
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 15, No. 1, February 2025, pp. 174~185

ISSN: 2088-8708, DOI: 10.11591/ijece.v15i1.pp174-185 174

Journal homepage: http://ijece.iaescore.com

An efficient Radix-4 butterfly structure based on the complex

binary number system and distributed arithmetic

Kevin Bowlyn1, Sena Hounsinou2, Jordan Tewell1
1School of Computer Science and Engineering, Faculty of Computer Science and Engineering, Sacred Heart University, Fairfield,

United States of America
2Department of Computer Science and Cybersecurity, Metro State University, St. Paul, United States of America

Article Info ABSTRACT

Article history:

Received Apr 23, 2024

Revised Aug 12, 2024

Accepted Aug 20, 2024

 Complex number arithmetic is pivotal in various applications, requiring

the selection of an efficient multiplier for high-performance computations.

Fast Fourier transform (FFT)-based multipliers are widely employed for
computing complex number products, but their reliance on using dedicated

multipliers and treating the real and imaginary parts as two entities

significantly add to the cost and complexity of the system. Distributed

arithmetic (DA) is a technique that replaces complex multiplications with a
bit-level shift and addition mechanism. The complex binary number system

(CBNS) utilizes binary arithmetic, which treats the real and imaginary parts

as a single entity, which can simplify complex number arithmetic and

computations. This paper introduces an approach integrating the CBNS with
DA in a Radix-4 decimation in time FFT 8-bit and 16-bit butterfly structure.

The proposed design significantly reduces arithmetic computations and

eliminates dedicated multipliers, demonstrating a reduction in power

consumption, area size, and lookup tables, as well as increasing overall
clock performance compared to the conventional FFT architecture on

Artix-7, Kintex-7, and Virtex-7 field-programmable gate array chips.

Keywords:

Complex binary number system

Distributed arithmetic

Fast Fourier transform

Look-up table

Radix-4 FFT

SystemVerilog

VHDL

This is an open access article under the CC BY-SA license.

Corresponding Author:

Kevin Bowlyn

School of Computer Science and Engineering, Faculty of Computer Science and Engineering, Sacred Heart

University

West Campus 3135 Easton Turnpike, Fairfield, Connecticut 06825, United States of America

Email: bowlynk@sacredheart.edu

1. INTRODUCTION

Complex inner products play a crucial role in various computational fields. In the realm of digital

signal processing (DSP), they have extensive applications in digital filtering. This fundamental operation

underpins multiple domains, including data transmission, speech processing, imaging processing, video

processing, and more. The fast Fourier transform (FFT) algorithm has been used in various signal processing

applications [1]–[3], utilizing complex number arithmetic operations to efficiently compute the Fourier

transform. A well-known problem with the FFT algorithm is that these operations rely heavily on the use of

dedicated multipliers, which are fast but occupy a large volume of hardware and are costly to implement, as

each complex multiplier comprises four real multipliers and two real adders/subtractors. A disadvantage is

that as the number of input bits increases, so do the hardware resources needed to implement such circuitry.

A second known problem is that DSP applications often rely on data represented as complex numbers.

Typically, these numbers are treated as having two distinct components (real and imaginary), which are

processed separately. This process of computing complex numbers as two separate components has been

used widely in various implementations of the FFT algorithm, such as those using the divide-and-conquer

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

An efficient Radix-4 butterfly structure based on the complex binary number system … (Kevin Bowlyn)

175

approach. However, there is a growing interest in developing a more efficient and unified representation of

complex numbers to improve the performance of the FFT algorithm. Therefore, space, cost, and power are

additional factors that limit DSP applications in resource-constrained systems, such as embedded or internet

of things (IoT) devices.

A possible solution is incorporating the distributed arithmetic (DA) and complex binary number

system (CBNS) approach. DA [4], [5] is an approach that provides an optimized technique to multiply

numbers without relying on the costly circuitry required by multipliers for DSP applications on field-

programmable gate arrays (FPGAs). In contrast to the conventional FFT algorithm, DA only requires one

dedicated multiplier. A DA block typically consists of a shift register unit, a DA based unit, and an

adder/shifter unit. The shift register unit is utilized to compute a series of partial products. Each partial

product is fed to the DA based unit, which uses a lookup table (LUT) and memory resources to generate pre-

computed partial results based on the input provided by the shift register unit. Each partial output is then

accumulated in the adder/shifter unit, starting from the input’s least significant bit (LSB) to its most

significant bit (MSB). The CBNS approach is an alternative number representation system in which complex

numbers are expressed and processed as a single entity using binary digits. Jamil [6] has developed various

techniques to facilitate the execution of arithmetic operations using the CBNS to allow the conversion of

complex numbers to and from the complex binary base (−1 + 𝑗). A fractional decimal number can be

expressed in CBNS as (1):

𝐹 = 𝑟𝑖 = 2−𝑖𝑓𝑖 = 2−1𝑓1 + 2−2𝑓2 + 2−3𝑓3 + .. (1)

where 2−1 is equivalent to (−1 + 𝑗)−1, 𝑟𝑖 is the remainder of the fraction form, and 𝑓𝑖, represents the binary

coefficients of the CBNS base, which is either 0 or 1. To find the value of each coefficient 𝑓𝑖, the steps

described below are followed until the remainder 𝑟𝑖 becomes zero or when the limit of the non-terminating

fractional number has been attained [6]:

Step 1: If [2 × 𝑟0] − 1 < 0 then 𝑓1 = 0 and 𝑟1 = [2 × 𝑟0]; else 𝑓1 = 1 and 𝑟1 = [2 × 𝑟0] − 1

Step 2: If [2 × 𝑟𝑖] − 1 < 0 then 𝑓𝑖+1 = 0 and 𝑟𝑖+1 = [2 × 𝑟𝑖]; else 𝑓𝑖+1 = 1 and 𝑟𝑖+1 = [2 × 𝑟𝑖] − 1

Combining the CBNS with DA could potentially offer a highly efficient approach for hardware

implementations, particularly in optimizing FFT operations. The CBNS is particularly well-suited for

hardware implementations, such as on FPGAs, where binary operations can be efficiently realized in

hardware compared with standard base (octal, decimal, and hexadecimal) arithmetic operations, as a binary

system has only two digits: 0 and 1. Additionally, by leveraging the parallelism and simplicity of DA LUT

operations, DA can further reduce computational complexity and power consumption compared to standard

arithmetic operations. Thus, applying the CBNS coupled with DA (referred to as DA-CBNS herein) in the

context of FFT optimization presents an intriguing prospective solution for enhancing the efficiency and

efficacy of FFT implementations. DA has been explored to optimize finite impulse response (FIR) filters to

reduce area cost and power consumption while still preserving processing speed [7], where each complex

number is computed as two separate entities. The CBNS approach has also been explored in the discrete

Fourier transform (DFT) algorithm, resulting in an enhanced performance matrix regarding delay and power

consumption [8]. Therefore, by incorporating the CBNS and DA approach, the CBNS approach will allow

for complex numbers to be computed as a single entity instead of two. The integrated approach will result in

a 100% reduction in the multiplier architecture structure as no dedicated multipliers are used to compute the

Radix-4 butterfly structure, potentially decreasing area size, power consumption, and cost.

