minimum distance to the set of already selected 

neighbors. Overall, the minimax distance measure captures the underlying data geometry by focusing on the 

largest gap among different routes, and the algorithm efficiently computes the minimax k-NN for a given test 

object. Various versions of this algorithm have been developed to improve the detection of outliers in 

trajectories. One such variant is the local outlier factors (LOF) algorithm. The LOF algorithm assesses the 

abnormality of a trajectory point by comparing its local density with that of its neighbors. By calculating the 

degree of outlyingness for each data point, the LOF algorithm can identify local outliers within the dataset.  

Alghushairy et al. [15] proposed a hybrid approach combining LOF and the k-NN algorithm for 

outlier detection in motion trajectories. The key components of the LOF algorithm include the k-distance, 

which measures the distance between a data point and its 𝑘-th nearest neighbor, and the k-NN themselves, 

which form the set of 𝑘 data points closest to a given data point. Additionally, the algorithm incorporates the 

reachability distance (RD) to measure the local density between two data points, and the local reachability 

distance (LRD), which represents the average ratio of the local reachability density of a data point and its  

k-NN. Each data point is assigned an LOF score by the LOF algorithm, which is then used to determine if it 

is an outlier. This algorithm is effective in identifying local density and detecting local outliers within the 

dataset. However, it is important to note that the LOF algorithm may have a long execution time and can be 

sensitive to the minimum points value. In summary, the LOF algorithm operates by evaluating the local 

density of data points and identifying outliers based on their deviation from the local density of their 

neighbors.  

Another advanced technique used for outlier detection is the exemplar-based nearest neighbor 

outlier detection (ENNOD) approach. This method involves selecting trajectory points that significantly 

differ from their nearest neighbors in terms of features. Sengupta and Das [16] proposed an approach based 

on ENNOD to detect outliers in trajectory data. This method is rooted in the scientific principles of proximity 

analysis and anomaly detection. It involves systematically identifying the nearest neighbors for each data 

point within a dataset, using distance metrics like Euclidean distance or other similarity measures. By 

considering the local context of each data point and evaluating its relationship with neighboring points, the 

method calculates a measure of outlier-ness based on the distances to its nearest neighbors. Data points that 

exhibit significant deviations in distance compared to their neighbors are flagged as potential outliers. The 

classification of data points as outliers is further determined by applying a threshold based on their distances 

to their nearest neighbors. This approach finds applications in various domains such as anomaly detection, 

fraud detection, and quality control, where the identification of rare and unusual patterns is crucial. Overall, 

exemplar-based nearest neighbor outlier detection effectively utilizes the concept of nearest neighbors and 

local context to identify data points that deviate significantly from their local neighborhood [17], [18], 

indicating potential outliers. The use of this technique offers advantages such as simplicity and robustness. 

However, it is important to note that this method may also have limitations [19], particularly in terms of its 

dependence on parameters like the number of neighbors and the deviation threshold. Fine-tuning of these 

parameters may be necessary to optimize the performance of outlier detection in trajectory data. 

 

3.2.  Trajectory shape-based outlier detection 

In contrast to conventional outlier detection techniques that depend on distance metrics, trajectory 

shape-based outlier detection (TSOD) concentrates on examining the shapes of trajectories. Instead of only 

taking into account the spatial or temporal distance among trajectory points, TSOD evaluates the overall 

structure and configuration of the trajectory itself [20]. The TSOD method typically includes the extraction of 

shape-based attributes from the trajectories. These attributes may involve properties like curvature, speed, 

acceleration, and changes in direction along the trajectory. By capturing these shape-based attributes, TSOD 

aims to pinpoint unique patterns or irregularities that could signify outliers. TSOD might employ shape-based 

distance metrics to compare the extracted attributes among trajectories [21]. These metrics gauge the 

similarity or dissimilarity of trajectory shapes, enabling the detection of outliers based on deviations from 

standard trajectory patterns. The method frequently entails statistical analysis to assess the shape-based 

attributes and distance metrics. This analysis could encompass techniques such as clustering, density 

estimation, or hypothesis testing to pinpoint trajectories that significantly differ from the norm. Through the 

use of shape-based attributes and distance metrics, TSOD identifies trajectories that display unusual shape 

characteristics or deviate notably from the anticipated patterns. These trajectories are marked as outliers, 

indicating potential anomalies or abnormal behavior within the dataset.  

