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 As memories dominate the system-on-chip (SoC), their quality significantly 

impacts the chip manufacturing yield. There is a growing need to reduce the 

chip production time and cost, which mainly depends on the testing phase. 
Hence, a memory built-in self-test (MBIST) utilizing a low-complexity, 

high-fault-coverage test algorithm is essential for efficient and thorough 

memory testing. The March AZ1 algorithm, with 13N complexity, was 

created earlier to balance the test length and fault coverage. However, poor 
positioning of a write operation in its test sequence caused the reduction of 

the transition coupling fault (CFtr) detection. This paper presents the 

creation of the March AZ algorithm, modified from the March AZ1 

algorithm, to increase CFtr coverage while preserving the same complexity. 
It was accomplished by analyzing the fault coverage offered by the March 

AZ1 algorithm and then reorganizing its test sequence to address the 

limitation in detecting CFtr. The newly produced March AZ1 algorithm was 

successfully implemented in an MBIST controller. The simulation tests 
validated its functionality and demonstrated that the CFtr coverage was 

enhanced from 62.5% to 75%, achieving an overall fault coverage of 83.3%. 

Therefore, with 13N complexity, it offers the best fault coverage among all 

the existing test algorithms with a complexity below 18N. 
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1. INTRODUCTION 

Memory testing is becoming essential in designing system-on-chips (SoCs) since they are nowadays 

memory dominant, where the memories use up to 94% of their areas [1]–[3]. As a result, a good chip 

manufacturing yield is significantly influenced by memory quality [2], [4]. Additionally, memories are more 

prone to failure than sequential logic due to their high-density nature [5]. Many static memory fault models 

are established to represent the actual manufacturing defect at the logical abstraction level, as described in 

Table 1. Stuck-at fault (SAF), transition fault (TF), read destructive fault (RDF), incorrect read fault (IRF), 

deceptive read destructive fault (DRDF), and write disturb fault (WDF) are classified as single-cell faults 

(SCF), whose occurrences are sensitized and detected in the same memory cell. Meanwhile, transition 

coupling fault (CFtr), deceptive read destructive coupling fault (CFdrd), and write disturb coupling fault 

https://creativecommons.org/licenses/by-sa/4.0/
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(CFwd) are the double-cell faults (DCF), where the fault detected in a victim cell (v) is caused by the state of 

the aggressor cell (a) [6]–[8].  

Each single-cell faults (SCF) is described by its faults primitives (FP) and conventionally notated as 

<𝑆/𝐹/𝑂>, where S indicates the fault sensitizing operation(s), 𝐹 is the 𝑣 state if faulty, and 𝑂 is the read 

output (if applicable) [9], [10]. Each SCF has 2 FPs since 𝑥 equals either 0 or 1. Meanwhile, a DCF’s FP is 

notated as <𝑆𝑣;  𝑆𝑎/𝐹/𝑂>, where 𝑆𝑎 and 𝑆𝑣 are the sensitizing operators or states at the 𝑎 and 𝑣 cells, 

respectively. Each DCF consists of 8 since two possible scenarios are anticipated: the a-cell’s address is 

inferior (𝑎 < 𝑣) or superior (𝑎 > 𝑣) to the v-cell address. Since numerous memories on a chip need to be 

tested automatically, memory built-in self-test (MBIST) is a widely used method for memory testing [11]. It 

can automate test executions and output checking, and thus, the dependency on costly testing equipment is 

reduced [10], [12]–[14]. It performs a series of test operations defined by the applied test algorithm, 

consisting of reading (𝑟𝑥) or writing (𝑤𝑥) the x logic to every cell inside the tested memory [15], [16]. These 

test operations are conducted in the ascending (⇑) or descending (⇓) address order. 
 

 

Table 1. The descriptions of unlinked static fault models 
Fault FP Faulty Behavior Detection Requirement 

SAF < 𝑥/𝑥’/−> v-cell is stuck at the x-state 

regardless of the input value. 

Write x’ to cells followed by a 

read operation. 

TF < 𝑥𝑤𝑥’/𝑥/−> v-cell fails to transit from x to x’. Write x’ to x-state cells followed 

by a read operation. 

RDF < 𝑟𝑥/𝑥’/𝑥’ > A read from the v-cell unexpectedly 

changes its state and returns an 

incorrect value. 

