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 This paper presents a method for collecting precise hand gesture (HG) data 

using a low-cost embedded device for an embedded artificial intelligence 

(EAI)-based humanoid robotics (HR) application. Despite advancements in 

the field, challenges remain in deploying cost-effective methods for 

accurately capturing and recognizing body gesture data. The ultimate 

objective is to develop humanoid robots (HRS) capable of better 

understanding human activities and providing optimal daily life support. In 

this regard, our approach utilizes a Raspberry Pi Pico microcontroller with a 

3-axis accelerometer and a 3-axis gyroscope motion sensor to capture real-

time HG data, describing ten distinct real-world tasks performed by the hand 

in experimental scenarios. Collected data is stored on a personal computer 

(PC) via a micro-python program, forming a dataset where tasks are 

classified using ten supervised machine learning (SML) models. Two 

classification experiments were conducted: the first involved predicting raw 

data, and the second applied normalization and feature extraction (FE) 

techniques to improve prediction performance. The results showed 

promising accuracy in the first phase (89% max), with further improvements 

achieved in the second phase (94% max). Finally, by employing similar 

methods, we can integrate highly trained machine learning (ML) models into 

embedded humanoid robotic systems, enabling real-time human assistance. 
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1. INTRODUCTION 

The field of humanoid robotics (HR) [1], [2] is rapidly advancing on a global scale, greatly 

influencing various aspects of human life. Humanoid robots (HRS) powered by artificial intelligence (AI) [3] 

are increasingly being tested and used across multiple industries, such as hospitality, education, healthcare, 

and the service industry. However, despite these technological advancements, real-world HR applications [4], 

[5] remain limited, partly due to high development costs. Their deployment in practical scenarios demands 

the association of high-performance motion acquisition systems [6] and machine learning (ML) techniques 

[7] to accurately collect and recognize well-expressive human body gesture data [8]. The captured data must 

be meticulously structured into well-processed datasets to be effectively adopted and interpreted by ML 

algorithms. One of the main challenges is to develop cost-effective, real-time data acquisition (DA) methods 

that capture highly accurate gesture data for efficient ML training. The ultimate goal is to develop HRS that 

https://creativecommons.org/licenses/by-sa/4.0/
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can improve recognition and reproduction of real-life human activities [9], thereby offering better assistance 

in daily tasks for an enhanced user experience. 

Various studies and related works have been undertaken in an effort to contribute to the 

development of HRS for real-world jobs. These include hospitality services such as serving food, acting as 

hotel concierges or in other customer-facing roles [10], bionic applications [11], and becoming senior 

companions [12]. Humanoid robot prototypes are already in existence today, all around the world. Many of 

them have advanced to the ground phase or have even touched down in the real world. Nevertheless, Table 1 

lists a few examples of the top HRS [13]–[16] that are currently employed in the sectors of deep-sea 

exploration, industry, sociology, and education. 

 

 

Table 1. Review of existing humanoid robot systems across various sectors 
Sector Name Description Tasks 

Industry “ARMAR-6” [13] - A high-performance humanoid 
robot for human-robot 

collaboration in real-world 

scenarios. 
- It recognizes humans’ needs and 

offers help in a proactive way. 

- Grasping and manipulating tools, 
- Perception and recognition, 

- Manual collaboration with humans, 

- Compliant-motion execution, 
- Natural language understanding, 

- Industrial maintenance assistance. 
    

Education “Pepper” [14] - Humanoid robot deployed for 

educational purposes. 
- Equipped with features and high-

level interfaces for multimodal 

communication with the humans 
around it. 

- Exhibiting body language, 

- Perceiving and interacting with its 
surroundings, 

- Moving around, 

- Analyzing people’s expressions and 
voice tones, 

- Creating content and teaching 

programming. 
    

Deep-sea 
exploration 

“The ocean one 
hands” [15] 

- An adaptive deep-sea diver design 
for robust marine manipulation in 

unstructured environments. 

- Utilizing two hands with elastic 
finger joints and a spring 

transmission to achieve a variety of 

pinch and wrap grasps. 