One prevalent method in shape-based outlier detection is the dynamic time warping (DTW) 

algorithm [22]. DTW is a method that gauges the similarity between two trajectories by aligning them 

temporally and computing the optimal alignment distance. In [9], dynamic time warping (DTW) is utilized 

for outlier detection in trajectory data. The primary aim of employing the DTW algorithm in this research is 

to investigate the variability in car-following behavior among drivers and the diverse situation-dependent 
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behavior of drivers within a single trip. This algorithm is implemented to estimate the time-varying 

parameters of a car-following model using detailed vehicle trajectory data. It is employed to determine the 

optimal alignment between two sets of time-series data [23], which serves as an approximation of the 

stimulus-response relationship for a driver following another vehicle. This approximation is then leveraged to 

deduce the time-varying parameters of the car-following model for a driver over the observation period. 

Furthermore, Fourier analysis-based methods have been utilized for detecting outliers in trajectories based on 

shape. For instance, the utilization of Fourier series to represent trajectories enables the extraction of 

frequency features and the identification of outliers through spectral deviations. Noulas et al. [10] introduced 

a Fourier analysis-based technique for outlier detection in trajectories. The primary goal of this proposed 

method is to organize trajectories to discern and categorize both typical and atypical behaviors exhibited by 

objects like aircraft and ships. The strategy involves utilizing feature vectors to concisely represent the 

significant details in trajectories, encompassing fundamental information like total distance covered and the 

distance between starting and ending points, along with geometric characteristics associated with the convex 

hull properties, trajectory curvature, and overall distance geometry. The objective is to leverage these 

features to recognize trajectories resembling a prototype, organize a repository of numerous trajectories, and 

pinpoint anomalies. It is important to highlight that employing the trajectory shape-based outlier detection 

method poses specific challenges. A primary obstacle is the necessity to opt for suitable similarity metrics or 

modeling functions that align with the particular data and trajectory types under consideration. Therefore, 

meticulous adjustment and validation of these metrics and functions are imperative to achieve precise 

outcomes in shape-based outlier detection within trajectories. To sum up, the TSOD method represents an 

advanced strategy for detecting irregular values in trajectory data. Techniques based on DTW and Fourier 

analysis have proven effective in shape-based outlier detection within trajectories. Nonetheless, it is crucial to 

carefully select the appropriate parameters and similarity metrics to secure dependable and meaningful 

outcomes in shape-based outlier detection within trajectories. 

 

3.3.  Spatio-temporal outlier detection  

The spatiotemporal outlier detection (STOD) technique is a sophisticated method used to detect 

abnormal values in trajectory data, taking into account both the spatial and temporal aspects. The primary 

objective of this approach is to identify spatiotemporal anomalies that differ from the overall trajectory 

behavior [11]. STOD leverages the fusion of spatial and temporal information within trajectory data to 

pinpoint outliers. It incorporates the geographical locations (spatial dimension) and the corresponding time of 

visit (temporal dimension) within the trajectory data. By considering both dimensions, STOD captures the 

movement patterns and behaviors of objects or individuals over time and space. The technique involves 

extracting pertinent features from trajectories, such as spatial coordinates, timestamps, speed, acceleration, 

direction changes, and other spatiotemporal attributes, which collectively provide a comprehensive 

representation of the trajectory data [24]. STOD employs distance measures that account for both spatial and 

temporal dimensions to evaluate the similarity or dissimilarity between trajectories. By comparing the spatio-

temporal features of trajectories, STOD can identify deviations from typical movement patterns, indicating 

potential outliers. Statistical analysis is often employed to assess the spatiotemporal features and distance 

measures [25]. Utilizing these features and measures, STOD identifies trajectories that exhibit unusual 

movement patterns or deviate significantly from the expected spatiotemporal behaviors, flagging them as 

outliers. STOD finds applications in various fields such as transportation, urban planning, environmental 

monitoring, and surveillance. It aids in recognizing unusual movement behaviors and pinpointing suspicious 

or irregular activities of individuals within a specific area over a period. The technique of spatio-temporal 

outlier detection offers a holistic method for pinpointing abnormal values in trajectory data by taking into 

account both the spatial and temporal aspects of movement patterns. One prevalent method in spatio-

temporal outlier detection involves utilizing clustering techniques.  