Read from x-state cells. 

IRF < 𝑟𝑥/𝑥/𝑥’ > A read from the v-cell unexpectedly 

returns an incorrect value without 

changing its state. 

Read from x-state cells. 

DRDF < 𝑟𝑥/𝑥’/𝑥 > A read from the v-cell unexpectedly 

changes its state but returns the 

correct value. 

Read twice from x-state cells. 

WDF < 𝑥𝑤𝑥/𝑥’/−> A write-to-x to the v-cell that 

contains an x unexpectedly changes 

its state to x’. 

Write x to x-state cells followed 

by a read operation. 

CFtr < 𝑥;  𝑥𝑤𝑥’/𝑥/−>a>v, 

< 𝑥;  𝑥𝑤𝑥’/𝑥/−>a<v, 

< 𝑥’;  𝑥𝑤𝑥’/𝑥/−>a>v, 

< 𝑥’;  𝑥𝑤𝑥’/𝑥/−>a>v 

v-cell fails to transit from x to x’ 

when its a-cell is in a given state  

(x or x’). 

Write x’ to x-state cells followed 

by a read operation when a-cell is 

in the x or x’ state. 

CFdrd < 𝑥;  𝑟𝑥/𝑥’/𝑥 >a>v, 

< 𝑥;  𝑟𝑥/𝑥’/𝑥 >a<v, 

< 𝑥’;  𝑟𝑥/𝑥’/𝑥 >a>v, 

< 𝑥’;  𝑟𝑥/𝑥’/𝑥 >a<v 

A read from the v-cell unexpectedly 

changes its state but returns the 

correct value when its a-cell is in a 

given state (x or x’). 

Read twice from x-state cells 

when a-cell is in the x or x’ state. 

CFwd < 𝑥;  𝑥𝑤𝑥/𝑥’/−>a>v, 

< 𝑥;  𝑥𝑤𝑥/𝑥’/−>a<v, 

< 𝑥’;  𝑥𝑤𝑥/𝑥’/−>a>v, 

< 𝑥’;  𝑥𝑤𝑥/𝑥’/−>a>v 

A write-to-x to the v-cell that 

contains an x unexpectedly changes 

its state to x’ when its a-cell is in a 

given state (x or x’). 

Write x to x-state cells followed 

by a read operation when a-cell is 

in the x or x’ state. 

 

 

The semiconductor industry prefers March test algorithms since they have design simplicity and 

linear complexity, defined in the order of N (the size of the tested memory) [2], [17]–[19]. Several March test 

algorithms are listed in Table 2. They are distinguished by their test sequences, complexities, and fault 

coverages. The stuck-at fault (SAF) represents incorrect read fault (IRF) and read destructive fault (RDF) 

coverages since their detection requirements are alike [20]. The shown fault coverage is computed by 

dividing the number of detectable FPs by 2 for each SCF and by 8 for each DCF. A March test algorithm 

with a complexity higher than or equal to 18N, like the March MSS algorithm [20], offers complete coverage 

of all targeted static faults in static random access memory (SRAM). Meanwhile, a lower-complexity test 

algorithm is necessary to produce a shorter test time and lower cost. However, based on Table 2, it has poor 

coverage of DRDF, WDF, CFdrd, and CFwd, which are relevant to memories fabricated using the nanometer 

process technologies [21]. 

Therefore, the March AZ1 (13N) and March AZ2 (14N) algorithms were created to balance the 

complexity and coverage of the targeted faults [22]. The former offers 80.6% of overall fault coverage, 

providing complete SCF coverage, 62.5% coverage of CFtr, and 75% coverage of CFdrd and CFwd. 