While other works have successfully utilized FPGAs or special processors to operate on the

DA-based approach [9]–[16] and/or the CBNS approach [8], [17]–[23], very few works have examined the

use of the CNBS and DA together. Bowlyn and Botros [24] have used the CBNS and DA to create a

multiplier less design to compute complex products. In their work, the CBNS was used to reduce complex

numbers to single units instead of pairs, and a DA LUT was used to store the pre-computed coefficients. The

authors claimed this approach significantly reduced arithmetic calculations, real adders, and power

consumption (when implemented in a 3-tap filter) compared with the conventional approach to computing

complex dot products. This work has been extended to Radix-2 butterfly structures [25] and in computing the

Fourier transform with a Radix-2 FFT algorithm [26].

In this paper, an FPGA-based implementation of a Radix-4 DA-CBNS butterfly structure is

proposed and is evaluated over a conventional Radix-4 implementation in terms of power consumption, area

size, LUTs, and overall clock performance. The contributions can be summarized as follows:

− Design of a Radix-4 butterfly structure using an optimized DA and CBNS design.

− Implementation of the DA-CBNS structure on the Artix-7, Kintex-7, and Virtex-7 FPGA platforms.

− Comparative study of an 8-bit and a 16-bit DA-CBNS design vs. a “conventional” (non-optimized)

decimation-in-time (DIT) Radix-4 butterfly design.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 174-185

176

The remainder of the paper is organized as follows: section 2 provides a detailed description of the

proposed implementation of the DA-CBNS Radix-4 butterfly structure design. Section 3 presents a

comparison between the proposed FPGA-based DA-CBNS butterfly structure and the conventional

implementation along with the results, followed by a discussion. Finally, we summarize our findings in

section 4.

2. METHOD

2.1. CBNS arithmetic

In the context of the FFT, complex arithmetic plays a crucial role in computing the FFT algorithm

efficiently. Complex arithmetic in the FFT typically utilizes algorithms and data structures optimized for

complex number operations to ensure the FFT’s high computational efficiency. This efficiency is essential

for the use of FFT in signal processing, data analysis, and various other applications where efficient

frequency domain analysis is required.

Traditionally, complex numbers in binary are represented with separate real and imaginary parts.

However, with the CBNS approach, complex numbers can be represented as a single entity using the

(−1 + 𝑗) CBNS-based algorithm. For example, the complex number (0.70703125+j0.70703125) can be

represented in CBNS as 1110.1110011001101110 in the (−1 + 𝑗) base as a single entity, compared to the

conventional, binary representation of (00.10110101, 00.10110101) in base-2, where the real and imaginary

are separated.

In designing the CBNS arithmetic circuit, the CBNS algorithm was further studied. Table 1 provides

a comprehensive overview of how addition and subtraction are performed using the CBNS approach with the

(−1 + 𝑗) base and shows the truth table for computing a CBNS adder and subtractor circuit. Inputs A and B

represent the binary input values to the CBNS adder and subtractor circuit. For addition, the Carries column

indicates the carry bits generated after carrying over the values to the next significant bit, and the Sum

column shows the final result after considering the carry bits. For subtraction, the Borrow column indicates

the borrowed bits generated after borrowing from a higher bit, and the Difference column shows the final

result of the subtraction operation after considering the borrowed bits.

Table 1. Truth table for (−1 + 𝑗)-based CBNS addition and subtraction
Input A Input B Addition output A+B Addition output A+B

 Carries Sum Borrow Difference

0 0 000 0 0000 0

0 1 000 1 1110 1

1 0 000 1 0000 1

1 1 110 0 0000 0

2.2. CBNS adder unit design

In designing the CBNS adder unit, a slightly modified version of the traditional base-2 ripple carry

adder was used. In the traditional 2’s complement binary approach, adding two ones (1 + 1) results in 10

(base-2), where the first bit is the sum bit, and the second is the carry bit. The rules for the CBNS adder for

base (−1 + 𝑗), however, are different. Adding 1 + 1 results in 1100 (−1 + 𝑗) [18], where the first bit is the

sum bit (Stage 0), and the remaining three bits are the carry bits (stages 1 - 3). In other words, with the CBNS

adder approach, adding two ones always generates two carries of one to stages 2 and 3 of the CBNS adder,

while Stage 1 will have no carry as its carry is always zero. Therefore, the adder unit was designed and

structured into three different stages:

− Stages 0 and 1: Implemented using two half adders as no carry-ins were needed.

− Stage 2: Implemented using a full adder, as the carry-in from stage 0 is propagated to stage 2.

− Stage 3: implemented using a four-input bit adder, which includes the carry-ins from stages 1 and 2

Extended carries occur when more than three ones are added together. For example, adding four ones in

stage 3 produces an output of 1 1101 0000, which represents 4 in base (−1 + 𝑗). In this case:

− The first bit is the sum bit.

− The second, third, and fourth bits are the carry bits.

− The remaining five bits are the extended carries.

The propagation approach to handle extended carries is as follows. The carry bits (bits three and

four) are propagated to stages 5 and 6, as these stages handle the less significant carries. The extended carry

bit (1) is propagated to stages 7, 9, 10, and 11, as these stages handle the more significant extended carries.

Stages 4 and 8 will always have carry-ins and extended carries of zero and can be ignored (bits two and six),

Int J Elec & Comp Eng ISSN: 2088-8708

An efficient Radix-4 butterfly structure based on the complex binary number system … (Kevin Bowlyn)

177

as they do not influence the carry and extended carry propagation. This approach was built using the

respective adder sizes for each stage respectively and simulated in very high-speed integrated circuit

(VHSIC) hardware description language (VHDL) using for loops. Figure 1 shows a gate-level schematic

design of an 8-bit CBNS adder.

