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 The rapid growth of mobile technologies has transformed social media, 

making it crucial for expressing emotions and thoughts. When making 

significant decisions, businesses and governments can benefit from 

understanding public opinion. This information makes sentiment analysis 

vital for understanding public sentiment polarity. This study develops a 

hyper tuned deep learning model with swarm intelligence and many 

approaches for sentiment analysis. convolutional neural network (CNN), 

bidirectional encoder representations from transformers (BERT), long short-

term memory (LSTM), CNN-LSTM, BERT-LSTM, and BERT-CNN are the 

six deep learning models of the sentiment analysis using deep learning with 

reinforced learning based on reptile search algorithm (SA-DLRLRSA) 

model. The reptile search algorithm, an enhanced swarm intelligence 

algorithm (SIA), optimizes deep learning model hyper parameters. 

Word2Vec word embedding is used to convert textual input sequences to 

representative embedding spaces. Pre-trained Word2Vec embedding is also 

used to address issue of unbalanced datasets. Experimental results 

demonstrate that the SA-DLRLRSA model works best with accuracies of 

93.1%, 94.7%, 96.8%, 96.3%, 97.2%, and 98.3% utilizing CNN, LSTM, 

BERT, CNN-LSTM, BERT-CNN, and BERT-LSTM. 
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1. INTRODUCTION 

Recent interest in sentiment analysis has grown due to its many uses. Opinion mining, or sentiment 

analysis, uses natural language processing and deep learning to uncover subjective information and emotional 

states. Sentiment analysis determines if written messages are positive, negative, or neutral [1]. In recent 

years, social media has become vital to daily life. People express their feelings on Twitter, Meta (formerly 

Facebook), Instagram, and other public platforms. Therefore, social media text analysis may assist 

understand public opinions [2]. By reviewing customer reviews, business owners can identify product 

improvements. Additionally, political bodies can use sentiment analysis to create action plans [3]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Sentiment analysis (SA) is a biggest and hardest task in artificial intelligence (AI). The system uses 

artificial methods to recognize psychological information including attitudes, perspectives, and moods in 

blogs, news articles, and social media posts [4]. Social media analysis requires managing and processing 

enormous amounts of content. Large amounts of content were shared and generated instantly, requiring 

efficient content management. The content processing approach must also be considered because the contexts 

were not standardized like the prevalent data [5]. This work proposes a cutting-edge sentiment analysis 

method using swarm intelligence (SI) and deep learning. An upgraded reptile search algorithm (RSA) is used 

with six deep learning models: convolutional neural network (CNN), bidirectional encoder representations 

from transformers (BERT), long short-term memory (LSTM), CNN-LSTM, BERT-LSTM, and BERT-CNN. 

Reinforcement learning (RL) fine-tunes all deep learning model hyperparameters to improve RSA [6], [7]. 

The Word2Vec word embedding technique is used. This study addresses imbalanced datasets using data 

augmentation. Following paragraphs review several well-established deep learning methods integrated with 

swarm intelligence (SI) for sentiment analysis.  

Halawani et al. [8] use Harris Hawks optimization and deep learning for sentiment analysis.  

The automated sentiment analysis in social media using Harris Hawks optimization with deep learning 

(ASASM-HHODL) model had 84.25%, 95.50%, and 88.75% accuracy on Sentiment140, Tweets Airline, and 

Tweets seminal datasets. Electroencephalography (EEG) signals were used to create an emotion recognition 

system in study [9] using the Shanghai Jiao Tong University (SJTU) dataset. Binary moth flame optimization 

(BMFO) selected features and CNN classified them. The algorithm was 95.00% accurate. Authors designed a 

hybrid tweet sentiment analysis algorithm in [10]. Tunicate swarm algorithm (TSA) improved scalability and 

processing speed in the experiment. Simulation annealing (SA) and bitwise operations are used in the hybrid 

HHO method to solve local optima in this work. The model had 96.37% precision. Particle swarm optimization 

(PSO), genetic algorithms (GA), and decision tree (DT) classifier were utilized in reference [11]. 

