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 This research paper delves into contemporary methodologies for eradicating 
clouds and nebulae from space images utilizing advanced deep learning 

technologies such as conditional generative adversarial networks (conditional 

GAN), cyclic generative adversarial networks (CycleGAN), and space-

attention generative adversarial networks (space-attention GAN). Cloud cover 

presents a significant obstacle in remote sensing, impeding accurate data 

analysis across various domains including environmental monitoring and 

natural resource management. The proposed techniques offer novel solutions 

by leveraging spatial attention mechanisms to identify and subsequently 
eliminate clouds from images, thus uncovering previously concealed 

information and enhancing the quality of space data. The study emphasizes the 

necessity for further research aimed at refining cloud removal algorithms to 

accommodate diverse detection conditions and enhancing the overall 
efficiency of deep learning in satellite image processing. By highlighting 

potential benefits and advocating for ongoing exploration, the paper 

underscores the importance of advancing cloud removal techniques to improve 

data quality and unlock new applications in Earth remote sensing. In 
conclusion, the proposed approaches hold promise in addressing the persistent 

challenge of cloud cover in space imagery, paving the way for more accurate 

data analysis and future advancements in remote sensing technologies. 
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1. INTRODUCTION 

In the modern era of space exploration and remote sensing [1], advanced satellite image analysis 

methods [2]–[4] face challenges presented by cloud coverage, which can significantly limit the availability 

and completeness of data [5]. This problem leads to difficulties in analyzing and interpreting information, 
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having a significant impact on areas such as environmental monitoring [6], agricultural planning, and natural 

resource management [7], [8]. The ability to accurately extract information from satellite images [9] obscured 

by clouds and fog becomes a key factor in improving the quality of these data and, therefore, being 

effectively used in various applications [10]. In this work, deep learning methods such as conditional 

generative networks (GCN) [11]–[13], cyclic generative networks (CycleGAN) [14]–[16], and space-

attention GAN (SpA GAN) [17] represent revolutionary solutions to overcome these limitations. 

The purpose of this research work is to review and compare approaches based on cGAN, cyclic 

GAN, and SpA GAN in removing clouds and nebulae from space images. We will discuss their application, 

effectiveness, and prospects for recovering hidden information, which can lead to a significant improvement 

in data quality and expanded possibilities for scientific and practical applications in the field of earth remote 

sensing [18]. Technological progress in the field of deep learning [19], represented by cGAN, CycleGAN, 

and SpA GAN, opens new perspectives in space image processing [20]. Using artificial intelligence and 

generative algorithms, these methods cannot only detect cloud coverings but also actively eliminate them, 

restoring hidden information underneath them. The unique characteristics of each of the presented 

approaches create the opportunity to select the best tool depending on the task's specific requirements and the 

data's characteristics. However, this paper also calls for further research and improvement of cloud removal 

techniques using deep learning. The development of algorithms adapted to different cloud types and survey 

conditions [21] and improving the overall performance of networks become important directions for future 

research. Efficient and accurate methods for removing clouds from satellite images can significantly increase 

the availability and value of these data, ushering in a new era in scientific research and practical use of Earth 

remote sensing. 

Zhang et al. [22] discuss the application of artificial intelligence (AI) in astronomical data 

processing. The authors highlight that AI is becoming central to many areas of astronomical research due to 

advances in data processing. The article provides a systematic review of representative examples of the 

application of artificial intelligence technologies in astronomical data processing. In particular, she describes 

the use of AI to identify pulsar candidates, detect fast radio emissions, detect gravitational waves, classify 

spectra, and reduce interference from radio frequency interference. In addition, the article examines possible 

future applications of AI in astronomical research to provide perspectives for the development of 

astronomical research in the era of artificial intelligence. Kulkarni and Murala [23] investigated the problem 

of airborne image quality degradation due to atmospheric haze, which significantly affects the accuracy of 

high-level applications such as military surveillance and earthquake assessment. The authors propose a novel 

method using deformable multi-head attention with displacement extraction with a spatially attentive 

approach to improve the quality of aerial images after haze removal. Experimental results on synthetic and 

real data, as well as an extensive ablative study, demonstrate the superiority of the proposed method over 

existing approaches for haze removal in aerial images.  

