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 Complex number arithmetic is pivotal in various applications, requiring  

the selection of an efficient multiplier for high-performance computations. 

Fast Fourier transform (FFT)-based multipliers are widely employed for 
computing complex number products, but their reliance on using dedicated 

multipliers and treating the real and imaginary parts as two entities 

significantly add to the cost and complexity of the system. Distributed 

arithmetic (DA) is a technique that replaces complex multiplications with a 
bit-level shift and addition mechanism. The complex binary number system 

(CBNS) utilizes binary arithmetic, which treats the real and imaginary parts 

as a single entity, which can simplify complex number arithmetic and 

computations. This paper introduces an approach integrating the CBNS with 
DA in a Radix-4 decimation in time FFT 8-bit and 16-bit butterfly structure. 

The proposed design significantly reduces arithmetic computations and 

eliminates dedicated multipliers, demonstrating a reduction in power 

consumption, area size, and lookup tables, as well as increasing overall 
clock performance compared to the conventional FFT architecture on  

Artix-7, Kintex-7, and Virtex-7 field-programmable gate array chips. 
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1. INTRODUCTION 

Complex inner products play a crucial role in various computational fields. In the realm of digital 

signal processing (DSP), they have extensive applications in digital filtering. This fundamental operation 

underpins multiple domains, including data transmission, speech processing, imaging processing, video 

processing, and more. The fast Fourier transform (FFT) algorithm has been used in various signal processing 

applications [1]–[3], utilizing complex number arithmetic operations to efficiently compute the Fourier 

transform. A well-known problem with the FFT algorithm is that these operations rely heavily on the use of 

dedicated multipliers, which are fast but occupy a large volume of hardware and are costly to implement, as 

each complex multiplier comprises four real multipliers and two real adders/subtractors. A disadvantage is 

that as the number of input bits increases, so do the hardware resources needed to implement such circuitry. 

A second known problem is that DSP applications often rely on data represented as complex numbers. 

Typically, these numbers are treated as having two distinct components (real and imaginary), which are 

processed separately. This process of computing complex numbers as two separate components has been 

used widely in various implementations of the FFT algorithm, such as those using the divide-and-conquer 
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approach. However, there is a growing interest in developing a more efficient and unified representation of 

complex numbers to improve the performance of the FFT algorithm. Therefore, space, cost, and power are 

additional factors that limit DSP applications in resource-constrained systems, such as embedded or internet 

of things (IoT) devices. 

A possible solution is incorporating the distributed arithmetic (DA) and complex binary number 

system (CBNS) approach. DA [4], [5] is an approach that provides an optimized technique to multiply 

numbers without relying on the costly circuitry required by multipliers for DSP applications on field-

programmable gate arrays (FPGAs). In contrast to the conventional FFT algorithm, DA only requires one 

dedicated multiplier. A DA block typically consists of a shift register unit, a DA based unit, and an 

adder/shifter unit. The shift register unit is utilized to compute a series of partial products. Each partial 

product is fed to the DA based unit, which uses a lookup table (LUT) and memory resources to generate pre-

computed partial results based on the input provided by the shift register unit. Each partial output is then 

accumulated in the adder/shifter unit, starting from the input’s least significant bit (LSB) to its most 

significant bit (MSB). The CBNS approach is an alternative number representation system in which complex 

numbers are expressed and processed as a single entity using binary digits. Jamil [6] has developed various 

techniques to facilitate the execution of arithmetic operations using the CBNS to allow the conversion of 

complex numbers to and from the complex binary base (−1 + 𝑗). A fractional decimal number can be 

expressed in CBNS as (1): 

 

𝐹 =  𝑟𝑖  =  2−𝑖𝑓𝑖  =  2−1𝑓1  + 2−2𝑓2  + 2−3𝑓3 + .. (1) 

 

where 2−1 is equivalent to (−1 + 𝑗)−1, 𝑟𝑖 is the remainder of the fraction form, and 𝑓𝑖, represents the binary 

coefficients of the CBNS base, which is either 0 or 1. To find the value of each coefficient 𝑓𝑖, the steps 

described below are followed until the remainder 𝑟𝑖 becomes zero or when the limit of the non-terminating 

fractional number has been attained [6]: 

Step 1: If [2 × 𝑟0] − 1 < 0 then 𝑓1 =  0 and 𝑟1 =  [2 × 𝑟0]; else 𝑓1 =  1 and 𝑟1 =  [2 × 𝑟0] − 1 

Step 2: If [2 × 𝑟𝑖] − 1 < 0 then 𝑓𝑖+1 =  0 and 𝑟𝑖+1 =  [2 × 𝑟𝑖]; else 𝑓𝑖+1 =  1 and 𝑟𝑖+1 =  [2 × 𝑟𝑖] − 1 