Clustering works towards grouping similar trajectory points and singling out clusters that deviate 

significantly from the rest of the dataset. Zhang et al. [26] introduce an approach that leverages trajectory 

clustering and peak densities for spatiotemporal outlier detection. Clustering is utilized for grouping similar 

trajectories, while peak density is employed to pinpoint isolated and rare trajectories. An alternative method 

involves the utilization of prediction models, which forecast expected trajectories by analyzing past trajectory 

behavior and pinpointing deviations from these predictions. Wang et al. [18] introduced a technique that 

utilizes a recurrent neural network model to predict trajectories and identify spatiotemporal outliers. A 

recurrent neural network-based temporal prediction model was utilized to anticipate trajectory movements 

and compare them with actual observations to identify outliers. In addition, density-based approaches have 

also been employed for spatio-temporal outlier detection. These approaches leverage the spatial and temporal 

distribution of trajectory data to identify trajectory points that are either highly isolated or located in densely 

populated regions. Bai et al. [27] proposed a density-based analysis method for detecting spatiotemporal 

outliers, utilizing the density-based spatial clustering of applications with noise (DBSCAN) algorithm to 
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compute the density of trajectory points and identify low-density points, which are considered outliers. It is 

worth noting that the detection of spatio-temporal outliers presents challenges due to the intricate nature of 

trajectory data, spatio-temporal dynamics, and the presence of noise. Therefore, a careful selection of 

similarity measures, clustering parameters, and prediction models is crucial in order to obtain accurate results 

in spatio-temporal outlier detection [12]. 

 

3.4.  Autoencoders for outlier detection  

Autoencoders (AEOD) have emerged as a recently advanced technique for detecting outliers in 

trajectory data. These neural network models are capable of learning and representing input data in a concise 

and precise manner through an encoding-decoding structure [28]. By training the autoencoder on normal 

trajectory data, it becomes adept at capturing the underlying patterns and features of the trajectories. 

Throughout the training phase, the autoencoder acquires the ability to encode the input trajectory data into a 

lower-dimensional representation, commonly referred to as a latent space or bottleneck layer [29]. This 

encoding process aims to capture the fundamental characteristics of the input trajectories while 

simultaneously reducing their dimensionality. The autoencoder then proceeds to decode this representation of 

lower dimensionality, effectively returning it to its original form within the input space. Once the 

autoencoder has been trained using regular trajectory data, it becomes capable of reconstructing or generating 

trajectories. When presented with new or previously unseen trajectory data, the autoencoder endeavors to 

reconstruct the input trajectories by relying on the patterns it has learned. If the input trajectory closely aligns 

with the learned patterns, the resulting reconstruction error is expected to be minimal. Conversely, if the 

input trajectory significantly deviates from the learned patterns, the reconstruction error will be substantial. 

This reconstruction error serves as a metric for measuring the dissimilarity between the input trajectory and 

the learned representations. Trajectories that yield high reconstruction errors are regarded as potential outliers 

or anomalies. This is due to their failure to conform to the learned patterns and characteristics of normal 

trajectories. In the realm of trajectory data, autoencoders can effectively identify outliers by leveraging their 

ability to capture intricate patterns and dependencies within trajectories. By acquiring a concise 

representation of regular trajectory data and detecting deviations through reconstruction errors, autoencoders 

offer a promising approach for detecting anomalies within trajectory data. This functionality makes them 

particularly suitable for identifying abnormal movement patterns, unexpected stops, irregular speeds, or 

unconventional routes within trajectory datasets. Numerous recent studies have demonstrated the efficacy of 

autoencoders in outlier detection within trajectories. For example, Li et al. [30] proposed a method for spatio-

temporal outlier detection based on autoencoders. An autoencoder was employed to acquire the 

representation of normal trajectories, and the identification of outliers was achieved by comparing observed 

trajectories with those reconstructed by the autoencoder. The research paper outlines the application of an 

autoencoder within the two-stream deep spatial-temporal auto-encoder (two-stream DSTAE) framework for 

detecting anomalies in surveillance videos. Specifically, the autoencoder is utilized in both the spatial and 

temporal streams to extract appearance characteristics and motion patterns, respectively. In the spatial stream, 

an autoencoder is employed to extract appearance characteristics from the original RGB video frames.  