Cheng et al. [24] present a new system for image denoising called noise basis network (NBNet). 

Unlike previous works, they propose an approach to solve this complex problem from a new perspective: 

noise reduction through image-adaptive projection. The basic idea is to train a network capable of separating 

signal and noise by learning a set of reconstruction bases in the feature space. Next, removing noise from the 

image is achieved by selecting the appropriate basis of the signal subspace and projecting the input data into 

this subspace. An important aspect is the proposed spatially self-attention (SSA) module, which explicitly 

learns to generate bases and project into a subspace. SSA integrates with NBNet, structured as UNet, 

designed for end-to-end image denoising. Evaluation results on standard datasets including standard image 

denoising dataset (SIDD) and Darmstadt noise dataset (DND) show that NBNet achieves state-of-the-art 

peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) performance at a significantly lower 

computational cost. Waldner and Diakogiannis [25] proposes a method to automatically extract field 

boundaries from satellite images for digital agriculture. The deep convolutional neural network residual 

UNet-a is used to solve the problem of image segmentation, highlighting field areas, boundaries, and the 

distance to the nearest boundary. The problem is formulated as multi-task semantic segmentation. The model 

is trained on a single sentinel-2 composite image, providing accurate mapping of field boundaries and 

recognition of individual fields. Experiments show that the model successfully generalizes to different 

resolutions, sensors, and periods without overfitting, and averaging predictions across multiple images helps 

reduce temporal variations in accuracy. The approach of this work is expected to simplify the extraction of 

field boundaries on a scale. 

This study explores advanced methods for cloud and haze removal from space images using deep 

learning technologies such as CGN, CycleGAN, and SpA GAN, which apply spatial attention mechanisms to 

identify and remove clouds. Experiments on the RICE1 and RICE2 datasets show that SpA GAN performs 

better in PSNR and SSIM metrics, especially in dense cloud conditions. The study highlights the need to 

further improve cloud removal algorithms to enhance the quality of space data. In conclusion, the results 

confirm that using GAN for cloud removal significantly improves the quality of ground object 
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reconstruction. The RICE1 and RICE2 datasets are valuable resources for studying atmospheric phenomena, 

confirming the high performance of SpA GAN in various atmospheric conditions and providing directions 

for future research in the field of cloud removal using deep learning. 

 

 

2. METHOD 

SpA GAN is used to generate and transform spatial data, such as high-resolution images from low-

resolution images, translate images between different domains (for example, satellite imagery into maps), as 

well as improving the quality and diversity of spatial data, create detailed maps from coarse data, modeling 

urban growth and predicting environmental patterns. SpA GAN is also used in medical imaging to improve 

the quality of magnetic resonance imaging (MRI) or computerized tomography (CT) images, as well as 

generate realistic medical images for training machine learning models, as well as in other areas where 

spatial data generation and transformation are required. Also, SpA GAN is an innovative approach in the 

field of remote sensing image processing with a special focus on the task of cloud removal. This technology 

differs from traditional methods due to its ability to analyze and process information in detail at the pixel 

level, using sophisticated attention mechanisms to identify and eliminate cloud cover without losing valuable 

information about the underlying surface. The architecture of SpA GAN is based on a structure called 

spatially attentive network (SPANet), which efficiently analyzes images for cloud cover and removes them 

while preserving important details and characteristics of the earth's surface. SpA GAN also includes several 

key components: 

a. Convolutional layers used to initially extract feature maps from input images. 

b. Residual blocks used for deep processing of features without loss of information throughout the network. 