Combining the CBNS with DA could potentially offer a highly efficient approach for hardware 

implementations, particularly in optimizing FFT operations. The CBNS is particularly well-suited for 

hardware implementations, such as on FPGAs, where binary operations can be efficiently realized in 

hardware compared with standard base (octal, decimal, and hexadecimal) arithmetic operations, as a binary 

system has only two digits: 0 and 1. Additionally, by leveraging the parallelism and simplicity of DA LUT 

operations, DA can further reduce computational complexity and power consumption compared to standard 

arithmetic operations. Thus, applying the CBNS coupled with DA (referred to as DA-CBNS herein) in the 

context of FFT optimization presents an intriguing prospective solution for enhancing the efficiency and 

efficacy of FFT implementations. DA has been explored to optimize finite impulse response (FIR) filters to 

reduce area cost and power consumption while still preserving processing speed [7], where each complex 

number is computed as two separate entities. The CBNS approach has also been explored in the discrete 

Fourier transform (DFT) algorithm, resulting in an enhanced performance matrix regarding delay and power 

consumption [8]. Therefore, by incorporating the CBNS and DA approach, the CBNS approach will allow 

for complex numbers to be computed as a single entity instead of two. The integrated approach will result in 

a 100% reduction in the multiplier architecture structure as no dedicated multipliers are used to compute the 

Radix-4 butterfly structure, potentially decreasing area size, power consumption, and cost. 

While other works have successfully utilized FPGAs or special processors to operate on the 

DA-based approach [9]–[16] and/or the CBNS approach [8], [17]–[23], very few works have examined the 

use of the CNBS and DA together. Bowlyn and Botros [24] have used the CBNS and DA to create a 

multiplier less design to compute complex products. In their work, the CBNS was used to reduce complex 

numbers to single units instead of pairs, and a DA LUT was used to store the pre-computed coefficients. The 

authors claimed this approach significantly reduced arithmetic calculations, real adders, and power 

consumption (when implemented in a 3-tap filter) compared with the conventional approach to computing 

complex dot products. This work has been extended to Radix-2 butterfly structures [25] and in computing the 

Fourier transform with a Radix-2 FFT algorithm [26]. 

In this paper, an FPGA-based implementation of a Radix-4 DA-CBNS butterfly structure is 

proposed and is evaluated over a conventional Radix-4 implementation in terms of power consumption, area 

size, LUTs, and overall clock performance. The contributions can be summarized as follows: 

− Design of a Radix-4 butterfly structure using an optimized DA and CBNS design. 

− Implementation of the DA-CBNS structure on the Artix-7, Kintex-7, and Virtex-7 FPGA platforms. 

− Comparative study of an 8-bit and a 16-bit DA-CBNS design vs. a “conventional” (non-optimized) 

decimation-in-time (DIT) Radix-4 butterfly design. 
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The remainder of the paper is organized as follows: section 2 provides a detailed description of the 

proposed implementation of the DA-CBNS Radix-4 butterfly structure design. Section 3 presents a 

comparison between the proposed FPGA-based DA-CBNS butterfly structure and the conventional 

implementation along with the results, followed by a discussion. Finally, we summarize our findings in 

section 4. 

 

 

2. METHOD 

2.1.  CBNS arithmetic 

In the context of the FFT, complex arithmetic plays a crucial role in computing the FFT algorithm 

efficiently. Complex arithmetic in the FFT typically utilizes algorithms and data structures optimized for 

complex number operations to ensure the FFT’s high computational efficiency. This efficiency is essential 

for the use of FFT in signal processing, data analysis, and various other applications where efficient 

frequency domain analysis is required. 

Traditionally, complex numbers in binary are represented with separate real and imaginary parts. 

However, with the CBNS approach, complex numbers can be represented as a single entity using the 

(−1 + 𝑗) CBNS-based algorithm. For example, the complex number (0.70703125+j0.70703125) can be 

represented in CBNS as 1110.1110011001101110 in the (−1 + 𝑗) base as a single entity, compared to the 

conventional, binary representation of (00.10110101, 00.10110101) in base-2, where the real and imaginary 

are separated. 

In designing the CBNS arithmetic circuit, the CBNS algorithm was further studied. Table 1 provides 

a comprehensive overview of how addition and subtraction are performed using the CBNS approach with the 

(−1 + 𝑗) base and shows the truth table for computing a CBNS adder and subtractor circuit. Inputs A and B 

represent the binary input values to the CBNS adder and subtractor circuit. For addition, the Carries column 

indicates the carry bits generated after carrying over the values to the next significant bit, and the Sum 

column shows the final result after considering the carry bits. For subtraction, the Borrow column indicates 

the borrowed bits generated after borrowing from a higher bit, and the Difference column shows the final 

result of the subtraction operation after considering the borrowed bits. 
 