Through unsupervised learning, the autoencoder learns the regular surveillance videos, effectively 

addressing the issue of imbalanced data between positive and negative samples. The reconstruction error 

generated by the autoencoder is utilized to differentiate abnormal events, with low reconstruction errors 

indicating regular videos and high reconstruction errors indicating abnormal videos. Similarly, the temporal 

stream employs an autoencoder to extract motion patterns from continuous optical flow frames. By learning 

features from the optical flow frames, the autoencoder in the temporal stream contributes to the extraction of 

motion characteristics. The results of their study demonstrate that the utilization of autoencoders enables 

accurate detection of spatio-temporal outliers in trajectory data. Additionally, the research also explores the 

use of variational autoencoders (VAE) in spatio-temporal outlier detection. A VAE is a variant of 

autoencoders that models the latent distribution of data and allows for generating new data instances. VAEs 

are a type of autoencoder that not only reconstructs input data but also models the underlying distribution of 

the data in a latent space. This means that VAEs can learn the probability distribution of the input data and 

generate new data instances that are similar to the training data. In the context of spatio-temporal outlier 

detection, VAEs can capture the complex patterns and correlations present in the data, making them suitable 

for identifying outliers in spatio-temporal datasets. By learning the distribution of normal data, VAEs can 

identify data points that deviate significantly from this learned distribution, thereby flagging them as 

potential outliers. Zhang et al. [31] proposed a VAE-based approach for outlier detection in trajectories. 

Their method leverages a VAE to learn the distribution of normal trajectories and generate synthetic 

trajectories. The model calculates the difference between an original trajectory and the trajectory generated 

by the model using three different distance metrics: vertical distance (𝑑 ⊥), parallel distance (𝑑 ∥), and 

angular distance (𝑑𝜃).  
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− Vertical distance (𝑑 ⊥): This metric measures the vertical distance between trajectory segments. It captures 

the positional deviation between the original trajectory and the trajectory generated by the model.  

− Parallel distance (𝑑 ∥): The parallel distance calculates the parallel distance between trajectory segments, 

capturing the positional deviation in the direction of the trajectory.  

− Angular distance (𝑑𝜃): This measurement assesses the angular variance between segments of a trajectory, 

reflecting the divergence in trajectory direction. The dissimilarity between the initial trajectory and the 

produced trajectory is articulated as a blend of three distance metrics, each with designated weight 

coefficients. Through the examination of various distance and deviation elements, the model effectively 

encompasses the distinctions between the original trajectory and the model-generated trajectory. 

Subsequently, the recorded trajectories are juxtaposed with the generated trajectories, pinpointing outliers 

characterized by significant dissimilarity. 

 

3.5.  Deep learning for outlier detection  

Deep learning (DLOD) has become increasingly popular in outlier detection in trajectory data due to 

its advanced capabilities [32]. One of its key strengths lies in its ability to automatically extract hierarchical 

features from trajectories. This is particularly important given the complex spatial and temporal patterns that 

are often found in trajectory data. Deep learning models, such as convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs), are particularly effective in processing trajectory data and capturing 

spatial and temporal dependencies. CNNs excel at extracting spatial features [33], while RNNs are adept at 

capturing temporal dependencies and sequential patterns within trajectories [34]. In the context of outlier 

detection, deep learning models are trained on large amounts of normal trajectory data. This enables them to 

effectively identify outliers by evaluating the deviation of new or unseen trajectories from the learned 

patterns. Moreover, deep learning models can be combined with unsupervised learning techniques to perform 

anomaly detection in trajectory data, further enhancing their effectiveness in this field. One of the benefits of 

utilizing deep learning for outlier detection lies in its flexibility to handle various types of trajectory data, 

such as global positioning system (GPS) trajectories, movement trajectories, and spatiotemporal data from 

different sources. This adaptability enables deep learning models to be effectively utilized across a broad 

spectrum of trajectory datasets in diverse domains like transportation, urban planning, environmental 

monitoring, and surveillance. deep learning, a subset of artificial intelligence, utilizes deep neural networks to 