- Acquiring and manipulating small 
and large objects with one or two 

hands, 

- Grasping and handling delicate and 
stiff items, 

- Diving in the Mediterranean for its 

first mission, investigating a 
shipwreck off the coast of Toulon, 

France. 
    

Sociology “Advanced step in 

innovative mobility 
(ASIMO)” [16] 

- Being the latest biped Honda’s 

humanoid robot with its ability to 
have five-finger arms as well as its 

walking function. 

- It is a social robot that is designed 
to operate freely in a human living 

space to assist and improve 

people’s lives. 

- Walking over uneven surfaces and 

stairs in a dynamic and stable way, 
- Recognizes and interacts with 

people, 

- Carrying a payload of 70 kg, 
- Ability to compensate against 

external forces, 

- Collision avoidance, 
- Access things like doorknobs and 

light switches, 
- Waving and shaking hands. 

 

 

For HR applications, the acquisition and recognition of gesture data can be efficiently managed 

using embedded systems (ES) [17] equipped with motion sensors and actuators and powered by EAI [18]. 

Indeed, these devices offer cost-effective and low-power solutions for real-time, dynamic DA, capturing 

expressive human gesture data with precision through affordable motion sensors [19]. Involving performant 

ML methods, well-preprocessed and structured datasets can be gathered, and enhanced AI training, 

prediction, and decision-making capabilities can be achieved. Moreover, thanks to the internet of things (IoT) 

[20] and connected objects (CO) [21] industries, real-time and autonomous ES based AI [22] can be created 

for acquisition, recognition, and reactive tasks using robust sensors and actuators. As a result, ES are playing 

a critical role in building efficient, operational EAI-based HRS [23], [24] capable of providing continuous 

and optimal support in daily human activities. Industries have already achieved significant innovation in 

computational physics [25] and engineering by leveraging these technologies [26]. Thus, microcontrollers 

[27], [28] like the Arduino Nano 33 BLE sense [29], [30] and Raspberry Pi Pico [31], [32] are particularly 

well-suited for cost-effective HR projects due to their low cost, small size, and ability to run low-power 

embedded ML programs [18]. 

In this context, this paper presents an approach utilizing a low-cost Raspberry Pi Pico 

microcontroller paired with a motion sensor to capture precise, real-time hand gesture (HG) data. These 



                ISSN: 2088-8708 

Int J Elec & Comp Eng, Vol. 15, No. 2, April 2025: 1912-1923 

1914 

gestures represent ten simple, daily human tasks, which will be classified using SML models [7] for potential 

adoption in embedded HR applications. The methodology involves collecting multiple examples of each 

task’s hand gestures (HGs) via the microcontroller and sensor and classifying them with various ML models. 

The motion sensor is a 6-axis device that records 3-axis linear accelerations and 3-axis rotational velocities 

across the X, Y, and Z axes [31], [33]. The data collection process consists of attaching the motion sensor to 

a human hand and executing the tasks in real-world scenarios by performing controlled movements while 

capturing real-time measurements. The captured measures are stored on a PC using the Raspberry Pi Pico 

running a micro-python program. The collected data is then saved in an Excel file, forming a dataset that 

includes multiple instances of each hand task, all of which have been performed several times.  

The primary objective of this research is to develop a cost-effective method for generating a well-

labeled and representative HG dataset being effectively trained and interpreted by ML algorithms. The results 

aim to demonstrate how well the collected data describe the ten tasks and how accurately the ML models can 

predict them for future usage. Two experimental phases of classification were conducted. The first 

experiment applied classification to raw data, minimizing resource use, to evaluate how effectively the raw 

gesture data represents the activities. The second experiment employed data preprocessing techniques [34], 

including normalization and feature extraction (FE) [35], [36] to enhance classification accuracy. In the 

initial experiment, five models achieved accuracies between 80%–90%, while the second experiment showed 

enhanced results, with six models achieving accuracies between 87%–94%. For simplicity, the Raspberry Pi 

Pico microcontroller will be referred to as “Pico” throughout the remainder of this article. 

The article is structured as follows: section 2 describes the ten hand tasks adopted for the study. 