c. Spatial attention blocks (SABs) are the heart of SpA GANs, consisting of spatial attentional residual 

blocks (SARBs) and spatial attention modules (SAMs) that operate in parallel. These units can 

dynamically focus on areas with clouds, determine their boundaries and characteristics, and then guide 

the image restoration process in such a way as to ensure the most accurate cloud removal. The spatial 

attention engine in SpA GAN aims to emulate human visual attention, which is capable of recognizing 

and focusing on key elements of visual perception. In cloud removal research, this means that the network 

can identify cloudy areas in an image and give them more emphasis during processing. This approach 

allows not only to accurate removal of clouds but also the restoration of information underneath them 

with a high degree of detail, which is extremely important for the accuracy and usefulness of the resulting 

data. The application of SpA GAN in the field of remote sensing opens up new possibilities for the 

analysis of the Earth's surface and atmosphere. Improved cloud-free image quality helps better monitor 

environmental change, manage natural resources, urban and agricultural planning, and enhance research 

capabilities in climate, ecology, and meteorology. 

Fundamental differences and innovations of SpA GAN are: 

a. Unlike standard generative adversarial networks, SpA GAN introduces a sophisticated spatial attention 

system (SPANet) that allows the model to focus on key regions of the image for more accurate cloud 

removal. This represents a significant improvement in machine visual perception by emulating the human 

attention mechanism. 

b. Deep processing using spatial-attentional blocks. Each spatial attention block in SPANet contains a 

unique configuration of spatial attentional residual blocks (SARBs) and spatial attention modules (SAMs) 

that provide fine-grained processing of each aspect of the input data. This allows SpA GAN to adapt to 

complex cloud patterns and effectively reconstruct information about the earth's surface at a level of 

detail never seen before. 

c. One of the key advantages of SpA GAN is the ability of the model to dynamically adapt to different types 

and densities of cloud coverage, which is achieved through the use of attention maps. These maps allow 

the model to determine the amount of attention that should be given to each pixel, thereby providing 

flexibility and accuracy when processing images with varied cloud coverage. 

d. SpA GAN uses a multidimensional approach to image processing, which includes not only the removal of 

clouds but also a deep analysis of the underlying surfaces to restore detailed information, which is made 

possible thanks to the complex structure of the network, including many layers and blocks with a high 

degree of specialization. 

Figure 1(a) shows the structure of the spatial attentional network (SPANet) as a whole. In particular, 

Figure 1(b) clearly demonstrates the spatial attention block (SAB), which consists of three spatial attentional 

residual blocks (SARB) blocks and one spatial attentional module (SAM) module. Figure 1(c) details one of 

the SARB blocks, which is actively applied to effectively remove clouds using negative residuals guided by 

an attention map. This block is an important component in the process of data processing and information 

recovery under the cloud. Also, Figure 1(d) presents the spatial attention module (SAM), which is described 
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as a two-circuit, four-way recurrent neural network. This module plays a key role in providing accurate 

spatial attention when removing clouds, which significantly improves the efficiency of the algorithm. This set 

of images and blocks, including SAB, SARB, and SAM, represents an innovative approach in the field of 

spatial attention and cloud removal from satellite images. Decoding of shortened words such as SAB, SARB, 

and SAM indicate the use of spatial attentional units, spatial attentional residual units, and spatial attention 

units, respectively. These components are an integral part of the developed system aimed at improving the 

quality of space data processing using deep learning methods. 

 

 

    
(a) (b) (c) (d) 

 

Figure 1. The architecture of the SpA GAN method: (a) SPANet, (b) spatial attentive block, (c) SARB, and 

(d) SAM cGAN (conditional GAN)  

 

 

Conditional generative adversarial networks (cGAN) represent a significant development in the field 

of generative modeling. These networks, proposed by Mirza and Osindero in 2014 [26], extend the 

capabilities of traditional GANs by introducing an element of conditionality, allowing data to be generated 

based on specific information. Integrating conditionality into cGANs improves their applicability in various 

tasks such as image-to-image translation, style transfer, and data synthesis. A standard GAN consists of a 

generator (G) and a discriminator (D) participating in a minimax game, where the generator strives to 

generate realistic data to fool the discriminator, while the discriminator strives to correctly distinguish 

between real and generated samples. The object of the discriminator is to maximize the probability of 

correctly classifying the data, while the goal of the generator is to minimize this probability. Mathematically, 

this adversarial training is expressed by the following minimax game (1): 