autonomously acquire intricate data representations. This ability to extract essential features from data 

positions it as a promising technique for detecting anomalies in trajectories. The sensitivity of deep learning 

to specific anomalies or unique data distributions stems from its capacity to automatically learn intricate data 

representations, allowing it to identify anomalies that deviate from the learned representations. In practical 

terms, this sensitivity empowers deep learning models to detect anomalies that might not be easily 

identifiable using conventional methods. By learning directly from the data, deep learning models can adjust 

to and pinpoint anomalies that are characteristic of particular data distributions or display distinct patterns, 

thus enhancing their sensitivity to such anomalies in trajectory data. Numerous recent studies have 

showcased the efficacy of deep learning in outlier detection within trajectories. For instance, Taylor et al. 

[35] introduced a deep learning-based method for spatiotemporal outlier detection in trajectory data.  

The application of a convolutional neural network (CNN) was employed to automatically extract 

spatial and temporal features from trajectories. By comparing observed trajectories with normal trajectories 

learned by the CNN model, outliers were identified based on dissimilarity. The results demonstrated that 

deep learning techniques facilitated accurate detection of spatio-temporal outliers in trajectory data. 

Moreover, the utilization of recurrent neural networks (RNN) has also been investigated for spatio-temporal 

outlier detection. RNNs are specifically designed neural networks that excel in handling sequence data, 

making them well-suited for modeling trajectories. Rintoul et al. [36] proposed an RNN-based approach for 

detecting spatiotemporal outliers in maritime trajectory data. Their approach involved employing an RNN-

based prediction model to anticipate expected trajectories and identifying points that exhibited significant 

differences between predictions and actual observations as outliers. To detect outliers in the weighted 

neighborhood information network (WNIN), the proposed approach utilized a customized Markov random 

walk method. The Markov random walk process was employed to determine the inlier degree for each object 

by calculating the stationary distribution vector. This vector quantified the inlier degree of objects in the 

dataset with mixed-valued attributes. The Markov random walk method was specifically designed to capture 

long-range correlations within the dataset and calculate the outlier score of each object based on the network 

representation provided by the WNIN. This method was tailored to handle the unique characteristics of 

datasets with mixed-valued attributes and served as a crucial component of the proposed outlier detection 

approach. It is important to note that the use of deep learning in outlier detection typically necessitates a 

substantial amount of training data, which can pose challenges in cases where trajectory data is limited. 

Additionally, the selection of the neural network architecture is crucial in achieving optimal results. 
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3.6.  Commonly used evaluation metrics 

Evaluation metrics are of utmost importance when it comes to comparing and evaluating outlier 

detection techniques in trajectory data. These metrics enable us to assess the performance of methods and 

quantify their accuracy, recall, specificity, and other significant measures. Numerous commonly used 

evaluation metrics have been proposed in the literature to cater to the specific requirements of outlier 

detection. Among these metrics, one that stands out as widely used in outlier detection is the area under the 

curve (AUC) [37]. In the context of outlier detection, AUC serves as a measure of how effectively a model 

can differentiate between normal and outlier data points. The calculation of AUC involves plotting the true 

positive rate (sensitivity) against the false positive rate (1-specificity) for various threshold values. The 

resulting AUC value ranges from 0 to 1, with a higher value indicating superior performance. An AUC of 0.5 

signifies a model that performs no better than random chance, while an AUC of 1 represents a perfect model. 

In the context of outlier detection, a higher AUC suggests that the model excels at distinguishing between 

normal and outlier data points. This implies that the model is more proficient at identifying outliers and 

minimizing false positives (normal data points incorrectly classified as outliers) and false negatives (outliers 

incorrectly classified as normal). 

AUC was employed by Zhang et al. [26] to evaluate the performance of various outlier detection 

methods in drone trajectory data. The findings of their study revealed that approaches utilizing deep learning 

and unsupervised learning techniques achieved higher AUCs, thereby demonstrating their efficacy in 

detecting anomalies. Another commonly employed metric, Precision, plays a crucial role in evaluating the 

accuracy of a model's predictions, particularly in the context of outlier detection. It quantifies the proportion 

of correctly identified outliers among all the points labeled as outliers by the model. In the realm of outlier 

detection, minimizing false positives is often of utmost importance. False positives occur when normal data 

points are erroneously classified as outliers. This can result in unnecessary alerts or actions, which can be 

both costly and disruptive. Precision proves particularly valuable in such scenarios as it focuses on the 

model's ability to accurately identify true outliers while minimizing false positives. For instance, if a model 

designates 100 points as outliers, with 90 of them being true outliers and 10 being false positives, the 

precision would be 90%. This signifies that 90% of the points identified as outliers by the model are indeed 

true outliers. 