The method had 90.00% precision. GA, PSO, and decision trees were used to create a hybrid 

Twitter spam detection system in [12]. They create over 600 million tweets and extract attributes to detect 

spam in real time using uniform resource locator (URL) security. The hybrid GA-PSO-DT method is over 

90.00% accurate. A deep learning model named bidirectional long short-term memory with text 

convolutional self-attention (BiLSTM-TCSA) was developed for short text sentiment analysis in [13]. This 

model uses bidirectional long short-term memory (BiLSTM), text convolutional neural network (TextCNN), 

and self-attention. Enhanced improved particle swarm optimization (IPSO) optimized the hyperparameters. 

Using a generative adversarial network (GAN), a large amount of updated text was created, improving the 

model’s resilience. After processing, the BiLSTM model yielded global semantic insights and 94.59% 

accuracy on the hotel reviews dataset. Arabic Twitter sentiment analysis using PSO and deep learning (DL) 

was presented in study [14]. The bidirectional gated recurrent unit (BiGRU) classifier classifies attitudes. 

Quantum PSO (QPSO) optimizes hyperparameters. 

Hybrid-flash butterfly optimization with deep learning-based sentiment analysis [15] was 

developed. On the Canon dataset, hybrid flower bee optimization with deep learning sentiment analysis 

(HFBO-DLSA) had 97.66% precision. An innovative software technique for analyzing emoji emotions was 

developed in [16]. Videos and images are noise-filtered first. Jiebas vocabulary was expanded by segmenting 

English text with emoji and internet slang. Emojis started as text. A recurrent neural network (RNN) 

classifies emotions as positive, extremely positive, neutral, negative, and very negative using the fuzzy 

butterfly optimization (FBO) algorithm. This categorization uses LSTM. The recommended sentiment 

analysis model outperforms current methods. Product review sentiments are categorized using the adaptive 

particle grey wolf optimizer with deep learning based sentiment analysis (APGWO-DLSA) in [17]. 

The APGWO-DLSA model obtained 94.77% accuracy on the CPAA dataset and 85.31% on the AP 

dataset. Alzaqebah et al. [18] present an improved salp swarm method (SSA) for Arabic sentiment analysis 

feature selection. With 80.00% accuracy, the SSA outperformed the PSO and grey wolf optimization (GWO). 

Mashraqi and Halawani [19] constructed dragonfly optimization with deep learning enabled Arabic tweet 

sentiment analysis. The term frequency-inverse document frequency (TF-IDF) model generates feature 

vectors. Attention-based bidirectional long short-term memory (ABLSTM) classifies sentiment. Differential 

flower optimization (DFO) optimizes ABLSTM hyperparameters last. On the semEval2017 dataset,  

the differential flower optimization with deep learning sentiment analysis and attention technique  

(DFODL-SAAT) model is 92.00% accurate. Log term frequency-based modified inverse class frequency 

(LFMI) was used to extract features in study [20]. The feature was chosen via Levy flight-based mayfly 

optimization. The selected data is used to build the enhanced local search whale optimization-based 

improved local search whale optimization with long short-term memory (ILW-LSTM) model. The  

ILW-LSTM method has 97% precision. In [21], a swarm intelligence algorithm called social spider algorithm 

(SSA) is used for the sentiment analysis within Twitter data. Decision tree, naïve Bayes, SVM, and KNN are 

the other classifiers used in this approach. SSA has produced very good results in comparison with other 
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classifiers. In [22], an optimization approach with ant lion optimization (ALO) and moth flame optimization 

(MFO) were designed for the hate speech analysis problem. The approach achieved accuracy value was 

92.1% and 90.7% with ALO, and MFO respectively. 

The remaining sections of the paper are organized in the following manner: section 2 outlines the 

proposed sentiment analysis using deep learning with reinforced learning based on reptile search algorithm 

(SA-DLRLRSA) model. Section 3 provides a comprehensive overview of the performance evaluation of the 

proposed approach. Finally, section 4 serves as the concluding section of the entire work. 