 

𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧~𝑃𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]  (1) 
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where 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] is the expected value of the logarithm of the probability that the discriminator 

classifies the real data and 𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) represents the distribution of the real data. 𝐸𝑧~𝑃𝑧(𝑧)[𝑙𝑜𝑔(1 −

𝐷(𝐺(𝑧)))] is the expected value of the logarithm of the probability that the discriminator classifies fake data 

generated by the generator 𝐺. 𝑃𝑧(𝑧) represents the distribution of random noise 𝑧, 𝐺(𝑧) is the generated 

sample. Here 𝑝
𝑑𝑎𝑡𝑎

(𝑥) represents the distribution of real data, 𝑧 is a random noise vector selected from 𝑃𝑧(𝑧), 

and 𝐺(𝑧). In this cGAN work, the traditional GAN architecture is extended to include conditional 

information. The generator now takes as input both random noise z and conditional information 𝑦, generating 

samples 𝐺(𝑧, 𝑦). Similarly, the discriminator considers both data x and conditional information y when 

making classification. The loss function object for cGAN is modified accordingly (2). 

 

𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥|𝑦)] + 𝐸𝑧~𝑃𝑧(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧|𝑦)))]  (2) 

 

In this formulation, 𝐷(𝑥|𝑦) and 𝐺(𝑧|𝑦) indicate that the discriminator and generator are conditional on y, 

allowing the generation of data with certain characteristics. Introducing conditional information gives cGAN 

the ability to control and manipulate the generated results. For example, in image synthesis tasks, the 

conditional information y may represent a class label or certain attributes, influencing the generated image 

accordingly. cGANs have found wide application in various fields. In image-to-image translation tasks, such 

as converting satellite images into maps or converting black-and-white photographs to color, cGANs excel in 

producing realistic and contextually relevant results. The conditional nature of these networks makes them 

versatile tools in the fields of generative modeling and artificial intelligence. 

The CycleGAN architecture consists of two (𝐺𝐴⇢𝐵) and (𝐺𝐵⇢𝐴) and two discriminators (𝐷𝐴 и 𝐷𝐵). 

The first generator converts images from domain A to domain B, and the second generator performs the 

reverse conversion. Discriminators evaluate how real the generated images, the original images, and their 

looped versions look. CycleGAN loss functions include losses for discriminators and generators. The main 

components of loss functions include (3)-(5). 

 

𝐿𝑎𝑑𝑣(𝐺𝐴⇢𝐵, 𝐷𝐵, 𝐴, 𝐵) = 𝐸𝑏~𝑝𝑑𝑎𝑡𝑎(𝐵)[log 𝐷𝐵(𝑏)] + 𝐸𝑎~𝑝𝑑𝑎𝑡𝑎(𝐴)[log (1 − 𝐷𝐵(𝐺𝐴⇢𝐵(𝑎)))]  (3) 

 

where 𝑝
𝑑𝑎𝑡𝑎

(𝐴) and 𝑝
𝑑𝑎𝑡𝑎

(𝐵) are the distributions of images in domains A and B, respectively. 

 

𝐿𝑐𝑦𝑐(𝐺𝐴⇢𝐵, 𝐺𝐵⇢𝐴, 𝐴, 𝐵) = 𝐸𝑎~𝑝𝑑𝑎𝑡𝑎(𝐴) [||𝐺𝐵⇢𝐴(𝐺𝐴⇢𝐵(𝑎)) − 𝑎||
1
] +

𝐸𝑏~𝑝𝑑𝑎𝑡𝑎(𝐵)[||G𝐴⇢𝐵(G𝐵⇢𝐴(b)) − b||
1
] (4) 

 

where || ∙ ||
1
 – normal L1. 