Meanwhile, the latter offers a slight enhancement in CFtr coverage (75%), thus offering 83.3% of overall 

fault coverage, the best among all existing below 18N-complexity test algorithms [22]. The latter can detect a 

specific FP of CFtr (CFtr < 1;  1𝑤0/1/−>a>v) that is undetectable by the former. However, its complexity is 

1N more than the former, requiring a slightly longer test time.  
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This paper presents the March AZ algorithm, a new test algorithm that improves the March AZ1 

algorithm’s coverage of CFtr while maintaining its complexity at 13N. It was accomplished by analyzing the 

detectability of all FPs using an automated fault detection analyzer, which identifies each FP’s sensitizing 

and detecting test operations within the March AZ1 algorithm’s test sequence. Subsequently, the weakness in 

CFtr detection was recognized from the analysis output and addressed through test operations and test 

elements reorganization. The functionality of the new March AZ algorithm was verified via a simulation 

conducted using the implemented MBIST controller. Finally, its fault coverage was evaluated by performing 

a test on a fault-injected SRAM as the memory model in the simulation. The results demonstrate that the new 

March AZ algorithm provides similar unlinked static fault coverage to the March AZ2 algorithm, which 

offers the best coverage to date among all existing test algorithms with a complexity lower than 18N [22]. 

However, with 1N complexity lesser than the latter, the former produces a faster test completion time and, 

thus, can reduce the test cost. 

 

 

Table 2. Several March algorithms test sequences, complexities, and fault coverages 
Test algorithm Complexity Test sequence SCF DCF 

SAF TF DRDF WDF CFtr CFdrd CFwd 

March C- [6] 10N ⇕(w0); ⇑(r0, w1); ⇑(r1, w0); ⇓(r0, w1);  

⇓(r1, w0); ⇕(r0) 

100% 100% 0% 0% 100% 0% 0% 

March CL [23] 12N ⇕(w0); ⇑(r0, w1); ⇑(r1, r1, w0); ⇓(r0, 

w1, r1); ⇓(r1, w0); ⇕(r0) 

100% 100% 50% 0% 100% 50% 0% 

March LR [24] 14N ⇕(w0); ⇓(r0, w1); ⇑(r1, w0, r0, w1);  

⇑(r1, w0); ⇑(r0, w1, r1, w0); ⇑(r0) 

100% 100% 0% 0% 100% 0% 0% 

March SR [6] 14N ⇕(w0); ⇑(r0, w1, r1, w0); ⇑(r0, r0); 

⇑(w1); ⇓(r1, w0, r0, w1); ⇓(r1, r1) 

100% 100% 100% 0% 100% 50% 0% 

March C+ [25] 14N ⇕(w0); ⇑(r0, w1, r1); ⇑(r1, w0, r0);  

⇓(r0, w1, r1); ⇓(r1, w0, r0); ⇕(r0) 

100% 100% 100% 0% 100% 100% 0% 

March AZ1 [22] 13N ⇕(w0); ⇓(r0, w1); ⇑(w1, r1, r1, w0);  

⇑(w0, r0); ⇑(r0, w1, w1, r1); ⇑(r1) 

100% 100% 100% 100% 62.5% 75% 75% 

March AZ2 [22] 14N ⇕(w0); ⇓(w0, r0); ⇑(r0, w1, w1, r1);  

⇑(r1, w0); ⇓(r0, w1, w1, r1); ⇑(r1); 

100% 100% 100% 100% 75% 75% 75% 

March MSS [20] 18N ⇕(w0); ⇑(r0, r0, w1, w1); ⇑(r1, r1, w0, 

w0); ⇓(r0, r0, w1, w1); ⇓(r1, r1, w0, 

w0); ⇕(r0) 

100% 100% 100% 100% 100% 100% 100% 

March SS [2] 22N ⇕(w0); ⇑(r0, r0, w1, w1); ⇑(r1, r1, w0, 

w0); ⇓(r0, r0, w1, w1); ⇓(r1, r1, w0, 

w0); ⇕(r0) 

100% 100% 100% 100% 100% 100% 100% 

 

 

2. THE MARCH AZ1 ALGORITHM REVIEW 

Table 3 shows the six test elements in the March AZ1 algorithm’s test sequence, labelled 𝑇𝐸0 

through 𝑇𝐸5, separated by semicolons [22]. The test elements will be executed sequentially during the test: 

All test operations defined in 𝑇𝐸𝑖  must be performed on all memory cells before moving on to the next 

𝑇𝐸𝑖+1. Plus, 13 read or write operations must be performed on all N memory cells, explaining its 13N 

complexity. 

 

 

Table 3. The March AZ1 algorithm descriptions 
Test element Test sequence Test description 

TE0 ⇕(w0) All cells are set to 0. 

TE1 ⇓(w1) All cells are set to 1 in descending address order. 