In a study by Zhang et al [38], on outlier detection in vehicle trajectory data, precision served as the 

primary metric for evaluating method performance. The results demonstrated that certain density-based 

methods achieved high levels of precision, making them viable options in scenarios where minimizing false 

positives is critical. In addition to AUC and precision, outlier detection also utilizes other evaluation metrics 

like recall, F1-score, accuracy, and F-measure [39]. Table 2 showcases the standard metrics employed in the 

field of outlier detection. These metrics evaluate different aspects of method performance, including the 

ability to detect genuine outliers and reduce classification errors. 

 

 

Table 2. Common metrics for outlier detection evaluation 
Metric Use Case 

AUC Evaluates the ability of a model to distinguish between normal and outlier data points. 

Precision Measures the proportion of true outliers among all points identified as outliers by the 

model, useful for minimizing false positives. 
Recall Measures the proportion of true outliers that are correctly identified by the model, useful 

for capturing all actual outliers. 

F1 Score Combines precision and recall to provide a single metric that balances both false 

positives and false negatives. 

Accuracy Measures the overall correctness of the model's predictions, but may not be suitable if the 

data is imbalanced. 
Specificity Measures the proportion of true negatives that are correctly identified by the model, 

useful for minimizing false alarms. 

Mean squared error Measures the average of the squares of the errors between actual and predicted values, 
useful for regression-based outlier detection. 

Mean absolute error Measures the average of the absolute differences between actual and predicted values, 

useful for regression-based outlier detection. 

 

 

3.7.  Outlier detection application fields 

Outlier detection in trajectories is utilized in a wide range of fields. For instance, within the realm of 

traffic management and road safety, the identification of abnormal vehicle behaviors can be facilitated 

through outlier detection. An illustration of this is seen in the work of Chen et al. [40], who introduced a 

technique for detecting anomalies in vehicle trajectories by focusing on abnormal driving patterns, allowing 

for the identification of dangerous situations or traffic violations. 
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In the realm of maritime and aerial surveillance, the identification of outlier detection in trajectories 

holds significant importance in uncovering suspicious or unlawful activities. A notable example is the work 

of Hu et al. [41], who devised a method utilizing generative models to effectively detect abnormal ship 

trajectories, the identification of suspicious maritime movements that may indicate illicit activities or 

territorial violations can be facilitated. Additionally, outlier detection in trajectories is employed in healthcare 

and medical monitoring. For instance, the detection of anomalies in the trajectories of patients with chronic 

diseases can assist physicians in recognizing alterations in behavior or severe clinical situations, thereby 

enabling timely intervention and proactive care management. According to Wu et al. [42], outlier detection in 

the trajectories of patients with Alzheimer's disease can be utilized to pinpoint abnormal behaviors. 

Moreover, within the realm of environmental and wildlife surveillance, the detection of outliers in trajectories 

plays a crucial role in pinpointing unusual behaviors exhibited by animals or endangered species. As an 

illustration, Yang et al. [43] introduced a novel approach utilizing deep autoencoders to identify outliers in 

elephant trajectories, facilitating the detection of unusual behaviors like herd separation or territorial loss. 

Additionally, outlier detection in trajectories shows potential in various fields like logistics, cybersecurity, 

and financial fraud detection, expanding its applicability and introducing new possibilities for its utilization 

across different sectors. 

 

3.8.  Limitations and challenges 

Despite the considerable progress made in outlier detection in trajectories, there are still significant 

limitations and challenges that must be overcome to achieve precise and dependable anomaly detection. One 

such challenge is the susceptibility of trajectory data to measurement errors, noise, and data gaps, which can 

hinder the accurate identification of outliers. Moreover, the voluminous and intricate nature of trajectory data 

introduces additional complexities, as it frequently includes errors, gaps, and uncertainties, thereby further 

complicating the process of detecting anomalies [44]. The subjective nature of defining outliers introduces an 

additional level of intricacy and subjectivity to the task of identification. The definition of outliers may vary 

depending on the particular field of application. It is essential to grasp the context and needs of the domain in 

order to accurately define and identify outliers within trajectories [45].  