Figure 1. 8-bit CBNS adder gate level design

2.3. CBNS subtractor unit design

The CBNS subtractor unit operates similarly to a standard base-2 algorithm, with the key difference

occurring in the subtraction of 1 from 0. In the (−1 + 𝑗) base algorithm, subtracting 1 from 0 yields three

additional carriers of 1s refer to Table 1. Specifically, 0 – 1 = 11101 [27]. The LSB bit represents the

difference output, while the remaining four bits represent the carries. Since the carry following the difference

term is always zero, it can be ignored. When performing subtraction, the subtrahend is subtracted from the

minuend, and the resulting carries are added to the minuend bits using the CBNS adder algorithm.

The design of the subtractor unit is similar to a modified traditional ripple borrow subtractor.

However, it was noted that the borrow and adder bit could be OR’d or XOR’d simultaneously. Therefore, if

there is a borrow, the adder signal will be zero (indicating no addition), and conversely, if there is an

addition, the borrow signal will be zero. The subtractor unit incorporates both the subtrahend and minuend

bits in one single block, which also includes the CBNS adder algorithm. This procedure was implemented

using multiple for loops in a cascading ripple circuit to compute the output values at different stages. Figure 2

shows the gate-level design for an 8-bit CBNS subtractor.

Figure 2. 8-bit subtractor gate-level design circuit

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 174-185

178

2.4. DA-CBNS multiplier unit design

DA is highly beneficial in FFT computations, especially for computing inner dot products, and it

eliminates the need for explicit multipliers, reducing hardware complexity and resource usage. The main idea

behind DA is to precompute all possible partial products and store them in LUTs, which can then be quickly

retrieved and summed using simple arithmetic operations. This approach is widely embraced for

implementing FIR filters, as DA can efficiently utilize LUTs, shifters, and adders to compute the essential

sum of products necessary for FIR filters. Additionally, DA lowers power consumption by minimizing

complex operations, enabling efficient, high-performance, and power-efficient digital signal processing.

Thus, by optimizing the use of LUTs in FPGAs, DA enhances efficiency and leverages its inherent

parallelism and pipelining capabilities to significantly boost throughput and performance.

The overall block diagram of the conventional DA algorithm [24] operates as follows. First, the

inputs are shifted in parallel-in-to-serial-out (PISO) fashion to the shift register unit. The output of the shift

register unit is then serially output one bit at a time into the read-only memory (ROM)-LUT (DA Unit). The

ROM-LUT directly addresses the memory of the shift register outputs. These values are then added, stored in

an accumulator, and shifted so that the final output, 𝑦[𝑛], is available after the N-bit clock cycle. A

combinational adder/subtractor control signal 𝑇𝑠 is used with the DA structure to manipulate signed bit binary

numbers. When 𝑇𝑠 is zero, addition occurs until the MSB is reached, at which point 𝑇𝑠 becomes one, and

subtraction follows.

The proposed DA-CBNS multiplication circuit leverages both the DA and CBNS techniques. Unlike

the conventional ROM-based structure, which speeds up multiplication through pre-computed values in the

ROM-LUT, the proposed DA-based design uses a non-LUT ROM component to store the constant twiddle

factor values rather than a ROM bank. This modification results in a logic gate-based implementation for the

DA-LUT, leading to a slight increase in gate count but a 100% reduction in memory usage.

Another improvement involves adjusting the DA structure. The conventional DA-based design

typically operates on binary signed numbers, using an arithmetic right shift to preserve the product’s sign

during the accumulation phase. However, an arithmetic right shift is unsuitable for our DA-CBNS design

since a leading 0 or 1 does not indicate the sign of numbers in the complex (−1 + 𝑗)-base. As a solution, we

replaced the arithmetic right shift with a logical right shift.

Furthermore, the DA structure’s conventional binary adder/subtractor was substituted with an

implementation suitable for the (−1 + 𝑗)-based CBNS adder structure. The conventional binary

adder/subtractor, while functional, can lead to inefficiencies due to the increased number of arithmetic

computations needed to separate and combine the real and imaginary parts of complex numbers. The

(−1 + 𝑗)-based CBNS adder structure, on the other hand, represents the output sum as a single compact

entity, reducing the number of such computations.

Figures 3(a) and 3(b) shows the block diagram of the DA-CBNS multiplier block and its

pseudocode. The original input operand 𝑥 is represented in the (−1 + 𝑗)-base, and the resulting DA product

is also expressed in this base as 𝑦 = 𝑥. 𝑣. The non-LUT ROM stores the constant fixed-point twiddle factor 𝑣

and by using the CBNS technique, this design enables complex multiplication by shifting and adding without

using the divide and conquer approach, where the real and imaginary parts are computed separately.

(a) (b)

Figure 3. The block diagram of the DA-CBNS (a) DA-CBNS multiplier block diagram and (b) pseudocode

2.5. Radix-4 implementation design

The FFT algorithm is a fast algorithm that computes the DFT and its inverse. The Radix-4 FFT

algorithm offers computational advantages over simpler Radix-2 algorithms for large transform sizes because

Int J Elec & Comp Eng ISSN: 2088-8708

An efficient Radix-4 butterfly structure based on the complex binary number system … (Kevin Bowlyn)

179

it reduces the number of required arithmetic operations. However, it may not be as memory efficient as

Radix-2 algorithms for smaller transform sizes. Overall, the Radix-4 FFT algorithm is a key component in

many signal processing applications where fast and efficient Fourier transform computation is required, such

as in audio processing, image processing, telecommunications, and more.

DIT and decimation in frequency (DIF) are two FFT approaches for efficiently computing the DFT

algorithm. The Radix-4 DIT FFT decomposes the DFT in the time domain using a base-4 approach,

involving recursive division of the input sequence into smaller sub-sequences of length four until each is a

single sample. This method uses Radix-4 butterflies to minimize operations and reduce the number of

required twiddle factors, enhancing memory access and computational efficiency. Conversely, the Radix-4

DIF FFT decomposes the DFT in the frequency domain, splitting it into even and odd frequency components

of length four, progressing from the lowest to highest frequencies. It also utilizes Radix-4 butterflies,

optimizing arithmetic operations and memory access.