  

 

2.  MATERIAL AND METHODS  

This study introduces a new SA-DLRLRSA model to classify social media sentiments. Social media 

text is primarily transformed into useful data by SA-DLRLRSA. The SA-DLRLRSA approach reduces  

data-pre-processing-dependent language processing with Word2Vec word embedding. 

  

2.1.  Preparation of data 

Data preparation removes unwanted and noisy data. This study includes pre-processing tasks such 

as, performing tokenization to convert text into a word list, streamlining SA via minimizing root 

proliferation, doing case conversion, performing punctuation removal from the text, performing stop words 

removal from the text. Neural network-based natural language processing (NLP) models are popular due to 

their accuracy. However, most NLP techniques perform poorly on large datasets and require word embedding 

for textual datasets. To improve system performance and processing speed, we used Wod2Vec word 

embedding. Six different deep learning models such as CNN [23], LSTM [24], BERT [25], CNN-LSTM, 

BERT-LSTM, and BERT-CNN are used in this study to accurately classify sentiments on social media.  

 

2.2.  Hyperparameter tuning using reptile search algorithm 

An improved reptile search algorithm (RSA) adjusts these models hyperparameters to improve 

classification. The RSA algorithm, presented by abualigah mimics the hunting behavior of crocodiles in the 

wild [7]. Crocodiles may hunt on land and in water as amphibians. The basic RSA algorithm contains three 

steps. 

 

2.2.1. Initialization phase 

The starting solution of the RSA is produced randomly through the application of the equation  

𝐴𝑖
1 = 𝐿𝐵𝑜𝑢𝑛𝑑 + 𝑟𝑎𝑛 × (𝑈𝐵𝑜𝑢𝑛𝑑 − 𝐿𝐵𝑜𝑢𝑛𝑑). In this setting, 𝐴𝑖

1 represents the ith starting individual, 

whereas LBound and UBound refer to the lower and upper limits, respectively. Also, it denotes the current 

iteration count, IT represents the maximum iteration count. 

 

2.2.2. Encircling phase (exploration) 

Crocodiles walk high and wide during global search. Current number of iterations determines RSA 

search strategy. RSA walks high when IT is 0.25 or less. The RSA sprawl walks when it is less than  

0.25 times the IT or larger than it. The following mathematical models describe the mechanism: 
 

𝐴𝑖
𝑡+1 = {

𝐴𝑏𝑒𝑠𝑡
𝑖𝑡 − 𝜂𝑖 × 𝛼 − 𝑅𝑖

𝑖𝑡 × 𝑟𝑎𝑛, 𝑖𝑡 ≤
𝐼𝑇

4
                     

𝐴𝑏𝑒𝑠𝑡
𝑖𝑡 × 𝐴𝑟𝑎𝑛

𝑖𝑡 × 𝐸𝑉𝑆 × 𝑟𝑎𝑛, 𝑖𝑡 ≤
𝐼𝑇

4
 𝑎𝑛𝑑  𝑖𝑡 >

𝐼𝑇

4

 (1) 

 

𝜂𝑖 = 𝐴𝑏𝑒𝑠𝑡
𝑖𝑡 × 𝐵𝑖𝑡 (2) 

 

𝑅𝑖 =
𝐴𝑏𝑒𝑠𝑡

𝑖𝑡 −𝐴𝑖
𝑖𝑡

𝐴𝑏𝑒𝑠𝑡
𝑖𝑡 +𝜀

 (3) 

 

𝐸𝑉𝑆 = 2 × 𝑟1 × (1 −
1

𝐼𝑇
) (4) 

 

𝐵𝑖𝑡 = 𝛽 +
𝐴𝑖

𝑖𝑡−𝑀(𝐴𝑖
𝑖𝑡)

𝐴𝑏𝑒𝑠𝑡
𝑖𝑡 ×(𝑈𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑−𝐿𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑)+𝜀

 (5) 

 

𝑀 =  
1

𝑛
 ∑ 𝐴𝑖

𝑛
𝑗=1  (6) 

 

where, 𝐴𝑏𝑒𝑠𝑡
𝑖𝑡  represent the current best solution, α is a constant of 0.1, controls exploration rate, 𝐴𝑟𝑎𝑛