TE2 ⇑(w1, r1, r1, w0) All cells are sequentially set to 1, read twice (expecting a 1 at the 

output), and set to 0 in ascending address order. 

TE3 ⇑(w0, r0) All cells are sequentially set to 0 before being read (expecting a 0 at the 

output) in ascending address order. 

TE4 ⇑(r0, w1, w1, r1) All cells are sequentially read (expecting 0), set to 1 twice, and reread 

(expecting 1) in ascending address order. 

TE5 ⇑(r1) All cells are read (expecting 1) in ascending address order. 

 

 

A fault detection analysis was conducted on the March AZ1 algorithm using a developed fault 

detection analyzer that identifies the sensitizer and detector pairs for all targeted FPs within the test sequence 

[26]. The flowchart in Figure 1 depicts the analysis process that was conducted. Once the March AZ1 

algorithm’s test sequence was read and extracted, the analyzer determined the cell trend of each test element, 

which indicates how the cells’ states are changed when a test element is executed during the test. Next, it 
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identified all possible sensitizer and detector pairs of each detectable FP found within the analyzed test 

sequence, starting from the first test operation defined in 𝑇𝐸0 until the last test operation in 𝑇𝐸5, based on 

their detection requirements described in Table 1. The process was repeated for all 36 targeted FPs. 

Specifically, for DCF detection analysis, the predetermined cell trends, which indicate the way all memory 

cells’ contents change during the execution of a test element, are needed to decide the corresponding FP 

(either 𝑎 < 𝑣 or 𝑎 > 𝑣) [26]. 

 

 

 
 

Figure 1. The fault detection analysis process flow 

 

 

Each FP was associated with a bit in the det_FP bus for fault coverage computation purposes, which 

was set to high when its sensitizer-detector pair was identified within the analyzed test sequence. Therefore, 

the fault coverage was computed by calculating the high det_FP bits divided by the total FPs 36. Table 4 

shows the sensitizer and detector pairs for each FP identified within the March AZ1 algorithm’s test sequence 

during the analysis. The TEi-j notations signify that the jth test operation in TEi is recognized as a sensitizing 

or detecting operation for a particular FP.  

Table 4 demonstrates that all targeted SCFs are detectable since their FPs have at least one identified 

sensitizer-detector pair. So, the March AZ1 algorithm offers 100% of all SCFs. Additionally, the fault 

analyzer identified the sensitizer-detector pairs for 5 FPs of CFtr. Hence, CFtr coverage equals 62.5%  

(5 detectable FPs out of 8). Meanwhile, the fault analyzer identified the sensitizer-detector pairs for 6 FPs of 

each CFdrd and CFwd. Hence, the CFdrd and CFwd coverages equal 75% (6 detectable FPs out of 8). 

Consequently, the fault detection analysis derived the expected fault coverage by the March AZ1 algorithm, 

as presented in Table 2. By comparing its fault coverage to the March AZ2 algorithm with 14N test 

complexity [22], which is available in Table 2, the analyzed March AZ1 algorithm has a slightly lower 

coverage of CFtr since it cannot detect the CFtr < 1;  1𝑤0/1/−>a>v, as proven by the analysis output 

presented in Table 4. 
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Table 4. The analysis of the March AZ1 algorithm’s fault coverage 
Fault FP Identified (Sensitizer, Detector) Detection status Fault coverage 

SAF <1/0/-> (TE2-1, TE2-2), (TE4-3, TE4-4) Yes 2/2 (100%) 

<0/1/-> (TE3-1, TE3-2) Yes 

TF <0w1/0/-> (TE1-1, TE2-2), (TE4-2, TE4-4) Yes 2/2 (100%) 

<1w0/1/-> (TE2-4, TE3-2) Yes 

RDF <r0/1/1> (TE2-1, TE2-2), (TE4-3, TE4-4) Yes 2/2 (100%) 

<r1/0/0> (TE3-1, TE3-2) Yes 

IRF <r0/0/1> (TE2-1, TE2-2), (TE4-3, TE4-4) Yes 2/2 (100%) 

<r1/1/0> (TE3-1, TE3-2) Yes 

DRDF <r0/1/0> (TE3-2, TE4-1) Yes 2/2 (100%) 