Section 3 details the methodology and materials used for data capture, with a presentation of ML models and 

techniques applied for classification. Section 4 shows the results achieved with the collected dataset and the 

ML prediction performances, along with an analysis and discussion. Finally, a conclusion summarizes the 

key findings. 

 

 

2. ADOPTED HAND TASKS FOR THE STUDY 

In this study, ten human hand tasks were designed to simulate real-world HG exercises that 

represent simple daily activities. Each task consists of multiple cycles of repeated HGs, with movements 

detected by the motion sensor and captured by the Pico. To optimize the use of a single sensor, the selected 

tasks are simple, one-handed actions illustrated in Figure 1. During the exercises, the fist and forearm are the 

only moving parts, while the fingers remain stationary. In this approach, the fist is the primary portion of the 

hand used for recording motions with the sensor. 

A task is defined as starting with the hand in a fixed posture (fingers and fist immobile), followed by 

continuous movement until the cycle completes, at which point the hand returns back to its initial position 

before starting the next cycle. Each elementary movement or action that constitutes a task is carefully 

tracked, generating a real-time gesture dataset with detailed features. The data capture is processed using a 

PC and a micro-python program, with the results stored in an Excel file for further analysis. Figures 1(a)  

to 1(j) illustrates the 10 hand tasks, which are described as follows: 

a. Opening/closing a door: a hand reaches for the door handle, turns it, and either pushes or pulls the door to 

open or close it. 

b. Locking/unlocking a lock key: fingers manipulate a key, inserting it into a lock to turn and secure the 

door or unlock it, and pull the key after that. 

c. Tapping keys: delicate index finger movements pressing keys buttons (of an electronic lock, for example, 

entering a code or sequence to secure or gain access). 

d. Pouring a cup with coffee: a hand takes up a thermos, holds it, and carefully pours coffee into a cup, 

controlling the flow to prevent spills, and puts the thermos down. 

e. Arranging glass cups: fingers or a hand arrange glass cups in a specific order or pattern, demonstrating 

dexterity and precision. 

f. Cleaning a window: a hand wields a cleaning tool (squeegee or cloth) to clean the window surface 

sprayed with a cleaner liquid following systematic and controlled movements. 

g. Panting a wall: a hand dips a paintbrush into a paint bucket and applies paint to a wall with steady and 

intentional strokes. 

h. Hammering a nail: a hand grasps a hammer and drives a nail into a surface by delivering controlled 

strikes. 

i. Sawing a tube: a hand guides a saw through a tube, demonstrating a precise cutting motion. 

j. Tightening/loosening a bolt: fingers or a hand grip a wrench, either tightening or loosening a bolt with 

calculated turns. 
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Figure 1. Illustrations representing the 10 selected hand tasks: (a) opening/closing a door, (b) locking or 

unlocking a lock key, (c) tapping keys, (d) pouring a cup with coffee, (e) arranging glass cups,  

(f) cleaning a window, (g) panting a wall, (h) hammering a nail, (i) sawing a tube, and  

(j) tightening/loosening a bolt  

 

 

3. METHOD 

This work employs the Pico [31], [32] as the primary electronic component, integrated with a micro 

electro mechanical systems processor unit (MPU6050) inertial measurement unit (IMU) module [31], [33] 

containing accelerometer and gyroscope sensors to detect HGs. The Pico is typically part of an 

Experimenting Kit, which features various onboard components and modules useful for developing 

hardware-based connected electronic projects [21]. The kit generally consists of a development board, relay, 

servo motor, IMU module, potentiometer, ultrasonic sensor, Wi-Fi module, and grove-compatible jumper 

cables [31]. However, for this study, only the development board, IMU module, and necessary wiring are 

used alongside a PC and micro-python programming language. The goal is to create a connected system in 

which the Pico functions as the master and the IMU module as the slave, utilizing an inter-integrated circuit 

(I2C) communication protocol [37]. Upon running the micro-python program, sensor data is collected and 

stored to be preprocessed, trained, and tested using ML techniques for classification. 