𝑖𝑡  is a 

randomly selected individual. To avoid the denominator from being zero, the required minimal value is 
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denoted as ε. The 𝑟1 is a random number from -1 to 1. The constant β is set to 0.1 and, 𝑟𝑎𝑛 is a 0–1 random 

number. The hunting operator in the 𝑖𝑡ℎ solution is denoted as 𝜂𝑖 which is calculated using (2). Evolutionary 

sense (EVS) is a random ratio between [2, -2] describe the probability of decreasing values throughout the 

iterations, calculated by (4). Bit corresponding to the difference between the position of the best-obtained 

solution and the position of the current solution, calculated by (5). M stands to the mean positions of the 𝑖𝑡ℎ 

solution, computed by (6). 

 

2.2.3. Hunting phase (exploitation) 

In RSA, crocodiles use two strategies for foraging: hunting coordination and cooperation. When  

it < 0.75𝐼𝑇 and it ≥ 0.5𝐼𝑇 , the RSA performs hunting coordination. When it < 𝐼𝑇 and it ≥ 0.75𝐼𝑇, a hunting 

cooperation strategy is employed by the RSA. The position updating in the hunting phase is done as (7): 

 

𝐴𝑖
𝑖𝑡+1 = {

𝐴𝑏𝑒𝑠𝑡
𝑖𝑡 − 𝐵𝑖 × 𝑟𝑎𝑛, 𝑖𝑡 ≤

𝐼𝑇

4
 𝑎𝑛𝑑 𝑖𝑡 >

𝐼𝑇

2
                     

𝐴𝑏𝑒𝑠𝑡
𝑖𝑡 × 𝜂𝑖 × 𝜀 − 𝑅𝑖

𝑖𝑡 × 𝑟𝑎𝑛, 𝑖𝑡 ≤ 𝐼𝑇 𝑎𝑛𝑑  𝑖𝑡 >
3𝐼𝑇

4

 (7) 

 

RSA generates the initial population randomly in the search space first and then chooses different search 

strategies depending on the number of iterations. The pseudocode for the RSA is shown in Figure 1. The 

RSA improves classifier efficiency with a fitness function. It assigns good-performing solutions a value 

greater than zero. The fitness function used in this scenario was reducing classification error rate. 

 

𝐹𝑖𝑡𝑛(𝑥𝑖𝑡) =
𝐴𝑙𝑙 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝐴𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
∗ 100  (8) 

 

 
1 Initialize RSA parameters, create initial population randomly 

2 While it < IT 

3     Calculate the Fitness of each solutions 

4   Find the Best solution so far 

5   Update the EVS using (2). 

6      For (i = 1 to N)  

7         For (j = 1 to N) 

8            Calculate 𝜂𝑖, B, R using (3), (4) and (6) 

9            Update Position of crocodile using (1) to (8) 

10       End For 

11 it = it + 1 

12 End While 

13 Return the best position and fitness 

 

Figure 1. Pseudocode of the RSA algorithm 
 

 

2.3.  Reinforcement learning 

Reinforcement learning has found extensive application in various fields for problem-solving. 

Reinforcement learning (RL) is based on the idea that an agent changes the state of the environment by acting 

on it and receives a reward based on the results of the action. The two distinct kinds of reinforcement 

learning (RL) are value and policy-based learning. Q learning (QL) is a value-based RL method. It is a 

model-free, which means that the agent learns how to make the right choices in a Markovian domain [26]. 

The agent performs the action with the highest expected Ql value during learning. one-step Q learning is a 

very simple type of Q learning. In this, Ql value is changed in a single step according to the state-action pair. 

This work employs a one-step Q learning methodology. Each state-action pairs reward updates the Q table 

continuously using (9). 