The Radix-4 DIF FFT generally performs better due to fewer operations and more regular memory

access patterns, making it suitable for parallel processing. However, the Radix-4 DIT FFT is preferred for

specific specialized applications or hardware environments where a time-domain approach is advantageous.

A key computation difference between DIT and DIF is the order of operations: DIT performs multiplication

first, followed by addition, while DIF performs addition first, followed by multiplication as shown in

Figure 4. The conventional calculation for a Radix-4 DIT/DIF butterfly structure requires twelve real

multiplications and twenty-two real additions [28] for each structure. This includes cases of repeated

multiplications. In our proposed design, we chose to implement a DIT FFT structure as applications of DIT

FFT in the time domain are prevalent in various fields due to its efficiency in handling time-domain data such

as audio, image, and speech processing where data are represented as two separate entities, real and

imaginary. We aim to implement our technique in designing a DA-CBNS DIT FFT structure to perform an

application in image processing where complex numbers are treated as a single entity.

(a) (b)

Figure 4. Radix-4 DIF and DIT 4-point butterfly structures

Theoretically, each Radix-4 butterfly structure employs three complex multiplications at each

butterfly stage, with each complex multiplication involving four real multiplications and two real additions.

Additionally, each butterfly structure at each stage also requires eight real complex additions, as one complex

addition entails two real additions. From (2) (DIT) and (3) (DIF), the following matrix coefficients M can be

obtained from each of the equation terms where k and 𝑛 = 0, 1, . . . , 𝑁/4 − 1.

𝑋(𝑘) = 𝑆1(𝑘) + 𝑊𝑁
𝑘𝑆2(𝑘) + 𝑊𝑁

2𝑘𝑆3(𝑘) + 𝑊𝑁
3𝑘 𝑆4(𝑘)

𝑋 (𝑘 +
𝑁

4
) = 𝑆1(𝑘) − 𝑗𝑊𝑁

𝑘𝑆2(𝑘) − 𝑊𝑁
2𝑘𝑆3(𝑘) + 𝑗𝑊𝑁

3𝑘𝑆4(𝑘)

𝑋 (𝑘 +
2𝑁

4
) = 𝑆1(𝑘) − 𝑊𝑁

𝑘𝑆2(𝑘) + 𝑊𝑁
2𝑘𝑆3(𝑘) − 𝑊𝑁

3𝑘 𝑆4(𝑘)

𝑋 (𝑘 +
3𝑁

4
) = 𝑆1(𝑘) + 𝑗𝑊𝑁

𝑘𝑆2(𝑘) − 𝑊𝑁
2𝑘 𝑆3(𝑘) − 𝑗𝑊𝑁

3𝑘𝑆4(𝑘) (2)

𝑦(𝑛) = {𝑥(𝑛) + 𝑥 (𝑛 +
𝑁

4
) + 𝑥 (𝑛 +

2𝑁

4
) + 𝑥 (𝑛 +

3𝑁

4
)} 𝑊𝑁

0

𝑦 (𝑛 +
𝑁

4
) = {𝑥(𝑛) − 𝑗𝑥 (𝑛 +

𝑁

4
) − 𝑥 (𝑛 +

2𝑁

4
) + 𝑗𝑥 (𝑛 +

3𝑁

4
)} 𝑊𝑁

𝑛

𝑦(𝑛 + (2𝑁)/4) = {𝑥(𝑛) − 𝑥 (𝑛 +
𝑁

4
) + 𝑥 (𝑛 +

2𝑁

4
) − 𝑥 (𝑛 +

3𝑁

4
)} 𝑊𝑁

2𝑛

𝑦(𝑛 + (3𝑁)/4) = {𝑥(𝑛) + 𝑗𝑥 (𝑛 +
𝑁

4
) − 𝑥 (𝑛 +

2𝑁

4
) − 𝑗𝑥 (𝑛 +

3𝑁

4
)} 𝑊𝑁

3𝑛 (3)

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 174-185

180

M = [

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

] (4)

Using M, we obtain the expressions for the outputs 𝐴′, 𝐵′, 𝐶′, and 𝐷′ as (5):

𝐴′ = 𝐴 + 𝐵𝑊𝑏 + 𝐶𝑊𝑐 + 𝐷𝑊𝑑
𝐵′ = 𝐴 − 𝑗𝐵𝑊𝑏 − 𝐶𝑊𝑐 + 𝑗𝐷𝑊𝑑

𝐶′ = 𝐴 − 𝐵𝑊𝑏 + 𝐶𝑊𝑐 − 𝐷𝑊𝑑
𝐷′ = 𝐴 + 𝑗𝐵𝑊𝑏 − 𝐶𝑊𝑐 − 𝑗𝐷𝑊𝑑 (5)

By regrouping and rearranging the terms in the expressions of (5), we can identify specific terms that appear

in more than one of the expressions. Specifically, the term (𝐴 + 𝐶𝑊𝑐) is common to both 𝐴′ and 𝐶′,
(𝐴 − 𝐶𝑊𝑐) is used in 𝐵′ and 𝐷′, (𝐵𝑊𝑏 + 𝐷𝑊𝑑) is present in both 𝐴′ and 𝐶′, while the term (𝐵𝑊𝑏 − 𝐷𝑊𝑑)

(factoring out the j term) shows up in B' and D'. Therefore, it is possible to reduce the load on computational

resources by reusing the results of these terms rather than recomputing them as shown in Figure 5.

Figure 5. Radix-4 DIT butterfly structure: partial sums are rearranged to improve the butterfly computation

In our proposed DA-CBNS approach, four DA-CBNS multiplier blocks and twelve CBNS

adders/subtractors are essential for computing each butterfly structure. Eight of the CBNS adders and

subtractors are allocated to calculating the overall Radix-4 outputs, and the remaining four CBNS adders

(DA-CBNS multiplier block) are dedicated to the DA-based structure as shown in Figure 6(a). This DA-

CBNS block diagram implementation incorporates the regrouping and rearranging of terms for computing

the output results of 𝐴′, 𝐵′, 𝐶′, and 𝐷′ as illustrated in Figure 5. The algorithm as shown in Figure 6(b)

illustrates the pseudocode for computing an 8-bit 4-point DA-CBNS butterfly design as a top model design

by using port-based module instantiation of the required design blocks, which include the DA, the CBNS

adder, and the CBNS subtractor blocks.