 

3.1.  Raspberry Pi Pico microcontroller 

The Pico is a high-performance microcontroller designed especially for computational physics [25] 

dealing with electronic systems that include IoT [20] projects. The Pico has its biggest advantages of being a 

very low-cost $4 microcontroller with more digital input-output pins, large memory, and accurate timing 

modules. Additionally, it has the ability to implement and run ML algorithms for low-power EAI applications 

[38], [39]. It is an integrated single-small board based on the RP2040 microcontroller chip with a 32-bit dual-

core Cortex processor running at up to 133 MHz, 264 kB of static random-access memory (SRAM), 2 MB of 

on-board flash memory for storing program codes, a timer, and a real-time counter. With a micro-USB type B 

port for providing 5 V power to and programming the board, it can be programmed using C, C++, or micro-

python languages to run a single task and can be used in fast real-time control and monitoring applications. 

Besides power and ground pins, it has 26 multiple-function general purpose input/output (GPIO) pins. These 

include 2× serial peripheral interface (SPI) [40], 2× inter integrated circuit (I2C) [37], and 2× universal 

asynchronous receiver transmitter (UART) [41] interfaces allowing connection and communication with other 

devices. The pins also include 3× 12-bit analog to digital converter (ADC) and 16× controllable pulse width 

modulation (PWM) channels. Figure 2 shows the Pico with its internal components in Figure 2(a) and pin 

interfaces in Figure 2(b). For more detailed information, refer to [31], [32]. 
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(a) 

 

 
(b) 

 

Figure 2. Schematics of the Pico board: (a) internal components and (b) pinout interfaces 

 

 

3.2.  MPU6040 IMU module 

The MPU6050 IMU module [31], [33] as shown in Figure 3 is a 6-axis motion detector unit 

consisting of a 3-axis accelerometer, a 3-axis gyroscope, and a temperature sensor. Being integrated into a 

single chip, the module is interfaced to and communicates with the Pico through the I2C bus [37]. The 

gyroscope measures the rate of rotational velocity, capturing the angular speed over time across the X, Y, and 

Z axes using micro electro-mechanical systems (MEMS) technology and leveraging the Coriolis effect [42]. 

The accelerometer, on the other hand, measures gravitational acceleration along the same three axes, and 

through trigonometric calculations, it can determine the angle of the sensor’s orientation. Acceleration values 

are recorded as 𝑎𝑥, 𝑎𝑦, and 𝑎𝑧, while rotational velocity values are represented as 𝑔𝑥, 𝑔𝑦, and 𝑔𝑧, where 

clockwise motion produces negative readings. As shown in Figure 3, the Z-axis is oriented perpendicular to 

the sensor module, while the Y- and X-axes are aligned perpendicular to the sides of the chip. Although the 

range of measures is from 0 to 3, acceleration data is reported in units of “g” while rotational velocity is 

measured in degrees per second as shown in Table 2. The fusion of accelerometer and gyroscope data enables 

precise tracking of the sensor’s movement and orientation, which constitutes the strength of the data 

collection approach employed in this article. 
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Figure 3. IMU module with its motion orientations and connection bus 

 

 

Table 2. Acceleration and velocity values in units and range 
Range Acceleration value (+- g) Rotation value (+- degs/sec) 

0 

1 

2 

3 

2 

4 
8 

16 

250 

500 
1000 

2000 

 

 

3.3.  Development board 

The development board is an integrated platform designed to facilitate practical and efficient 

connection and communication between the Pico and various external devices, such as sensors and motors. 

As shown in Figure 4, the board includes a thin-film-transistor liquid crystal display (TFT LCD), six grove-

interface compatible network sockets (labeled CN1 to CN6) [31], and a pin interface for plugging the Pico, 

ensuring easy access to the GPIO pins. Additionally, it features three light-emitting diodes (LEDs), three 

buttons, and a buzzer. External components can be connected to the board through the six sockets via jumper 

wires, allowing interaction with Pico’s GPIO pins. For more detailed information, refer to [31]. 