 

𝑄𝑙(𝑠𝑡𝑡, 𝑎𝑡𝑡) ← (1 − 𝐿𝑟)𝑄𝑙(𝑠𝑡𝑡 , 𝑎𝑡𝑡) + 𝐿𝑟(𝑟𝑠𝑡+1 + 𝛾 𝑚𝑎𝑥𝑎𝑡𝑄𝑙(𝑠𝑡𝑡+1, 𝑎𝑡𝑡+1))  (9) 

 

The symbols 𝛾 and Lr denote the discount factor and rate of learning, respectively. Both numbers are within 

the range of 0 to 1. The 𝑄𝑙(𝑠𝑡𝑡 , 𝑎𝑡𝑡) refers to the Ql value obtained by performing action 𝑎𝑡𝑡 in the current 

state 𝑠𝑡𝑡. On the other hand, 𝑚𝑎𝑥𝑎𝑡𝑄(𝑠𝑡𝑡+1, 𝑎𝑡𝑡+1) represents the highest anticipated Ql value in the Q table 

when executing action 𝑎𝑡𝑡+1 in state 𝑠𝑡𝑡+1. It is crucial to note that an increased rate of learning (𝐿𝑟) prompts 

the algorithm to acquire knowledge from the anticipated Ql value, whereas a decreased rate of learning 

prompts the algorithm to capitalize on the previous Ql value. Therefore, the rate of learning is used to strike a 

balance between utilizing exploiting knowledge and exploring new opportunities. Q learning pseudo-code is 

shown in Figure 2. Q learning randomly assigns values to the Q and reward tables. A state is then randomly 
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chosen by the algorithm. As per lines 4 and 5, the algorithm maximizes the states future reward. This 

modifies the Q table, reward table, and new state. 

 

 
1 Initialize Q-table and reward table with randomly 

2 Chose random state 𝑠𝑡𝑡 

3 While (Termination criteria not met) 

4    Choose the best action 𝑎𝑡𝑡 for the current state 𝑠𝑡𝑡  

   from Q table 

5    Execute the action and the reward 𝑟𝑡𝑡+1 

6    Get the new state  𝑠𝑡𝑡+1 

7    Update Q table using (9) 

8     𝑠𝑡𝑡 ←  𝑠𝑡𝑡+1 

9  End While            

 

Figure 2. Pseudocode of the Q learning algorithm 

 

 

2.4.  The development of the proposed SA-DLRLRSA 

2.4.1. Motivation 

The typical RSA technique finds solutions through exploration and exploitation. Individuals use 

efficient and belly-walking methods to explore new answers. Hunting operations are coordinated to find the 

best optimal solutions during exploitation. The algorithms capacity to change direction is limited because 

exploration occurs in the first half of iterations and exploitation in the second. RSAs inability to adjust 

iteratively makes it prone to local optima. Thus, a defined search pattern does not guarantee the optimal 

value. Reinforcement learning and adaptive search find the global minimum efficiently. Random opposition-

based learning increases population variation to find alternative answers. These features of the RL and ROBL 

motivated us to use them for improving the RSA for efficient sentiment analysis. 

 

2.4.2. The SA-DLRLRSA structure 

SA-DLRLRSA uses the entire search space as its environment and every solution (individual) as an 

RL training agent. The Q learning algorithm switches between exploration and exploitation. The Q value of 

the state-action pair is updated by the Q learning algorithm using the highest fitness value and the average 

fitness value from earlier iterations. A table described as a reward table is used to give the punishments or 

incentives to the solutions (agents) based on its actions and status. The proposed SA with RL and random 

state learning consists of three actions that are determined by the rate of the exploration ∅: increasing the rate 

of the exploration, decreasing the rate of the exploration, or maintaining current rate. In the following 

iteration value of ∅ is adjusted considering the current highest fitness and cumulative average fitness using 

(10). ∅𝑖𝑡+1 indicates the rate of exploration in the following iteration, ∆ represents the incremental value, and 

𝑓(𝑋𝑏𝑒𝑠𝑡
𝑖𝑡 ) represents the fitness of the best position in the current iteration. The M represents the mean fitness 

of the fit solution (individuals) found thus far, computed using (11). Up to this point, n iterations have been 

done. To calculate the weighted factor for the fittest individual 𝑋𝑏𝑒𝑠𝑡
𝑖𝑡  at iteration 𝑖𝑡, use the formula  

𝑤𝑓𝑖 = 𝑒𝑖𝑡/𝐼𝑇. 