 

𝐿𝑖𝑑(𝐺𝐴⇢𝐵, 𝐺𝐵⇢𝐴) = 𝐸𝑎~𝑝𝑑𝑎𝑡𝑎(𝐴) [||𝐺𝐵⇢𝐴 − 𝑎||
1
] + 𝐸𝑏~𝑝𝑑𝑎𝑡𝑎(𝐵)[||G𝐴⇢𝐵(b) − b||

1
] (5) 

 

CycleGAN’s iterative approach facilitates efficient learning without the need for explicit pairwise data 

between different domains. This model is extensively applied in tasks such as style transfer and image 

transformation, demonstrating its versatility. The study emphasizes the necessity for continued optimization 

of models and experiments to enhance overall performance, particularly in challenging conditions like high 

cloud cover. cGAN, SpA GAN, and CycleGAN differ in their approaches to frame-spanning cloud removal. 

cGAN uses conditional data to generate images that match given conditions, such as current weather 

conditions. SpA GAN employs external attention mechanisms to better identify and exploit cloud regions, 

achieving high PSNR and SSIM. CycleGAN does not require paired images and uses two generators and two 

discriminators to transform images from a cloudy state to a non-cloud state and vice versa, which is useful 

when there are no clear correspondences between cloudy and non-cloudy images. 

 

 

3. RESULTS AND DISCUSSION  

The RICE dataset used in our experiments is publicly available and can be found at the following 

link https://pan.baidu.com/s/1h6SFWSnzH7GQJoM2UxO_ng. For the input data used in our models, 

preprocessing included image normalization to ensure consistency of pixel intensity values across datasets. 

Specifically, each image was normalized by subtracting the mean and dividing by the standard deviation of 

the pixel values calculated across the entire dataset. This step was critical to standardizing input data and 

https://pan.baidu.com/s/1h6SFWSnzH7GQJoM2UxO_ng
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improving the performance of our deep-learning models by bringing data to a common scale. The models 

were trained on a system equipped with an NVIDIA Tesla V100 GPU, which significantly accelerated the 

training process. Training each model took about 48 hours on average. This setup allowed us to efficiently 

handle the extensive computation required for deep generative models and manage the large volumes of data 

involved in our cloud and nebula removal tasks. 

The dataset is divided into two subsets: RICE1, which includes thin cloud images, and RICE2, 

which focuses on dense cloud images. Each subset was designed to address different cloud detection and 

removal challenges, providing a comprehensive resource for evaluating our models under different 

atmospheric conditions. The RICE dataset, which consists of two subsets: RICE1 and RICE2, plays an 

important role in the research of cloud removal from satellite images. Both subsets represent unique datasets 

collected using different technologies, designed to study atmospheric phenomena such as clouds under a 

variety of lighting and density conditions. RICE1 is an innovative dataset containing 500 high-resolution 

image pairs acquired using the Google Earth platform. Each pair includes an image of the same area with and 

without clouds. The focus is on images of subtle clouds such as nebulae, making RICE1 a valuable resource 

for research related to subtle atmospheric phenomena and their impact on the visibility of the earth's surface. 

RICE2, in turn, is compiled from data from Landsat 8 OLI/TIRS sensors, known for their ability to provide 

high-quality images of the Earth. A specialized focus is on dense cloud imagery, making RICE2 an important 

tool for research into clouds and their impact on climate and weather. 

Experiments conducted with various deep learning models on both subsets revealed the results that 

on the RICE1 data set with thin clouds, conditional GAN achieved a PSNR of 27.427 dB and SSIM of 0.905, 

CycleGAN showed a PSNR of 26.930 dB and SSIM of 0.887, and SpA GAN showed the best results with a 

PSNR of 33.232 dB and SSIM 0.963, highlighting its outstanding performance in thin cloud conditions. 