The detection of outliers is further complicated by the dynamic characteristics of trajectories and the 

temporal progression of movements. Trajectories can display seasonal fluctuations, trends, or intricate 

patterns as time progresses, resulting in transient outliers that may not necessarily indicate genuine 

anomalies. It is crucial to consider the temporal dynamics to prevent the identification of false positives [46]. 

The magnitude and intricacy of trajectory data pose further obstacles. Vast trajectory data containing multiple 

dimensions and attributes heighten the complexity of their analysis and outlier detection. Moreover, the 

computationally intensive techniques and substantial computing resources needed for outlier detection in 

spatiotemporal trajectories contribute to the complexity [47]. Furthermore, the complexity of outlier detection 

is exacerbated by the high dimensionality of trajectory data and the variability of trajectories.  

Detecting abnormal patterns becomes increasingly difficult when dealing with trajectories that 

contain a large number of data points and variables. Moreover, the dynamic nature of trajectories, which can 

be influenced by external factors, introduces an additional level of intricacy to outlier detection. The 

existence of missing or noisy values in trajectory data presents yet another major obstacle. Inaccurate or 

absent trajectory points resulting from sensor malfunctions or data inaccuracies have the potential to skew the 

outcomes of outlier detection, thereby compromising the precision and dependability of anomaly detection 

within trajectory paths [48]. Lastly, the diversity of outliers and trajectories makes it challenging to select an 

appropriate anomaly detection method. Different techniques may be more effective for specific types of 

trajectories or anomalies. This necessitates the tailoring of detection methods to match the specific 

characteristics of the trajectory data and enable accurate detection of anomalies. 

 

 

4. COMPARATIVE STUDY 

The performance comparison among various outlier detection techniques holds great significance in 

the field of trajectory data analysis. Several research studies have been carried out to assess and contrast the 

effectiveness of different anomaly detection methods, utilizing metrics such as AUC, precision, recall, and 

other evaluation criteria. In this comparative analysis, four different algorithms were utilized to examine a 

dataset containing stock market information. These algorithms represented a wide array of methodologies, 

including density-based, statistical-based, and deep learning-based approaches. The LOF algorithm, a 

density-based technique, utilized local density to identify outliers within the dataset. Principal component 

analysis (PCA), a statistical-based method, was employed to reduce data dimensionality and effectively 

detect anomalies. Moreover, the study incorporated the use of AutoEncoder (AE), a deep learning-based 

method, to capture intricate patterns and interactions within the dataset. Additionally, the DeepSVDD 

algorithm, another deep learning-based approach, was used to model the low-dimensional space where 
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normal data points are located. The dataset, which consisted of stock market data, represented a complex and 

dynamic environment influenced by various factors. The application of these algorithms aimed to identify 

anomalies that could indicate potential manipulation, significant news events, or other significant shifts 

within the stock market. Figure 2 illustrates the outliers detected by each method. To assess the study's 

effectiveness, key metrics such as accuracy, precision, recall, and F1 score were employed. These metrics 

offered a comprehensive evaluation of the algorithms' performance in detecting anomalies within the stock 

market data, facilitating a thorough comparative analysis of their efficacy. This study aimed to provide 

valuable insights into the application of diverse outlier detection techniques.  

 

 

 
 

Figure 2. Outliers detected 

 

 

4.1.  Results and discussions 
The results displayed in Table 3 provide a detailed overview of the performance metrics for each 

machine learning model, including accuracy, precision, recall, and F1 score. The recall value for all models 

indicates that they were able to identify the majority of true positive cases, while the F1 score provides a 

balanced measure of precision and recall. The results offer valuable insights into the comparative 

effectiveness of the machine learning models for anomaly detection in the context of stock market data 

analysis. Based on the findings of the comparative study, several noteworthy observations can be derived. 