 

∅𝑖𝑡+1 = {

∅𝑖𝑡 ∗ (1 + ∆) 𝑖𝑓 𝑓(𝑋𝑏𝑒𝑠𝑡)
𝑖𝑡 > 𝑀

∅𝑖𝑡 ∗ (1 − ∆) 𝑖𝑓 𝑓(𝑋𝑏𝑒𝑠𝑡)
𝑖𝑡 < 𝑀

∅𝑖𝑡                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10) 

 

𝑀 =
1

𝑛
∑ 𝑤𝑖𝑋𝑏𝑒𝑠𝑡

𝑖𝑡𝑛
𝑖𝑡=1  (11) 

 

Here, 𝑖𝑡 represents the current iteration and IT represents the total number of iterations. It is important to note 

that the most physically fit individuals in recent times have a greater impact on the calculation of the value of 

M. specifically, if the achieved fitness is higher than the average fitness, the algorithm should focus on a 

smaller search space and improve the acquired solutions. Alternatively, the algorithm expands its search 

region in order to discover novel solutions and prevent local optima. In summary, the first scenario described 

in (10) typically occurs when the agent achieves a higher level of fitness over the mean fitness. In the second 

situation, the agent’s fitness starts to decline in comparison to the prior agent’s experience. The SA-

DLRLRSA has three states, denoted as st = {1, −1, 0) which correspond to the activities described in (12). 

The reward table in this work assigns a positive value of (+1) to state 𝑠𝑡𝑡 = 1 and a negative value 

of (-1) to all other states. If the fitness gained at iteration, it is good than the mean fitness of the last 𝑖𝑡 − 1 

iterations, then the present state 𝑠𝑡𝑡 is equal to 1. In (13) illustrates the reward approach. Here, 𝑠𝑡𝑡 is the state 
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achieved by the individual (agent) at iteration it. Furthermore, the suggested SA-DLRLRSA method 

precisely adjusts the rate of learning according to the accumulated performance, as this factor greatly 

influences the attainment of the ideal solution. When the rate of learning is near to one, the fresh collected 

information significantly influences the future reward. At a low learning rate, the value of existing 

information surpasses that of newly acquired information. In order to optimize the outcome, the learning rate 

is dynamically decreased at each iteration using (14). Here, 𝐿𝑟𝑖𝑛𝑖𝑡 and 𝐿𝑟𝑓𝑖𝑛𝑎𝑙 represent the starting and final 

values of the learning rate, respectively. 

 

𝑠𝑡𝑡 = 𝑠𝑖𝑔𝑛(𝑓(𝑥𝑖𝑡) − 𝑀), 𝑠𝑖𝑔𝑛(𝑥) = {
1           𝑖𝑓 𝑥 > 1
−1      𝑖𝑓 𝑥 < 1

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (12) 

 

𝑅𝑒𝑤𝑎𝑟𝑑 = {
+1         𝑖𝑓𝑠𝑡𝑡 = 1 
−1      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

 

𝐿𝑟 =
𝐿𝑟𝑖𝑛𝑖𝑡+𝐿𝑟𝑓𝑖𝑛𝑎𝑙

2
−

𝐿𝑟𝑖𝑛𝑖𝑡+𝐿𝑟𝑓𝑖𝑛𝑎𝑙

2
∙ cos (𝜋 (1 −

𝑖𝑡

𝐼𝑇
))) (14) 

 

The random opposition-based learning (ROBL) technique is incorporated into the SA-DLRLRSA 

algorithm to dynamically assist in avoiding the problem of being stuck in suboptimal solutions. ROBL is a 

technique established by [27] that use randomization to enhance the performance of optimized bee life (OBL) 

methods defined as: 𝑥𝑖𝑗
𝑙 = 𝑙𝑏𝑖𝑗 + 𝑢𝑏𝑖𝑗 − 𝑟𝑎𝑛𝑑 × 𝑥𝑖𝑗 , 𝑖𝑗 = 1,2, … … … . , 𝑛. Here, 𝑥𝑖𝑗

𝑙  and 𝑥𝑖𝑗 denote the 

antithetical and initial solutions, whereas 𝑙𝑏𝑗 and 𝑢𝑏𝑗 represent the minimum and maximum limits of the 

variables. Figure 3 depicts the proposed SA-DLRLRSA and provides a more comprehensive explanation of 

how the algorithm explores the global solution.  