<r1/0/1> (TE2-2, TE2-3), (TE4-4, TE5-1) Yes 

WDF <0w0/1/-> (TE3-1, TE3-2) Yes 2/2 (100%) 

<1w1/0/-> (TE2-1, TE2-2), (TE4-3, TE4-4) Yes 

CFtr <0; 0w1/0/->a>v (TE4-2, TE4-4) Yes 5/8 (62.5%) 

<0; 0w1/0/->a<v (TE1-1, TE2-2) Yes 

<1; 0w1/0/->a>v (TE1-1, TE2-2) Yes 

<1; 0w1/0/->a<v (TE4-2, TE4-4) Yes 

<0; 1w0/1/->a>v Not found No 

<0; 1w0/1/->a<v (TE2-4, TE3-2) Yes 

<1; 1w0/1/->a>v Not found No 

<1; 1w0/1/->a<v Not found No 

CFdrd <0; r0/1/0>a>v (TE3-2, TE4-1) Yes 6/8 (75%) 

<0; r0/1/0>a<v (TE3-2, TE4-1) Yes 

<1; r0/1/0>a>v Not found No 

<1; r0/1/0>a<v Not found No 

<0; r1/0/1>a>v (TE4-4, TE5-1) Yes 

<0; r1/0/1>a<v (TE2-2, TE2-3) Yes 

<1; r1/0/1>a>v (TE2-2, TE2-3) Yes 

<1; r1/0/1>a<v (TE4-4, TE5-1) Yes 

CFwd <0; 0w0/1/->a>v (TE3-1, TE3-2) Yes 6/8 (75%) 

<0; 0w0/1/->a<v (TE3-1, TE3-2) Yes 

<1; 0w0 /1/->a>v Not found No 

<1; 0w0/1/->a<v Not found No 

<0; 1w1/0/->a>v (TE4-3, TE4-4) Yes 

<0; 1w1/0/->a<v (TE2-1, TE2-2) Yes 

<1; 1w1/0/->a>v (TE2-1, TE2-2) Yes 

<1; 1w1/0/->a<v (TE4-3, TE4-4) Yes 

 

 

3. THE NEW MARCH AZ ALGORITHM CREATION 

As stated in Table 1, a CFtr occurrence can be sensitized in a v-cell by writing an x’ logic to the cell 

that contains an x logic when the a-cell is in a given state. Then, the write operation is succeeded by a read 

operation to detect any faulty behavior from the v-cell. According to [20], [22], the CFtr <1; 1w0/1/->a>v can 

be sensitized and detected by using one of the following test sequences, where F(x) represents any operation 

that produces an x-state in the memory cells and * indicates that the associated operations are optional: 

− Condition 3.1: ⇕ (… , 𝐹(1)); ⇑ (𝐹(1) ∗, 𝑤0, 𝑤0 ∗  𝑟0, 𝐹(0) ∗); 

− Condition 3.2: ⇕ (… , 𝐹(1)); ⇑ (𝐹(1) ∗, 𝑤0, 𝑤0 ∗); ⇕ (𝑟0, … ); 

− Condition 3.3: ⇕ (… , 𝐹(1)); ⇕ (𝑤0, 𝑤0 ∗, 𝑟0, 𝐹(0) ∗, 𝐹(1)); 

In the March AZ1 algorithm’s test sequence, the cells’ transition from 1 to 0 can only occur at TE2: 

⇑ (𝑤1, 𝑟1, 𝑟1, 𝑤0), where the 𝑤0 operation should set the cells’ states to 0. A subsequent read operation can 

then detect the faulty behaviour caused by the CFtr <1; 1w0/1/->a>v. Yet, this 𝑤0 operation in TE2 is 

followed by another w0 operation in TE3: ⇑ (𝑤0, 𝑟0) before the required read operation. Therefore, this test 

sequence does not meet Condition 3.1 to Condition 3.3 requirements. In fact, the 𝑤0 operation in TE3 acts as 

the CFtr <1; 1w0/1/->a>v fault recovered, masking its occurrence from being detected by the 𝑟0 operation in 

TE3, as illustrated in Figure 2 using a 4-cell memory as the example where the v-cell and a-cell are set to 

address 0 and 2, respectively. In TE2 operation, the v-cell, affected by the CFtr <1; 1w0/1/->a>v fault, fails to 

change its state to low when the w0 operation is performed since its a-cell (cell 2) is in a high state. Somehow, 

the w0 operation in TE3 successfully changes its state to low since its a-cell is no longer in a high state. 