These results highlight the importance of choosing an appropriate model for a particular cloud type and 

support the application of SpA GAN in thin cloud conditions, where this model exhibits the best performance 

as shown in Table 1. 

In the evaluation of the RICE2 dataset under dense cloud conditions, conditional GAN demonstrated 

a PSNR of 26.354 dB and SSIM of 0.824. Conversely, CycleGAN exhibited slightly lower performance with 

a PSNR of 24.79 dB and SSIM of 0.783. Remarkably, SpA GAN outperformed both models, achieving the 

highest results with a PSNR of 29.432 dB and SSIM of 0.912, highlighting the efficacy of its attention 

mechanism, especially in challenging scenarios with dense cloud cover as shown in Table 2. 

 

 

Table 1. Model accuracy results with thin clouds 
Model Quantitative metrics 

PNSR SSIM 

cGAN 27.427 0.905 

CycleGAN 26.930 0.887 

SpA GAN 33.232 0.963 
 

Table 2. Accuracy results for dense cloud models 
Model Quantitative metrics 

PNSR SSIM 

cGAN 26.354 0.824 

CycleGAN 24.79 0.783 

SpA GAN 29.432 0.912 
 

 

 

These results highlight the importance of careful model selection when processing images with 

varying degrees of cloud cover and difficulty in cloud removal. SpA GAN, relying on spatial attention 

mechanisms, has demonstrated superior skill in recovering ground truth objects from both thin and dense 

cloud images. The SpA GAN model performs best in most conditions, however, we emphasize the 

importance of careful model selection when processing images with varying degrees of cloudiness for the 

following reasons: images can vary greatly in cloudiness and other weather conditions, and in some specific 

conditions other models may perform better; unique project requirements may require specialized models 

optimized for specific conditions; the use of a variety of models improves the reliability and stability of data 

analysis; multitasking and the flexibility of some tasks require choosing the most suitable model for each 

specific situation. In addition, other models are also applicable in the task of removing clouds and nebulae 

from images, so we compared them with the commonly used SpA GAN method. Thus, while SpA GAN did 

show excellent results, it is important to consider that different models may be more effective in certain 

conditions, ensuring comprehensive and reliable data analysis and successful completion of the complex 

tasks facing our information system. 

These findings highlight the effectiveness of SpA GAN in a variety of atmospheric conditions, 

supporting its role as a powerful satellite image processing tool in the fields of meteorology, climatology, and 

remote sensing. The differences in model performance on the RICE1 and RICE2 test datasets can be 

explained as follows. On the RICE1 dataset, conditional GAN generates images while preserving spatial 

continuity, but the results may have fuzzy areas and ground detail may not be fully recovered, which explains 

the relatively low PSNR and SSIM scores. While, CycleGAN showed the worst results among the models, 
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which may be due to the lack of pairwise discriminative information, which is especially important for high-

resolution remote sensing and cloud removal. This results in a loss of spatial continuity and an inability to 

reconstruct details of ground objects. Also, SpA GAN shows the best results because it effectively uses 

attention mechanisms to detect cloudy areas and improve the cloud removal process, preserving more detail 

and consistency of the image, and making it visually closer to the true cloudy image as shown Figure 2. 

On the RICE2 conditional dataset, GAN faces the problem of losing information about ground 

objects under dense clouds, which makes reconstruction difficult and results in lower quality scores. 

CycleGAN removes the white region of dense clouds, but due to the complete loss of information about 

ground objects under dense clouds, it requires training on a large amount of similar data to reconstruct them. 

SpA GAN also performs better in this case, thanks to its ability to learn from large amounts of data and the 

effective use of the attention mechanism for detecting cloud areas, which can significantly improve cloud 

removal performance, even when information about ground objects is completely lost as shown Figure 3. 