(a) (b)

Figure 6. DA-CBNS-based Radix-4 FFT implementation: (a) Block diagram of the butterfly computation

using CBNS and DA technique and (b) pseudocode for generating the butterfly outputs

Int J Elec & Comp Eng ISSN: 2088-8708

An efficient Radix-4 butterfly structure based on the complex binary number system … (Kevin Bowlyn)

181

To improve this overall design and structure, each input of the butterfly structure (𝑋(𝑘),
 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 2𝑁/4) and 𝑋(𝑘 + 3𝑁/4), where 𝑘 ranges from 0 𝑡𝑜 (𝑁/4 − 1)) must initially undergo

conversion into the (−1 + 𝑗)-base. Figure 7 shows the overall implementation process to compute the

Radix-4 butterfly structure using our proposed DA-CBNS technique. To implement this structure, the fixed-

point binary complex numbers and the twiddle factors (which transition into fixed constant coefficient

values) undergo an initial conversion into the (−1 + 𝑗)-base representation. Following this conversion, the

transformed input data serve as the inputs 𝑋(𝑘), 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 2𝑁/4) and 𝑋(𝑘 + 3𝑁/4).

Figure 7. Proposed implementation procedure for computing a Radix-4 butterfly structure

These datasets then become the driving data values for the 4-point butterfly structure. In computing

the butterfly structure, the twiddle factor is loaded into the LUT. The DA structure subsequently computes

partial products with equal shifts, adding them before summing to the next partial product shift. This iterative

process continues for a number of cycles equal to n (the length of the input bits) until 𝑦[𝑛] encapsulates the

final result. The final outputs are generated in the (−1 + 𝑗)-base representation and are later reconverted into

their base-2 formats.

The Radix-4 algorithm reduces the number of required arithmetic operations compared with the

Radix-2 algorithm. Table 2 shows the total number of real adders and multipliers for the conventional

Radix-4 DIT implementation using only one butterfly structure, where each complex multiplication and

addition are computed as two separate entities. Note that the number of multipliers decreases as the number

of different butterfly structures used increases. This is contrasted to our DA-CBNS-based design, which

shows the total number of real complex multiplications and additions, both with and without the proposed

DA technique that computes complex arithmetic as a single entity.

As shown in Table 2, the utilization of the DA structure reduces the number of complex

multiplications from 3(𝑁/4)𝑙𝑜𝑔4𝑁 to 0, eliminating the need to use dedicated complex multipliers.

However, the total number of complex additions for the DA-CBNS-based design increases significantly due

to the extra adders required to compute each of the four DA structures. This includes the three DA multipliers

for multiplying the twiddle factor plus the DA multiplication of 𝑗 for the Radix-4 butterfly structure as shown

in Figure 6(a). This results in an increase in complex additions from 8(𝑁/4)𝑙𝑜𝑔4𝑁 to 12(𝑁/4)𝑙𝑜𝑔4𝑁.

Nonetheless, the number of complex adders are the same as the dedicated real multipliers needed to compute

the conventional Radix-4 butterfly algorithm using the divide-and-conquer approach. Additionally, the DA-

CBNS adder/subtractor uses fewer LUT resources than a dedicated multiplier.

Table 2. Comparison of the conventional Radix-4 DIT FFT vs. our proposed DA-CBNS DIT structure with

and without the optimized DA-based design
Number of Points

𝑁 = 4𝑃

Radix-4 DIT FFT Radix-4 DIT CBNS FFT and DA-CBNS FFT

Real Multiplications Real Additions Complex Multiplications Complex Additions

 Without DA With DA Without DA With DA

12 (
𝑁

4
) log4 𝑁 22 (

𝑁

4
) log4 𝑁 3 (

𝑁

4
) log4 𝑁

8 (

𝑁

4
) log4 𝑁 12 (

𝑁

4
) log4 𝑁

4 12 22 3 0 8 12

16 96 176 24 0 64 96

64 576 1056 144 0 384 576

256 3072 5362 768 0 2048 3072

1024 15360 28160 3840 0 10240 15360

4096 73728 135168 18432 0 49152 73728

16384 344064 630784 86016 0 229376 344064

3. RESULTS AND DISCUSSION

3.1. Experimental setup

To evaluate the proposed DA-CBNS Radix-4 DIT butterfly structure, we compared its performance

and design requirements against those of the conventional Radix-4 structure. We implemented two

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 174-185

182

configurations for each type of structure: one with 𝑁=8 bits and the other with 𝑁=16 bits. Since the CBNS

technique treats complex numbers as a single entity, each DA-CBNS configuration with input size 𝑁 was

compared to an equivalent conventional configuration using 𝑁 real components and 𝑁 imaginary

components. Our Radix-4 butterfly structure design was implemented and coded in SystemVerilog and

VHDL within the Xilinx Vivado Design Suite. It was then synthesized and implemented on three target-size

FPGA platforms: Artix-7, Kintex-7, and Virtex-7.

3.2. Evaluation metrics

The assessment included power consumption, LUT utilization, area size, and clock frequency data

from the post-place and route results. The clock signal’s worst negative slack (WNS) was used to determine

the maximum frequency of a design, given by (6):

𝐹𝑚𝑎𝑥 =
1

𝑇−𝑊𝑁𝑆
 (6)

where T is the target clock period and WNS is the positive worst negative slack of the clock signal in the

intra-clock paths section of the timing analysis report. Finally, the area for each design was computed as (7):

𝑎𝑟𝑒𝑎 =
𝐿𝑢𝑠𝑒𝑑+𝐹𝑢𝑠𝑒𝑑

𝐿𝑡𝑜𝑡𝑎𝑙+𝐹𝑡𝑜𝑡𝑎𝑙
 (7)

where 𝐿𝑢𝑠𝑒𝑑 and 𝐹𝑢𝑠𝑒𝑑 represent the number of LUTs and flip flops used in the design, respectively, while

𝐿𝑡𝑜𝑡𝑎𝑙 and 𝐹𝑡𝑜𝑡𝑎𝑙 are the total number of LUTs and flip flops available on the platform, respectively.