So, the March AZ1 algorithm’s TE2 and TE3 were reorganized to solve this issue: the 𝑤0 operation 

in TE3 was moved to the end of TE2. Subsequently, the newly modified TE2 consists of ⇑(w1, r1, r1, w0, w0) 

test sequence, whereas the new test sequence for TE3 is ⇑(𝑟0). Consequently, the newly reorganized TE2 and 

TE3 fulfil the required test sequence defined by Condition 3.2 and should be able to detect the CFtr  

<1; 1w0/1/->a>v. The newly modified March AZ1 algorithm is called the March AZ algorithm, with the same 

13N complexity and the new test sequence: ⇕(𝑤0); ⇓(𝑟0, 𝑤1); ⇑(𝑤1, 𝑟1, 𝑟1, 𝑤0, 𝑤0); ⇑(𝑟0); ⇑(𝑟0, 𝑤1, 𝑤1, 

𝑟1); ⇑(𝑟1). The fault detection analysis was redone using the new March AZ algorithm. The analysis results 

in Table 5 prove that the CFtr coverage was improved from 62.5% by the March AZ1, as stated in Table 4, to 
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75% by enabling the detection of the CFtr <1; 1w0/1/->a>v. Furthermore, it also proves that the proposed test 

element reorganization did not affect the detections of other FPs as their coverages remain unchanged. 

 

 

 
 

Figure 2. Illustration of the CFtr <1; 1w0/1/->a>v fault recovering at TE3 of the March AZ1 algorithm 

 

 

Table 5. The new March AZ algorithm’s fault detection analysis 
Fault FP Identified (Sensitizer, Detector) Detection status Fault coverage 

SAF <1/0/-> (TE2-1, TE2-2), (TE4-3, TE4-4) Yes 2/2 (100%) 

<0/1/-> (TE2-5, TE3-1) Yes 

TF <0w1/0/-> (TE1-1, TE2-2), (TE4-2, TE4-4) Yes 2/2 (100%) 

<1w0/1/-> (TE2-4, TE3-1) Yes 

RDF <r0/1/1> (TE2-1, TE2-2), (TE4-3, TE4-4) Yes 2/2 (100%) 

<r1/0/0> (TE2-5, TE3-1) Yes 

IRF <r0/0/1> (TE2-1, TE2-2), (TE4-3, TE4-4) Yes 2/2 (100%) 

<r1/1/0> (TE2-5, TE3-1) Yes 

DRDF <r0/1/0> (TE3-1, TE4-1) Yes 2/2 (100%) 

<r1/0/1> (TE2-2, TE2-3), (TE4-4, TE5-1) Yes 

WDF <0w0/1/-> (TE2-5, TE3-1) Yes 2/2 (100%) 

<1w1/0/-> (TE2-1, TE2-2), (TE4-3, TE4-4) Yes 

CFtr <0; 0w1/0/->a>v (TE4-2, TE4-4) Yes 6/8 (75%) 

<0; 0w1/0/->a<v (TE1-1, TE2-2) Yes 

<1; 0w1/0/->a>v (TE1-1, TE2-2) Yes 

<1; 0w1/0/->a<v (TE4-2, TE4-4) Yes 

<0; 1w0/1/->a>v Not found No 

<0; 1w0/1/->a<v (TE2-4, TE3-1) Yes 

<1; 1w0/1/->a>v (TE2-4, TE3-1) Yes 

<1; 1w0/1/->a<v Not found No 

CFdrd <0; r0/1/0>a>v (TE3-1, TE4-1) Yes 6/8 (75%) 

<0; r0/1/0>a<v (TE3-1, TE4-1) Yes 

<1; r0/1/0>a>v Not found No 

<1; r0/1/0>a<v Not found No 

<0; r1/0/1>a>v (TE4-4, TE5-1) Yes 

<0; r1/0/1>a<v (TE2-2, TE2-3) Yes 

<1; r1/0/1>a>v (TE2-2, TE2-3) Yes 

<1; r1/0/1>a<v (TE4-4, TE5-1) Yes 

CFwd <0; 0w0/1/->a>v (TE2-5, TE3-1) Yes 6/8 (75%) 