 

 

  
 

Figure 2. SpA GAN result for nebula removal on RICE1 dataset 
 

 

  
 

Figure 3. SpA GAN results for dense cloud removal on the RICE2 dataset 

 

 

SpA GAN excelled in both evaluations due to its groundbreaking incorporation of spatial attention 

mechanisms, mirroring the human visual system's ability to recognize and concentrate on cloudy areas. This 

innovative approach enables the precise identification of cloudy regions and enhances the restoration of 

information related to ground objects. Consequently, SpA GAN proves effective in handling various cloud 

scenarios, including both thin clouds and dense cloud situations, leading to the generation of high-quality 

reconstructed images.  

In our research, we used both our developments and standard libraries: GAN-based algorithms, 

including cGAN and CycleGAN, were implemented using the popular PyTorch library, which made it 

possible to take advantage of its convenience for operations with tensors and automatic differentiation, 

especially regarding implementation mechanisms of conditional generation and cyclic transformations. The 

development of SpA GAN included the creation of a unique spatial attention architecture and the 

development of custom attention modules built from scratch by our research team, including detailed 

modeling and tuning of spatial attention units for efficient cloud cover identification and removal. This 

combined approach optimized the learning process and increased the accuracy of the results, and we hope 

that the information provided will assist researchers and practitioners in reproducing or developing the 

proposed methods. 
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Our experiments sometimes encountered problems such as overfitting, especially when training on 

highly homogeneous cloud structures in RICE2. Additionally, while our models were successful at removing 

clouds, they sometimes altered cloud-free areas, subtly affecting the natural appearance of the landscape. 

Recognizing these limitations is essential for future improvements and realistic satellite image reconstruction. 

Future research will focus on applying our cloud removal techniques to other fields, such as urban planning 

and agricultural monitoring, where accurate Earth observation data is critical. Moreover, extending our 

methodologies to other types of atmospheric occlusions such as smoke and haze could further demonstrate 

the generality and impact of our work beyond the RICE dataset. 

The results obtained in our study are realistic and correct. If part of the image is not covered by 

clouds or nebula, it should be left unchanged. Changing only those parts of the image that require correction 

preserves the original information and image quality. This is especially important to ensure the accuracy and 

reliability of the results since changes in areas that do not require correction can lead to distortion and loss of 

important details. We also compared various models commonly used for cloud and nebula removal tasks, 

such as SpA GAN, with other approaches to confirm our hypothesis that careful model selection is necessary 

depending on the conditions. Thus, our results highlight the importance of proper model selection for 

processing images under different cloud conditions to ensure high accuracy and reliability of data analysis. 

 

 

4. CONCLUSION 

The study demonstrates that using GAN to remove clouds from satellite images can significantly 

improve the quality of ground object reconstruction. SpA GAN, thanks to its spatial attention mechanisms, 

stands out among other models, providing high accuracy and detail. The RICE dataset, which includes subsets 

RICE1 and RICE2, is a valuable resource for studies on cloud removal from satellite images. Both subsets, 

collected using different technologies, provide unique data for studying atmospheric phenomena under a 

variety of lighting conditions and cloud densities. RICE1, with its innovative approach focusing on thin clouds 

such as nebulae, provides a valuable research tool for analyzing subtle atmospheric phenomena and their 

impact on the visibility of the earth's surface. RICE2, based on Landsat 8 OLI/TIRS data, with a focus on 

dense clouds, provides important inputs for studies of clouds and their influence on climate and weather. 

Experiments with different deep learning models on both subsets demonstrated that under thin cloud 

conditions, SpA GAN shows the best performance with high PSNR and SSIM values. Even in more 

challenging environments with dense clouds, SpA GAN proves its effectiveness, delivering outstanding 

results. Thus, the research results on the RICE dataset highlight the importance of model selection depending 

on cloud characteristics, supporting the application of SpA GAN in different cloud scenarios and confirming 

its high efficiency in satellite image processing under a variety of atmospheric conditions. The results pave 

the way for future research in cloud removal using deep learning, suggesting the exploration of new 

architectures and techniques to further improve accuracy and efficiency. 
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