 

Table 1. Truth table for (−1 + 𝑗)-based CBNS addition and subtraction 
Input A Input B Addition output A+B Addition output A+B 

  Carries Sum Borrow Difference 

0 0 000 0 0000 0 

0 1 000 1 1110 1 

1 0 000 1 0000 1 

1 1 110 0 0000 0 

 

 

2.2.  CBNS adder unit design 

In designing the CBNS adder unit, a slightly modified version of the traditional base-2 ripple carry 

adder was used. In the traditional 2’s complement binary approach, adding two ones (1 +  1) results in 10 

(base-2), where the first bit is the sum bit, and the second is the carry bit. The rules for the CBNS adder for 

base (−1 + 𝑗), however, are different. Adding 1 + 1 results in 1100 (−1 + 𝑗) [18], where the first bit is the 

sum bit (Stage 0), and the remaining three bits are the carry bits (stages 1 - 3). In other words, with the CBNS 

adder approach, adding two ones always generates two carries of one to stages 2 and 3 of the CBNS adder, 

while Stage 1 will have no carry as its carry is always zero. Therefore, the adder unit was designed and 

structured into three different stages: 

− Stages 0 and 1: Implemented using two half adders as no carry-ins were needed. 

− Stage 2: Implemented using a full adder, as the carry-in from stage 0 is propagated to stage 2. 

− Stage 3: implemented using a four-input bit adder, which includes the carry-ins from stages 1 and 2 

Extended carries occur when more than three ones are added together. For example, adding four ones in 

stage 3 produces an output of 1 1101 0000, which represents 4 in base (−1 + 𝑗). In this case: 

− The first bit is the sum bit. 

− The second, third, and fourth bits are the carry bits. 

− The remaining five bits are the extended carries. 

The propagation approach to handle extended carries is as follows. The carry bits (bits three and 

four) are propagated to stages 5 and 6, as these stages handle the less significant carries. The extended carry 

bit (1) is propagated to stages 7, 9, 10, and 11, as these stages handle the more significant extended carries. 

Stages 4 and 8 will always have carry-ins and extended carries of zero and can be ignored (bits two and six), 
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as they do not influence the carry and extended carry propagation. This approach was built using the 

respective adder sizes for each stage respectively and simulated in very high-speed integrated circuit 

(VHSIC) hardware description language (VHDL) using for loops. Figure 1 shows a gate-level schematic 

design of an 8-bit CBNS adder. 

 

 

 
 

Figure 1. 8-bit CBNS adder gate level design 

 

 

2.3.  CBNS subtractor unit design 

The CBNS subtractor unit operates similarly to a standard base-2 algorithm, with the key difference 

occurring in the subtraction of 1 from 0. In the (−1 + 𝑗) base algorithm, subtracting 1 from 0 yields three 

additional carriers of 1s refer to Table 1. Specifically, 0 – 1 = 11101 [27]. The LSB bit represents the 

difference output, while the remaining four bits represent the carries. Since the carry following the difference 

term is always zero, it can be ignored. When performing subtraction, the subtrahend is subtracted from the 

minuend, and the resulting carries are added to the minuend bits using the CBNS adder algorithm.  

The design of the subtractor unit is similar to a modified traditional ripple borrow subtractor. 

However, it was noted that the borrow and adder bit could be OR’d or XOR’d simultaneously. Therefore, if 

there is a borrow, the adder signal will be zero (indicating no addition), and conversely, if there is an 

addition, the borrow signal will be zero. The subtractor unit incorporates both the subtrahend and minuend 

bits in one single block, which also includes the CBNS adder algorithm. This procedure was implemented 

using multiple for loops in a cascading ripple circuit to compute the output values at different stages. Figure 2 

shows the gate-level design for an 8-bit CBNS subtractor. 

 

 

 

 
 

Figure 2. 8-bit subtractor gate-level design circuit 
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2.4.  DA-CBNS multiplier unit design 

DA is highly beneficial in FFT computations, especially for computing inner dot products, and it 

eliminates the need for explicit multipliers, reducing hardware complexity and resource usage. The main idea 

behind DA is to precompute all possible partial products and store them in LUTs, which can then be quickly 

retrieved and summed using simple arithmetic operations. This approach is widely embraced for 

implementing FIR filters, as DA can efficiently utilize LUTs, shifters, and adders to compute the essential 

sum of products necessary for FIR filters. Additionally, DA lowers power consumption by minimizing 

complex operations, enabling efficient, high-performance, and power-efficient digital signal processing. 

Thus, by optimizing the use of LUTs in FPGAs, DA enhances efficiency and leverages its inherent 

parallelism and pipelining capabilities to significantly boost throughput and performance. 