 

3.4.  Measurement programming  

To develop a program in the Pico that measures and stores acceleration and velocity data from the 

IMU sensor, a few steps must be followed. First, the Pico is plugged into the development board by aligning 

it with its GPIO pin holes, and the IMU sensor is connected to the development board through the compatible 

network (CN3) socket using jumper wires as shown in Figure 4. Second, via its micro-USB-B port, the Pico 

is connected to a PC using a micro-USB-B/USB cable, providing 5 V power and enabling data transmission 

as shown in Figure 4. Finally, by downloading the Thonny environment software [31], [32], the program can 

be developed by creating a new file and using the micro-python program language. Upon running the 

program, the 6-axis values: 𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑔𝑥, 𝑔𝑦, and 𝑔𝑧 start being measured by the IMU sensor and stored in 

an Excel file on the PC. 

 

 

 
 

Figure 4. Schema describing the proposed data collection method 
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3.5.  Data collection methodology 

All tasks covered in this paper are one-hand actions (right or left hand) that have been performed in 

a caring manner using my hand. The IMU sensor was securely attached to the back of my hand and 

connected to the Pico, which was affixed to my forearm and linked to a PC via a micro-USB/USB cable to 

provide both power and data transmission as shown in Figure 5. Once the acquisition system was set up, 

I launched the program and began to carefully perform, for every single task, the required hand movements, 

including directional shifts and rotations, that define the task. While doing that repetitively in cycles, 

acceleration and gyroscope measurements were being recorded in real-time by the Pico from the IMU sensor 

and were automatically being stored and saved in an Excel file. The micro-python program operated in a 

continuous “while” loop, capable of recording up to 999 rows of data per session. Each row corresponded to 

a sample consisting of 𝑎𝑥, 𝑎𝑦, 𝑎𝑧, 𝑔𝑥, 𝑔𝑦, and 𝑔𝑧 measures. For each task, the program ran twice, collecting 

data in two sessions, resulting in 1,998 total samples per task. The data were collected at a frequency of  

100 Hz with a time interval of 0.01 seconds. For tasks involving the tipping pad and unlocking/locking door 

actions, the IMU sensor was placed on the index finger, while for the rest of the tasks, it was positioned near 

the middle knuckle of the hand, as shown in Figure 5. 

 

 

 
 

Figure 5. Pictures showing the hand performing the 10 hand tasks into real-scenarios experiments 

 

 

3.6.  ML applied in classification 

To evaluate the accuracy of the acquired dataset in representing our ten activities, SML classification 

has been employed through two classification experimental phases. The initial step involves forecasting the 

tasks based on raw data to assess the accuracy of the real-time data capture in depicting the HGs. The second 

phase preprocesses the dataset [34], applying normalization and FE techniques [35], [36] to enhance our 

prediction performance. This entails evenly dividing the normalized dataset’s axis signals over a time interval 

and then using FE methods on each segment. This allows us to extract a new, reduced, and more informative 

dataset. The signals were segmented into two-second intervals, each comprising 20 discrete samples with a  

10-sample overlap, acquired at a rate of 0.01 seconds, corresponding to a sampling frequency of 10 Hz. 

 

3.6.1. Feature extraction 

FE [35], [36] refers to the process of identifying and extracting relevant features from raw data to 

create a more informative and simpler dataset. It aims to reduce data complexity (often known as “data 

dimensionality”) using statistical methods while retaining as much relevant information as possible in the 

original dataset. This helps to improve the performance and efficiency of ML algorithms and simplify the 

analysis process. 

In our study, four statistical FE techniques were used in classification: arithmetic mean, max–min 

values, root mean square (RMS), and principal component analysis (PCA) [34]–[36]. These techniques, when 

applied together, help to form a robust feature set that accurately represents the underlying patterns of hand 
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movements for the classification. Utilizing these features ensures that ML models can more effectively 

interpret the data and deliver better performance in gesture recognition. The significance of these features and 

their role in this research are described as follows: 

a. Arithmetic mean: it is the average value over each time interval, providing insight into the central 

tendency of each gesture. It gives a clear indication of the overall movement trend of the hand. 

b. RMS: it provides insight into the overall magnitude and energy of the motion in each data segment, 

identifying its most recurrent form. It is critical for gesture recognition tasks where variations in 

movement intensity are significant. 

c. PCA: it observes correlations between movement patterns in each axis bin and reduces information 

complexity while preserving the most significant patterns and enhancing computational efficiency. 

d. Max–Min values: they represent the highest and lowest values of the motion within each window. They 

offer insights into the spread of the movement, which can be important for boundary detection in tasks. 