3.3. Results

Table 3 shows the results of our design compared across three FPGA target chips: Artix-7, Kintex-7,

and Virtex-7. For all chips, the 8-bit Radix-4 DA-CBNS DIT butterfly structure was compared with its 8-bit

(real and imaginary) conventional counterpart. The DA-CBNS design exhibited a 77% reduction in area size

and an 89% decrease in LUT count. Power consumption rates were also significantly reduced, with a 60%

reduction for the Artix-7 chip, 63% for the Virtex-7 chip, and 61% for the Kintex-7 chip. Additionally, the

DA-CBNS structure showed an 18% increase in speed for both the Artix-7 and Virtex-7 chips and an overall

speed performance increase of 12% for the Kintex-7 chip.

Table 3. 8-bit and 16-bit DA-CBNS and conventional DIT structure statistics using Virtex-7, Artix-7, and

Kintex-7 chips
Artix-7 xc7k480tffv1156-3 8-bit butterfly structure 16-bit butterfly structure

 DA-CBNS (8-bit) Conventional (8-bit)

(8 real + 8 imaginary)

DA-CBNS (16 bit) Conventional (16-bit)

(16 real + 16 imaginary)

IOB/Total 91/500 178/500 179/500 353/500

LUT/Total 167/134600 1501/134600 700/134600 6139/134600

Worst negative slack (ns) 15.010 12.266 15.242 2.632

Frequency (MHz) 100.10 78.53 102.48 44.71

Dynamic power consumption (𝞵W) 18 45 40 139

Area (%) 0.101040 0.442051 0.292472 1.66295

Virtex-7 xc7v585tffg1157-3 8-bit Butterfly Structure 16-bit butterfly structure

 DA-CBNS (8-bit) Conventional (8-bit)

(8 real + 8 imaginary)

DA-CBNS (16 bit) Conventional (16-bit)

(16 real + 16 imaginary)

IOB/Total 91/600 178/600 179/600 353/600

LUT/Total 167/364200 1501/364200 701/364200 6139/364200

Worst negative slack (ns) 17.363 15.985 16.294 8.638

Frequency (MHz) 130.94 110.93 114.86 61.12

Dynamic power consumption (𝞵W) 17 46 41 146

Area (%) 0.037342 0.163372 0.108182 0.6145589

Kintex-7 xc7k480tffv1156-3 8-bit butterfly structure 16-bit butterfly structure

 DA-CBNS (8-bit) Conventional (8-bit)

(8 real + 8 imaginary)

DA-CBNS (16 bit) Conventional (16-bit)

(16 real + 16 imaginary)

IOB/Total 91/400 178/400 179/400 353/400

LUT/Total 167/298600 1501/298600 702/298600 6139/298600

Worst negative slack (ns) 15.811 14.710 14.843 6.697

Frequency (MHz) 108.83 97.18 98.45 54.64

Dynamic power consumption (𝞵W) 18 46 42 146

Area (%) 0.045546 0.199263 0.132172 0.749609

Int J Elec & Comp Eng ISSN: 2088-8708

An efficient Radix-4 butterfly structure based on the complex binary number system … (Kevin Bowlyn)

183

Comparable enhancements were observed in the 16-bit scenario. The DA-CBNS design showcased

reductions of 82% in area size and 89% in logic gate cost across all three chips. For the Artix-7 and Virtex-7

chips, the DA-CBNS approach featured a 71% reduction in power consumption, while the Kintex-7 chip

showed a 68% reduction. The DA-CBNS method also resulted in different clock speeds across all three

chips: on the Artix-7 chip, our method demonstrated an improved rate of 129%. On the Kintex-7 chip, it

delivered an 88% improvement in speed, and on the Virtex-7 chip, the DA-CBNS design showcased an

increase in speed of around 80% compared with the conventional approach. Overall, our findings reveal that

the DA-CBNS design significantly economized on memory resources (LUTs), area size, and power

consumption while also increasing speed on all three FPGA target chips when compared to the conventional

8-bit and 16-bit DIT butterfly structures.

3.4. Discussion

Our design was compared with the conventional FFT approach regarding area size, speed, LUTs,

and dynamic power consumption. For the 8-bit DA-CBNS structure, it used significantly less area size,

dynamic power, and LUTs than its conventional counterpart on all three target chips. In terms of speed, the

DA-CBNS design also demonstrated faster performance on the Artix-7, Kintex-7, and Virtex-7 chips. For the

16-bit structures, the DA-CBNS design consistently showed the best results across all four parameters, with

reductions in area size, dynamic power, and LUTs, as well as an increase in speed compared to the

conventional approach using dedicated multipliers. Therefore, adopting the DA-CBNS structure greatly

improves the performance of the Radix-4 butterfly structure for both 8-bit and 16-bit structures.

The proposed design was also compared to other existing methodologies. Neuenfeld et al. [29]

proposed 16-bit Radix-2 and Radix-4 DIT butterfly structures aimed at minimizing the number of arithmetic

operators to produce power-efficient designs and reduce the number of real dedicated multipliers in the

Radix-4 butterfly. Their results showed LUT usage and dynamic power consumption to be 4,152 and

554.2 µW, respectively. With our proposed design for a 16-bit (single entity) DIT butterfly structure, our

LUT usage and dynamic power were found to be 702 and 42 µW on a Kintex-7 target design chip. This

resulted in our proposed design having fewer reductions in LUT usage and dynamic power consumption,

respectively

Ferreira et al. [30] proposed a 16-bit low-power hardware architecture combining an optimized

split-Radix-4 DIT butterfly and 5-2 adder compressors (ACs). Their design, composed of eight multipliers

and sixteen adders and subtractors, showed a maximum frequency of 55.79 MHz with a gate count of 4960.

In contrast, our proposed 16-bit DA-CBNS structure, in which complex numbers are computed as a single

entity with no need for dedicated multipliers, showed a gate count of approximately 700 on Kintex-7,

Artix-7, and Virtex-7 FPGA chips. The speed of our 16-bit DA-CBNS design was 98.45, 102.48, and

114.86 MHz on Kintex-7, Artix-7, and Virtex-7 chips, respectively. This resulted in an increased clock-to-

clock speed of about 76% on the Kintex-7 chip, 83% on the Artix-7 chip, and approximately 106% on the

Virtex-7 chip compared to the author’s maximum frequency result in [30].

Overall, our proposed DA-CBNS butterfly structure exhibited reductions in area size, LUT usage,

and power consumption, and an increase in clock-to-clock performance. The significant reduction in

arithmetic operators allowed the Radix-4 DA-CBNS butterfly structure to outperform the existing

conventional Radix-4 butterfly structures in terms of area, power consumption, and LUT usage. However,

since the DA-CBNS design represents each complex number as a single entity, the absolute precision of our

data results is somewhat limited compared to the conventional approach that computes complex numbers as

two entities.