 

 
1 Initialize RSA parameters, create initial population randomly. 

Set the state st= (st1, st2, st3} and action at = (at1, at2, at3). 

Initialze Q table and reward table, randomly select present state 

2 While it < IT 

3     Calculate the Fitness of each solutions 

4 Find the Best solution so far 

5  Update the EVS using  (2). 

6   Update rate of exploration φ  using  (9) 

7      For (i = 1 to N)  

8         For (j = 1 to N) 

9           If rand < ∅ 

10              If rand < 0.5 

11                 Update crocodiles’ Position using first part of  (1)  

12               Else 

13                 Update crocodiles’Position using second part of  (1) 

14                 End If 

15           Else   

16             If rand < 0.5 

17                Update crocodiles’ Position using first part of  (7)  

18             Else 

19                Update crocodiles’ Position using second part of  (7) 

20            End If     

21          End If 

22          Compute 𝑥𝑖𝑗
𝑙 (𝑖𝑡 + 1) using ROBL 

23         End For 

24       If  𝑓(𝑥𝑖𝑗
𝑙 (𝑖𝑡 + 1)) is better than 𝑓(𝑥𝑖𝑗(𝑖𝑡 + 1)) 

25             𝑥𝑖𝑗(𝑖𝑡 + 1)   =   𝑥𝑖𝑗
𝑙 (𝑖𝑡 + 1) 

26      End If 

27     Update the present state using  (12) 

28     Compute reward using  (13) 

29     Update Q table using  (9) 

30     End For 

31 it = it + 1 

32 Update rate of learning using  (14) 

33 End While 

34 Return the best position and fitness 

 

Figure 3. Proposed SA-DLRLRSA algorithm 
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The algorithm starts by assessing individual fitness and finding the best solution. Next, the most 

advantageous action from the Q table is selected, and the exploration rate is changed using (10). The random 

number and exploration rate determine whether exploration or exploitation generates a new solution. The 

recently acquired solution is used to compute the reverse solution using ROBL. After then, the elitism 

mechanism determines the best solution from the reverse and new solutions. Following this, updates occur to 

the Q table, reward table, and present state. The rate of learning is modified after each iteration until the 

stopping requirements are met. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Assessment indicators 

All the assessment indicators used in this work are described in Table 1, where true positives (TP), 

true negatives (TN), false positives (FP), and false negatives (FN) are used to calculate their values. The 

model is evaluated using accuracy, F1 score, precision, and recall metrics. 

 

 

Table 1. Assessment indicators 
Metric Description Formula 

Accuracy Proportion of correctly classified instances 

among the total instances. 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑁 + 𝑇𝑃)/(𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁) 

Precision Proportion of true positive predictions among all 

positive predictions. 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

Recall Proportion of true positive predictions among all 

actual positive instances. 
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

F1 Score Harmonic mean of precision and recall, balancing 

between precision and recall. 
𝐹1 𝑆𝑐𝑜𝑟𝑒 =  (2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) 

 

 

3.2.  Experimental results 

Table 2 shows the parameter combinations of all classifiers in this investigation. Total positive, 

neutral, and negative tweets are 22,937, 21,938, and 5,183, respectively. This project aims to create a Bitcoin 

sentiment analysis model using deep/machine learning methods. In order to enhance model effectiveness, we 

enhanced deep learning/machine learning parameters utilizing an enhanced reptile search algorithm (RSA). 

We added reinforcement learning to the RSA algorithm to boost its exploration and use of information. The 

models accuracy, F1 score, precision, and recall were evaluated. These metrics provide a complete 

assessment of the models ability to classify tweet sentiments as positive, negative, or neutral. Our study 

found significant differences in deep learning (DL) or machine learning (ML) algorithm efficacy. Table 3 

compares models performance factors. 