 

3.6.2. ML models 

Through Python programming, ten ML models were trained on the dataset for both classification 

experiments using an 80% training set and tested on a 20% testing set. Yielding varying accuracy scores, the 

results will be interpreted by comparing the performance of the two experimental classification phases. For 

more in-depth evaluation and analysis, a confusion matrix [43] was utilized to gain detailed insights into the 

highest-performing model. Additionally, cross-validation [44] was applied during the training process to 

mitigate any potential overfitting [45] in prediction. The ten ML classifiers employed include naïve Bayes 

(NB), AdaBoost (AB), multi-layer perceptron (MLP), random forest (RF), support vector machine (SVM), 

decision tree (DT), logistic regression (LR), XGBoost (XGB), k-nearest neighbors (KNN), and gradient 

boosting (GB) [46]. These classifiers were selected for their suitability in multi-label classification tasks, 

particularly those dealing with datasets that contain high-dimensional clusters or patterns, such as the 6-axis 

HG data used in this study to classify 10 hand tasks. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  The obtained dataset 

The dataset comprises 3-axis accelerations (𝑎𝑥, 𝑎𝑦, 𝑎𝑧) and 3-axis velocities (𝑔𝑥, 𝑔𝑦, 𝑔𝑧) as input 

variables and the class of activities serving as the outcome variable. With 1,998 samples allocated for each 

task, the raw dataset comprises 19,980 samples, resulting in an input matrix X of dimensions (19,980, 6) and 

an output vector Y of dimensions (19,980, 1). Post-preprocessing, the dataset was reduced to 31 rows or 

windows and 30 axis inputs (Mean, RMS, PCA, Max and Min per 6-axis), including 9 classes with 3 bins 

each and one class with 4 bins. In Table 3, the 10 tasks are designated T0, T1, …, T9, and for ML training 

purposes, they are encoded and categorized by numerical values ranging from 0 to 9. 

 

 

Table 3. The 10 hand tasks with their names and encoded classes 
Task Designation Classes 

Opening/Closing a door 

Locking/Unlocking a lock key 

Tapping keys 

Pouring cups with coffee 

Arranging glass cups 

Cleaning a window 

Panting a wall 
Hammering a nail 

Sawing a tube 

Tightening/Loosening a bolt 

T0 

T1 
T2 

T3 
T4 

T5 

T6 
T7 

T8 

T9 

0 

1 
2 

3 
4 

5 

6 
7 

8 

9 

 

 

4.2.  Classification performances 

In the first experiment, classification on the raw dataset exhibited promising performance for half of 

the ten classifiers as shown in Figure 6. Prediction results show high accuracy scores (80%–90%) obtained 

by the RF, MLP, DT, XGB, and GB classifiers, with two of them nearing 90%. Medium scores (53%–62%) 

were obtained by the NB and LR classifiers, and low scores (33%–47%) by AB, SVM, and KNN.  

In the second classification trial concerning dataset preprocessing as shown in Figure 7, KNN 

improved significantly from 46.7% to 92.63%, joining five other top models. Those include the XGB, MLP, 

DT, RF, KNN, and GB classifiers, achieving high accuracy scores ranging from 87.41% to 94.11%. The NB, 

SVM, and LR classifiers attained medium scores between 60.81% and 70.30%, while AB rose modestly to 

49.57%.  
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Figure 6. Classification performance on the raw dataset 

 

 

 
 

Figure 7. Classification performance on the preprocessed dataset 

 

 

The prediction results demonstrate that most of the models performed well in identifying our  

10 classes, where each model had a unique interpretation of the gathered dataset. Five models (XGB, MLP, 

DT, RF, and GB) have already shown promising results on the raw dataset as shown in Figure 6, while four 

other models (SVM, KNN, LR, and NB) have shown middling performances. Following data preprocessing 

as shown in Figure 7, six models (XGB, MLP, DT, RF, KNN, and GB) provided high performances  

(87.41%–94.11%), while three models (NB, SVM, and LR) had performances above 60%. Additionally, the 

dataset has a certain structure that works well for most classifiers but not so well for others due to the low 

accuracy ratings. All of this shows how a precise dataset was gathered and trained by ML classifiers to 

accurately depict and predict the gestures used in 10 different human tasks without either overfitting or 

underfitting [45]. 