4. CONCLUSION

This paper presented a unique design by incorporating the CBNS approach with the DA technique.

By incorporating the CBNS technique within our design, the number of arithmetic computations was reduced

to three real complex multiplications and eight real complex additions. However, with the DA technique, no

dedicated multipliers were utilized, as the DA structure accomplishes multiplications by employing a shift-

adder circuit rather than a CBNS multiplier circuit. Therefore, our proposed design utilizes zero multipliers

and twelve complex adders. The four additional complex adders are due to the four DA structures used

within our design. Two architecture models, 8-bit and 16-bit Radix-4 butterfly structures, were implemented

in Xilinx Vivado, coded in SystemVerilog and VHDL, and then implemented on three target FPGA chips:

Artix-7, Kintex-7, and Virtex-7.

The results showed that for the 8-bit and 16-bit Radix-4 butterfly structures, the DA-CBNS

approach resulted in less power consumption, smaller area size, and fewer LUTs, as well as increased overall

clock-to-clock performance speed on all three target FPGA chips compared to the conventional FFT

counterpart. Therefore, given the great demand for new and improved technology for DSP applications, our

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 15, No. 1, February 2025: 174-185

184

DA-CBNS structure demonstrates to have better performance regarding area size, LUTs, power

consumption, and speed over a conventional FFT structure. By employing and adopting the DA-CBNS

technique, we believe our approach can significantly improve the efficiency of floating-point DSP

applications that rely on complex arithmetic. Our future goal is to implement our DA-CBNS design on real-

time applications employing 16, 64, and 256-point FFTs.

REFERENCES
[1] K. V. Shanbhag and D. Sathish, “Low complexity physical layer security approach for 5G internet of things,” International

Journal of Electrical and Computer Engineering, vol. 13, no. 6, pp. 6466–6475, Dec. 2023, doi: 10.11591/ijece.v13i6.pp6466-

6475.

[2] H. A. Ghani, M. R. Abdul Malek, M. F. Kamarul Azmi, M. J. Muril, and A. Azizan, “A review on sparse fast fourier transform

applications in image processing,” International Journal of Electrical and Computer Engineering, vol. 10, no. 2, pp. 1346–1351,

Apr. 2020, doi: 10.11591/ijece.v10i2.pp1346-1351.

[3] C. Jittawiriyanukoon and V. Srisarkun, “Evaluation of graphic effects embedded image compression,” International Journal of

Electrical and Computer Engineering, vol. 10, no. 6, pp. 6606–6617, Dec. 2020, doi: 10.11591/ijece.v10i6.pp6606-6617.

[4] G. NagaJyothi and S. SriDevi, “Distributed arithmetic architectures for FIR filters-A comparative review,” in 2017 International

Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Mar. 2017, vol. 24, pp. 2684–2690,

doi: 10.1109/wispnet.2017.8300250.

[5] P. Sritha, R. S. Valarmathi, and P. Ramya, “Different distributed arithmetic multiplication schemes used in fir filter,”

International Journal of Engineering and Advanced Technology, vol. 8, pp. 33–36, 2018.

[6] T. Jamil, Complex binary number system: algorithms and circuits. Springer India, 2013.

[7] M. Saritha et al., “Pipelined distributive arithmetic-based FIR filter using carry save and ripple carry adder,” in 2021 2nd

International Conference on Communication, Computing and Industry 4.0 (C2I4), Dec. 2021, vol. 12, pp. 1–6, doi:

10.1109/c2i454156.2021.9689396.

[8] A. Shadap and P. Saha, “Discrete fourier transformation processor based on complex Radix (−1 + j) number system,” Engineering

Science and Technology, an International Journal, vol. 20, no. 1, pp. 80–88, Feb. 2017, doi: 10.1016/j.jestch.2016.08.020.

[9] M. Bharathi, G. A. Sai, B. D. Sree, K. Bharadwaj Karthik, B. U. K. Naik, and Y. J. Shirur, “Designing 64-bit LUT based FFT

structure for high-speed DSP applications,” in 2023 IEEE 12th International Conference on Communication Systems and Network

Technologies (CSNT), Apr. 2023, pp. 31–34, doi: 10.1109/csnt57126.2023.10134710.

[10] M. Bharathi and Y. J. M. Shirur, “Efficient realization of fast fourier transform based on distributed arithm,” Res Militaris, vol.

12, no. 5, pp. 923–933, 2023.

[11] B. U. V Prashanth, M. R. Ahmed, and M. R. Kounte, “Design and implementation of DA FIR filter for bio-inspired computing

architecture,” International Journal of Electrical and Computer Engineering, vol. 11, no. 2, pp. 1709–1718, Apr. 2021, doi:

10.11591/ijece.v11i2.pp1709-1718.

[12] Y. Lu, S. Duan, B. Halak, and T. Kazmierski, “A variation-aware design methodology for distributed arithmetic,” Electronics,

vol. 8, no. 1, Jan. 2019, doi: 10.3390/electronics8010108.

[13] K. S. Reddy, S. Madhavan, P. Falkowski-Gilski, P. B. Divakarachari, and A. Mathiyalagan, “Efficient FPGA implementation of

an RFIR filter using the APC–OMS technique with WTM for high-throughput signal processing,” Electronics, vol. 11, no. 19,

Sep. 2022, doi: 10.3390/electronics11193118.

[14] B. M, K. Mohanarangam, Y. J. M Shirur, and J. R. Choi, “Accelerating DSP applications on a 16-bit processor: Block RAM

integration and distributed arithmetic approach,” Electronics, vol. 12, no. 20, Oct. 2023, doi: 10.3390/electronics12204236.

[15] C. R. K. J, R. D. Kulkarni, and D. M. A. Majid, “Energy-efficient architecture for high-performance FIR adaptive filter using

hybridizing CSDTCSE-CRABRA based distributed arithmetic design: Noise removal application in IoT-based WSN,”

Integration, vol. 97, Jul. 2024, doi: 10.1016/j.vlsi.2024.102172.

[16] P. V Praveen Sundar, D. Ranjith, T. Karthikeyan, V. Vinoth Kumar, and B. Jeyakumar, “Low power area efficient adaptive FIR

filter for hearing aids using distributed arithmetic architecture,” International Journal of Speech Technology, vol. 23, no. 2,

pp. 287–296, Mar. 2020, doi: 10.1007/s10772-020-09686-y.