<0; 0w0/1/->a<v (TE2-5, TE3-1) Yes 

<1; 0w0/1/->a>v Not found No 

<1; 0w0/1/->a<v Not found No 

<0; 1w1/0/->a>v (TE4-3, TE4-4) Yes 

<0; 1w1/0/->a<v (TE2-1, TE2-2) Yes 

<1; 1w1/0/->a>v (TE2-1, TE2-2) Yes 

<1; 1w1/0/->a<v (TE4-3, TE4-4) Yes 

 

 

4. RESULTS AND DISCUSSION 

The new March AZ algorithm’s test sequence was hard-coded as the user-defined algorithm (UDA) 

inside an MBIST controller, generated using Siemens Tessent memory BIST software as the electronic 

design automation (EDA) tool. After that, it was simulated in the siemens QuestaSim simulator using the 

created test benches and test patterns. Two different tests were conducted in simulations on the implemented 

MBIST controller: a test on a fault-free memory and a test on a fault-injected memory. 
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4.1.  Test on the fault-free memory model 

This test assessed the functionality of the created MBIST with the new March AZ algorithm as the 

UDA. It was evaluated by observing the MBISTPG_GO flag, which should stay high until the test was 

completed or when the MBISTPG_DONE flag was asserted. The test completion time was also measured, 

which should equal the UDA’s complexity multiplied by N and the clock period (20 ns). A 1-kB memory 

was used as the test memory; thus, N equals 1024. Figure 3 presents the simulation waveform in QuestaSim 

for the fault-free memory test. The output data read from the memory cell (dout) was compared to the 

expected data generated by the MBIST controller (BIST_EXPECT_DATA) whenever CMP_EN is high. The 

MBISTPG_GO flag was asserted to indicate the start of the test and remained high until the test completion, 

as signified by a high MBISTPG_DONE flag. This observation signifies no discrepancy between dout and 

BIST_EXPECT_DATA during the comparison. Additionally, the test completion time, measured from the 

start until the end of the test, equals 266,240 ns. It is similar to the expected test completion time since 

13*1024*20 ns equals 266,240 ns. Therefore, this test’s observation validated the implemented MBIST’s 

correct functionality, which used the March AZ as the UDA. Furthermore, it also demonstrates that the new 

March AZ algorithm produces a test 20,480 ns shorter than the March AZ2 algorithm, which requires  

286,720 ns [22], on the same memory model under test. 

 

 

 
 

Figure 3. The simulation waveform observed in QuestaSim from the test on the fault-free memory model 

 

 

4.2.  Test on the fault-injected memory model 

This test assessed the fault coverage of the applied March AZ algorithm. The behavioral model of the 

memory used in the previous test was modified to introduce all FPs to be detected and, hence, imitate their 

faulty behaviors during the test in the simulation. Figure 4 shows the distribution of the affected victim cells 

for all introduced FPs (notated as Vi) and the corresponding aggressor cells (notated as Ai) for each DCF; the 

addresses of these cells were randomly generated within the given specifications, e.g., the address of Ai must 

be greater than Vi for all FPs with a>v. The SAF <x/x’/-> was introduced by fixing the input data din value to 

x when the write-enable signal we was high and the 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 was equal to the affected cell chosen. The RDF 

<rx/x’/x’> occurrences were introduced by altering the low state of the affected v-cells to high when they were 

about to be read (we is low). In contrast, the IRF <rx/x/x’> occurrences were replicated by overwriting the 

output 𝑑𝑜𝑢𝑡 value to x’ when the affected v-cells contained logic x and were about to be read. 

The CFtr <y; xwx’/x/->a>v and CFtr <x; xwx’/x/->a>v occurrences were produced by cancelling the 

wx’ operation onto the affected v-cells that contained x when the corresponding a-cells are in y-state, where  

y={0, 1}. At the same time, the TF<xwx’/x/-> is considered detectable when at least one CFtr <y; xwx’/x/-> 

was detected. Meanwhile, the occurrences of CFdrd <y; rx/x’/x>a>v and CFdrd <y; rx/x’/x>a>v were imitated 

by altering the contents of the affected v-cells containing logic x to x’ when they were read and the 

corresponding a-cells contained logic y. Similarly, DRDF <rx/x’/x> is considered detectable when at least 

one CFdrd <y; rx/x’/x> was detected. Lastly, the occurrences of CFwd <y; xwx/x’/->a>v and CFwd  

<y; xwx/x’/->a<v were created by changing the input din value to x’ when the affected v-cells contained logic 

x and were about to be rewritten to x, and when the corresponding a-cells stored logic y. Hence, WDF 

<xwx/x’/-> is deemed detectable when at least one CFwd <y; xwx/x’/-> was detected. 