 

 

4.3.  MLP confusion matrix 

While all six classifiers demonstrated highly promising performances, it is more practical to select 

the best-performing model to be implemented on the Pico and used for future predictions. In this case, the 

highest accuracy is 94.11%, which is achieved by the MLP classifier. Its confusion matrix [43] in Table 4 

offers an overview of correct and incorrect predictions for each class by exposing potential confusion 

between classes and the prediction sensitivity (known as TPR: true positive rate or recall) [43] of each class. 

 

 

Table 4. Confusion matrix for the MLP classifier 
  Predicted classes   

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TPR (%) 

T
ru

e 
cl

as
se

s 

T0 360 4 4 4 9 2 12 2 4 3 90.60 
T1 4 380 7 0 0 1 5 1 1 1 95.72 

T2 2 1 376 3 3 2 3 4 5 0 94.34 

T3 0 0 1 395 0 0 0 0 0 5 98.55 

T4 0 2 2 0 385 0 0 0 6 5 96.45 

T5 1 3 0 0 0 386 0 0 4 5 96.84 

T6 3 2 8 0 3 0 365 2 3 1 94.69 
T7 2 0 5 0 0 0 3 364 3 12 93.74 

T8 2 1 1 1 3 2 1 2 381 3 95.97 

T9 15 6 2 0 21 1 7 0 10 356 85.16 
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Although some confounding points between certain classes were observed, the MLP confusion 

matrix in Table 4 demonstrates a satisfactory identification of the majority of points across the ten task 

classes. While accounting for non-linear trends, the matrix also highlights a few problematic points within 

the dataset. These issues arose during the execution of tasks like T0, T4, and T9, where hand movements 

were occasionally unsteady or subject to vibrations at specific instances. Nonetheless, the TPR values for all 

classes indicate that the MLP model predicted each task individually with a high precision rate. Nine tasks 

were predicted at precision rates ranging from 90.60% to 98.55%, with the exception of T9, which was 

predicted at a slightly lower precision rate of 85.16%. Overall, these results underscore the MLP’s ability to 

distinguish effectively between the ten activities, achieving a performance of 94.11% as the TPR mean.  

 

4.4.  Outcomes and analysis 

The results demonstrate that the collected dataset effectively represents our ten distinct activities that 

were accurately classified and recognized by ML models. On the raw dataset, prediction exhibited strong 

performance with a maximum accuracy of 89%, while preprocessing techniques further enhanced the 

performance to a maximum score of 94.11%. The achievement of high outcomes can be attributed to the 

careful selection of tasks and controlled execution of hand movements, with the use of suitable embedded 

tools alongside performant ML methods. This highlights the success of a low-cost data collection 

methodology in accurately capturing and predicting HG data for HR embedded ML-based applications. 

 

 

5. CONCLUSION 

In conclusion, the application of ML techniques in our low-cost data collection strategy yielded 

favorable results in identifying the ten task classes. These outcomes can be further leveraged by training on 

new data and deploying the best-performing models on the Pico as embedded ML algorithms for real-world 

applications. This could serve as a follow-up to this work for a new project, demonstrating the importance of 

affordable embedded devices for efficient data collection and reliable ML performance. Future work could 

involve expanding the dataset, exploring additional AI features, and testing different ML models across 

various real-world scenarios to improve generalizability. Overall, this research lays a strong foundation for 

applying similar methods in HR, incorporating advanced ML techniques using additional tools. The ability to 

accurately recognize specific HGs creates opportunities to integrate such of our ten activities into robotic 

systems, advancing automation in human-assistive tasks. A practical example is underwater welding, which 

is performed under high pressure in oceans. Well-trained HRS could efficiently execute this job, mitigating 

risks to humans such as electric shock, decompression sickness, drowning, hearing loss, and hypothermia. 
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