 

 

Table 2. Parameter setting of the models 
Parameters Values 

CNN LSTM BERT CNN-LSTM BERT-CNN BERT-LSTM 

Act. function Softmax Softmax Softmax Softmax Softmax Softmax 

Batch size 128 128 128 128 128 128 

Optimizer Adam Adam Adam Adam Adam Adam 

Epochs 10 10 10 10 10 10 

Learning rate ---- ---- 0.001 -------   

 

 

Table 3. Results attained by the models 
Models Accuracy (%) Precision (%) Recall (%) F1 score (%) 

CNN 93.10 93.96 92.10 93.02 

LSTM 94.97 96.19 95.85 96.02 

BERT 96.84 97.44 97.18 97.31 

CNN-LSTM 96.38 96.44 96.22 96.33 

BERT-CNN 97.22 97.12 96.90 97.01 

BERT-LSTM 98.32 97.28 97.18 97.23 

 

 
Figure 4 shows the graphs tweet numerically. Figure 5 shows the results graphically. Figure 6 shows the 

CNN classifier achieved 96.5% accuracy, 93.9% precision, 92.1% recall, and 93.0% F1 score. Figure 7 shows that 

the LSTM classifier had 94.9% accuracy, 96.1% precision, 95.8% recall, and 96.0% F1 score. Figure 8 shows that 

the BERT classifier had 96.8% accuracy, 97.4% precision, 97.1% recall, and 97.3% F1 score. The CNN-LSTM 
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classifier in Figure 9 had 96.3% accuracy, 96.4% precision, 96.9% recall, and 97.0% F1 score. Figure 10 shows the  

BERT-CNN classifiers 97.2% accuracy, 97.1% precision, 92.1% recall, and 93.0% F1 score. Figure 11 shows that 

the BERT-LSTM classifier outperformed all other models. The model had 98.3% accuracy, 97.2% precision, 

97.1% recall, and 97.2% F1 score. BERT-LSTM was resilient and effective at assessing Bitcoin tweet sentiment. 

Our research also compares our findings to earlier studies [16]–[18], [21]. Our work shows that deep 

learning/machine learning improves classification accuracy through real-time tweet detection and analysis. It is 

also important to highlight constraints like dataset size and biases that may restrict outcomes of the research. This 

may require intelligent hyperparameter adjusting, using domain-specific characteristics based on expert 

knowledge, or adding external data to augment the dataset. We can improve sentiment analysis by incorporating 

these variables and improving categorization algorithms. 

 

 

 
 

Figure 4. Number of Tweets 

 

 

 
 

Figure 5. Results obtained 

 

 

  
 

Figure 6. CNN confusion matrix 

 

Figure 7. LSTM confusion matrix 
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Figure 8. BERT confusion matrix 

 

Figure 9. CNN-LSTM confusion matrix 

 

 

  
  

Figure 10. BERT-CNN confusion matrix Figure 11. BERT-LSTM confusion matrix 

 

 

4. CONCLUSION  

This work presents the development of the SA-DLRLRSA algorithm for sentiment classification of 

Bitcoin tweets. The objective of the SA-DLRLRSA technique is to develop an automated artificial 

intelligence model that accurately classifies the tweets as positive, negative, or neutral in terms of their 

sentiment towards Bitcoins. The SA-DLRLRSA technique consists of four stages: data preparation, 

preprocessing, sentiment classification based on deep learning or machine learning, and hyperparameter 

tuning based on improved RSA. The RSA technique is employed for hyperparameter tunning in order to 

enhance the results of the DL or ML algorithms. The effectiveness of the SA-DLRLRSA approach is 

confirmed by testing it on the Bitcoin tweets dataset obtained from the Kaggle repository. The experimental 

results showed that the SA-DLRLRSA method outperformed other present algorithms in several measures. 

This analysis offers a valuable insight into the publics emotions towards Bitcoins on Twitter, enabling a 

better comprehension and evaluation of its influence and perception among users. In the future, the presented 

model has the potential to be expanded for classifying views related to various topics. Furthermore, there are 

several additional strategies that can be employed to enhance the performance of the suggested  

SA-DLRLRSA model. 
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