[17] T. Jamil, M. Awadalla, and I. Mohammed, “Nibble-size multiplier circuit designs and their FPGA implementations for complex

binary number system,” International Journal of Electrical Engineering and Technology (IJEET), vol. 12, no. 6, pp. 105–121,

2021, doi: 10.34218/IJEET.12.6.2021.012.

[18] T. Jamil, M. Awadalla, and I. Mohammed, “Complex binary adder designs and their hardware implementations,” International

Journal of Advanced Computer Science and Applications, vol. 10, no. 7, 2019, doi: 10.14569/ijacsa.2019.0100734.

[19] M. Mukherjee and S. K. Sanyal, “Design of CBNS nibble size adder using pass transistor logic circuit: Extension to FPGA

implementation,” in 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT),

Jul. 2017, pp. 1–6, doi: 10.1109/icccnt.2017.8203927.

[20] M. Mukherjee and S. K. Sanyal, “FPGA-based efficient implementation of CBNS computational circuits: a modular approach,” in

Computational Advancement in Communication, Circuits and Systems, Springer Singapore, 2021, pp. 109–123.

[21] M. Mukherjee and S. K. Sanyal, “Design of high-speed FPGA based CASU using CBNS arithmetic: extension to CFFT

processor,” in International Conference on Innovative Computing and Communications, Springer Singapore, 2020, pp. 835–854.

[22] M. Mukherjee and S. K. Sanyal, “2-D systolic array architecture of CBNS based discrete Hilbert transform processor,”

Microprocessors and Microsystems, vol. 87, Nov. 2021, doi: 10.1016/j.micpro.2020.103509.

[23] S. S. Santosh, T. S. Swaroop, T. Kavya, and R. Chinthala, “Complex binary number system-based co-processor design for signal

processing applications,” in 2021 5th International Conference on Electronics, Materials Engineering & Nano-Technology

(IEMENTech), Sep. 2021, vol. 1, pp. 1–6, doi: 10.1109/iementech53263.2021.9614893.

[24] K. N. Bowlyn and N. M. Botros, “A novel distributed arithmetic multiplierless approach for computing complex inner products,”

in Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA),

2015.

[25] K. N. Bowlyn and N. M. Botros, “A novel distributed arithmetic approach for computing a Radix-2 FFT butterfly

implementation,” in Proceedings of the International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA), 2017, pp. 59–63.

[26] K. Bowlyn and S. Hounsinou, “An improved distributed multiplier-less approach for Radix-2 FFT,” IEEE Letters of the Computer

Int J Elec & Comp Eng ISSN: 2088-8708

An efficient Radix-4 butterfly structure based on the complex binary number system … (Kevin Bowlyn)

185

Society, vol. 3, no. 2, pp. 54–57, Jul. 2020, doi: 10.1109/locs.2020.3014354.

[27] T. Jamil, M. Awadallah, and I. Mohammad, “Complex binary subtractor designs and their hardware implementations,”

International Journal of Advanced Research in Engineering and Technology, vol. 12, no. 5, pp. 111–125, 2021, doi:

10.34218/IJARET.12.5.2021.011.

[28] Software optimization of FFTs and IFFTs using the SC3850 core. Freescale Semiconductor, 2010.

[29] R. Neuenfeld, M. Fonseca, and E. Costa, “Design of optimized Radix-2 and Radix-4 butterflies from FFT with decimation in

time,” in 2016 IEEE 7th Latin American Symposium on Circuits and Systems (LASCAS), Feb. 2016, vol. 30, pp. 171–174, doi:

10.1109/LASCAS.2016.7451037.

[30] G. Ferreira et al., “Low-power fast fourier transform hardware architecture combining a split-radix butterfly and efficient adder

compressors,” IET Computers & Digital Techniques, vol. 15, no. 3, pp. 230–240, Mar. 2021, doi: 10.1049/cdt2.12015.

BIOGRAPHIES OF AUTHORS

Kevin Bowlyn received a dual B.S. from Eastern Illinois University and Southern
Illinois University, Carbondale (SIUC), IL, USA, in engineering cooperative and electrical

engineering in 2008. He earned a dual M.S. degree in 2010 in biomedical engineering and

electrical and computer engineering, and a Ph.D. in electrical and computer engineering from

SIUC in 2017. He is an assistant professor of computer engineering at Sacred Heart University,
Fairfield, CT, USA. His research is focused on more efficient, low area-power circuit designs,

for computing a fast fourier transform (FFT) algorithm and implementing circuit design on

FPGA-based boards. Dr. Bowlyn can be contacted at: bowlynk@sacredheart.edu.

Sena Hounsinou received a B.S. in electrical engineering, M.S. and Ph.D. in

electrical and computer engineering from Southern Illinois University Carbondale in 2018. She

joined the Department of Electrical Engineering and Computer Science at Howard University
as a Postdoctoral fellow in 2019, where she also taught undergraduate Computer Science

courses. Her research interests include reconfigurable computing, FPGA-based systems,

embedded systems security and cyber-physical systems. She is an assistant professor in the

Department of Computer Science and Cybersecurity at Metro State University St. Paul. Dr.
Hounsinou can be contacted at: sena.houeto@metrostate.edu.

Jordan Tewell received a B.S. in computer science from Youngstown State
University in 2009. He earned a MET degree in entertainment technology from Carnegie

Mellon University in 2012 and his Ph.D. from City, University of London in 2018. He joined

Sacred Heart University as an assistant professor in the School of Computer Science and

Engineering in 2019. His research focus is in human-computer interaction, working at the
intersection of HCI with multi-sensory interfaces, wearable technology, and mixed reality. Dr.

Tewell can be contacted at: tewellj@sacredheart.edu.

https://orcid.org/0000-0001-5198-2057
https://scholar.google.com/citations?user=atF4ahMAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57195962184
https://www.webofscience.com/wos/author/record/KXR-8229-2024
https://orcid.org/0000-0002-4187-6135
https://scholar.google.com/citations?user=fuopqEoAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57204979896
https://www.webofscience.com/wos/author/record/KYP-7072-2024
https://orcid.org/0009-0001-8871-4133
https://scholar.google.com/citations?hl=en&user=m8k9B38AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55440182600
https://www.webofscience.com/wos/author/record/KWE-3029-2024