Figure 5 displays the simulation waveform of the MBIST operation on the fault-injected memory 

using the new March AZ as the UDA. In this test, the values of all fault detection flags were observed when 

the test was completed (indicated by a high MBISTPG_DONE flag) and recorded in Table 6. Therefore, the 

March AZ algorithm’s fault coverage was determined by counting the high bits in each fault’s detection flag. 

It shows that the March AZ algorithm detected the injected CFtr <1; 1w0/1/->a>v, which was undetected by 
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the March AZ1 algorithm. Therefore, the former provides a better CFtr (75%) and overall fault coverage 

(83.3%) than the latter (62.5% and 80.6%, respectively). It provides similar fault coverage compared to the 

14N-complexity March AZ2 algorithm, whose fault coverage is presented in Table 2. However, since its 

complexity is 1N lower than the March AZ2 algorithm, its MBIST operation may require a shorter 

completion time. Consequently, as proven by the simulation results obtained from the tests on both fault-free 

and fault-injected memories, the new March AZ algorithm, with 13N complexity, offers the best balance 

between memory testing time and fault coverage since it provides the best coverage of the targeted faults 

among all existing test algorithms with a complexity below 18N and produces a shorter test time than the 

March AZ2 algorithm. 

 

 

 
 

Figure 4. The distribution of the affected v-cells and the corresponding a-cells (for DCF) in the fault-injected 

memory model used for the simulation 

 

 

 
 

Figure 5. The waveform observed from the test on the fault-injected memory, using the March AZ as the UDA 
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Table 6. The March AZ algorithm’s fault coverage derived from the simulation 
Fault Detection Flag Observed Detection Flag Value Derived Fault Coverage 

SAF saf_det 11b 2 detected FPs out of 2 (100%) 

TF tf_det 11b 2 detected FPs out of 2 (100%) 

RDF rdf_det 11b 2 detected FPs out of 2 (100%) 

IRF irf_det 11b 2 detected FPs out of 2 (100%) 

DRDF drdf_det 11b 2 detected FPs out of 2 (100%) 

WDF wdf_det 11b 2 detected FPs out of 2 (100%) 

CFtr cftr_det 11110110b 6 detected FPs out of 8 (75%) 

CFdrd cfdrd_det 11001111b 6 detected FPs out of 8 (75%) 

CFwd cfwd_det 11001111b 6 detected FPs out of 8 (75%) 

Overall fault coverage 30 detected FPs out of 36 (83.3%) 

 

 

5. CONCLUSION 

This article introduces the new march AZ algorithm, which enhances the CFtr and overall fault 

coverages offered by the existing March AZ1 algorithm while keeping the complexity at 13N. The March 

AZ1 algorithm was first analyzed to identify its weakness in detecting CFtr due to the poor positioning of a 

write operation. Hence, two test elements within its test sequence were reorganized by moving the identified 

w0 operation from one test element to another to solve the unnecessary CFtr recovery and improve CFtr 

detection without involving additional test operations. The newly created test sequence, the March AZ 

algorithm, was reanalyzed to ensure that CFtr coverage was improved without affecting other faults’ 

detections. It then served as the test algorithm in the implemented MBIST controller, which was later used in 

simulations to conduct tests on two different memory models. The first test on a fault-free memory 

demonstrated its correct functionality, as no mismatch between the read and expected data was found during 

the simulation. Then, the second test conducted on a fault-injected memory validated that, with 13N 

complexity, it offers 83.3% of overall fault coverage, similar to the fault coverage provided by the March 

AZ2 algorithm with 14N complexity. Consequently, it offers the best balance between the test completion 

time and fault coverage among all test algorithms with a complexity lower than 18N since it provides the 

highest coverage of the intended faults with only 13N test complexity. 
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