The local outlier factor (LOF) technique exhibits the highest level of accuracy, reaching an impressive 

96.42% among the evaluated methods. It also achieves a perfect recall score of 1.0, indicating its 

effectiveness in identifying all relevant instances within the dataset. Although its precision score of 0.657 

suggests the possibility of some false positives, overall, it performs well with an F1 score of 0.764.  

 

 

Table 3. Metrics for each machine learning model 
Method Accuracy Precision Recall F1 score 

LOF 0.9642 0.657 1.0 0.764 
PCA 0.9731 0.556 0.98 0.708 

AE 0.9856 0.465 0.98 0.628 

DeepSVDD 0.9848 0.438 0.98 0.638 

 

 

Following closely is the PCA method, which attains an accuracy of 97.31%. Despite having a 

relatively lower precision score of 0.556, it demonstrates a high recall rate of 0.98, resulting in an F1 score of 
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0.708. The AE method showcases the highest accuracy among the tested techniques, standing at an 

impressive 98.56%. However, it does exhibit a lower precision score of 0.465 and an F1 score of 0.628, 

indicating the potential for improvement in terms of precision. The deep support vector data description 

(DeepSVDD) method achieves an accuracy of 98.48% with a precision score of 0.438 and an F1 score of 

0.638. Despite its lower precision score, it maintains a high recall rate of 0.98, suggesting its effectiveness in 

capturing relevant instances within the dataset. 

Through an extensive comparative analysis of outlier detection techniques in trajectory data 

analysis, valuable insights have been obtained regarding the effectiveness of different machine learning 

algorithms for detecting anomalies in stock market data. Evaluating methods like LOF, PCA, AE, and 

DeepSVDD provided a thorough assessment of their performance metrics, highlighting their strengths and 

limitations in this domain. While each algorithm showed unique capabilities in detecting anomalies, distinct 

patterns emerged from the findings. LOF demonstrated high accuracy and recall rates, proving its 

effectiveness in identifying outliers. On the other hand, PCA excelled in reducing data dimensionality but 

had room for improvement in precision. AE showed high accuracy but needed better precision, indicating a 

balance between accuracy and precision in its use. Despite a lower precision score, DeepSVDD exhibited 

strong recall capabilities, emphasizing its ability to capture relevant instances in the dataset. 

Comparing these results with previous research showcases the progress in outlier detection 

methodologies and emphasizes the importance of selecting algorithms tailored to specific data characteristics 

and research goals. The study's strength lies in evaluating multiple algorithms in a real-world financial 

dataset, providing detailed insights into their performance metrics and implications for anomaly detection 

[38]. Furthermore, the differences in precision among the algorithms raise important questions about 

enhancing detection accuracy while minimizing false positives, suggesting avenues for further research and 

algorithm enhancement [49]. As trajectory data analysis remains crucial in detecting anomalies in dynamic 

systems, this study contributes to advancing outlier detection techniques in this field [50]. 

 

 

5. CONCLUSION 

To conclude, this investigation into identifying outliers in trajectories highlights the critical 

significance of continuously advancing algorithmic methodologies to effectively tackle the evolving 

complexities found in modern data environments. By thoroughly examining various techniques for outlier 

detection, this study has provided insights into the strengths and limitations of existing approaches, 

emphasizing the necessity for a diverse range of algorithms to identify anomalies in trajectory data 

accurately. The future direction of this field relies on the ongoing refinement and development of robust 

techniques capable of handling the inherent high dimensionality of trajectory datasets. Embracing 

innovations such as deep learning-based approaches and the integration of diverse data sources, including 

contextual factors like weather and socioeconomic data, presents a promising frontier for enhancing precision 

in outlier detection. Additionally, the utilization of semi-supervised learning techniques offers a significant 

opportunity to improve accuracy in scenarios where labeled anomaly data is scarce, ultimately paving the 

way for more effective anomaly detection. These advancements not only enhance the effectiveness of outlier 

detection but also have profound implications across various domains, including security surveillance and 

transportation management. By uncovering these possibilities for future research and practical 

implementation, this study acts as a catalyst for propelling the field of outlier detection in trajectories toward 

increased efficiency and applicability in real-world contexts. As researchers and practitioners continue to 

explore these avenues, the potential for transformative impacts on anomaly detection methodologies and their 

practical implications remains vast and promising. 
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