The overall block diagram of the conventional DA algorithm [24] operates as follows. First, the 

inputs are shifted in parallel-in-to-serial-out (PISO) fashion to the shift register unit. The output of the shift 

register unit is then serially output one bit at a time into the read-only memory (ROM)-LUT (DA Unit). The 

ROM-LUT directly addresses the memory of the shift register outputs. These values are then added, stored in 

an accumulator, and shifted so that the final output, 𝑦[𝑛], is available after the N-bit clock cycle. A 

combinational adder/subtractor control signal 𝑇𝑠 is used with the DA structure to manipulate signed bit binary 

numbers. When 𝑇𝑠 is zero, addition occurs until the MSB is reached, at which point 𝑇𝑠 becomes one, and 

subtraction follows. 

The proposed DA-CBNS multiplication circuit leverages both the DA and CBNS techniques. Unlike 

the conventional ROM-based structure, which speeds up multiplication through pre-computed values in the 

ROM-LUT, the proposed DA-based design uses a non-LUT ROM component to store the constant twiddle 

factor values rather than a ROM bank. This modification results in a logic gate-based implementation for the 

DA-LUT, leading to a slight increase in gate count but a 100% reduction in memory usage. 

Another improvement involves adjusting the DA structure. The conventional DA-based design 

typically operates on binary signed numbers, using an arithmetic right shift to preserve the product’s sign 

during the accumulation phase. However, an arithmetic right shift is unsuitable for our DA-CBNS design 

since a leading 0 or 1 does not indicate the sign of numbers in the complex (−1 + 𝑗)-base. As a solution, we 

replaced the arithmetic right shift with a logical right shift. 

Furthermore, the DA structure’s conventional binary adder/subtractor was substituted with an 

implementation suitable for the (−1 + 𝑗)-based CBNS adder structure. The conventional binary 

adder/subtractor, while functional, can lead to inefficiencies due to the increased number of arithmetic 

computations needed to separate and combine the real and imaginary parts of complex numbers. The  

(−1 + 𝑗)-based CBNS adder structure, on the other hand, represents the output sum as a single compact 

entity, reducing the number of such computations. 

Figures 3(a) and 3(b) shows the block diagram of the DA-CBNS multiplier block and its 

pseudocode. The original input operand 𝑥 is represented in the (−1 + 𝑗)-base, and the resulting DA product 

is also expressed in this base as 𝑦 = 𝑥. 𝑣. The non-LUT ROM stores the constant fixed-point twiddle factor 𝑣 

and by using the CBNS technique, this design enables complex multiplication by shifting and adding without 

using the divide and conquer approach, where the real and imaginary parts are computed separately. 

 

 

  
(a) (b) 

 

Figure 3. The block diagram of the DA-CBNS (a) DA-CBNS multiplier block diagram and (b) pseudocode 

 

 

2.5.  Radix-4 implementation design 

The FFT algorithm is a fast algorithm that computes the DFT and its inverse. The Radix-4 FFT 

algorithm offers computational advantages over simpler Radix-2 algorithms for large transform sizes because 
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it reduces the number of required arithmetic operations. However, it may not be as memory efficient as 

Radix-2 algorithms for smaller transform sizes. Overall, the Radix-4 FFT algorithm is a key component in 

many signal processing applications where fast and efficient Fourier transform computation is required, such 

as in audio processing, image processing, telecommunications, and more. 

DIT and decimation in frequency (DIF) are two FFT approaches for efficiently computing the DFT 

algorithm. The Radix-4 DIT FFT decomposes the DFT in the time domain using a base-4 approach, 

involving recursive division of the input sequence into smaller sub-sequences of length four until each is a 

single sample. This method uses Radix-4 butterflies to minimize operations and reduce the number of 

required twiddle factors, enhancing memory access and computational efficiency. Conversely, the Radix-4 

DIF FFT decomposes the DFT in the frequency domain, splitting it into even and odd frequency components 

of length four, progressing from the lowest to highest frequencies. It also utilizes Radix-4 butterflies, 

optimizing arithmetic operations and memory access. 

The Radix-4 DIF FFT generally performs better due to fewer operations and more regular memory 

access patterns, making it suitable for parallel processing. However, the Radix-4 DIT FFT is preferred for 

specific specialized applications or hardware environments where a time-domain approach is advantageous. 

A key computation difference between DIT and DIF is the order of operations: DIT performs multiplication 

first, followed by addition, while DIF performs addition first, followed by multiplication as shown in  

Figure 4. The conventional calculation for a Radix-4 DIT/DIF butterfly structure requires twelve real 

multiplications and twenty-two real additions [28] for each structure. This includes cases of repeated 

multiplications. In our proposed design, we chose to implement a DIT FFT structure as applications of DIT 

FFT in the time domain are prevalent in various fields due to its efficiency in handling time-domain data such 

as audio, image, and speech processing where data are represented as two separate entities, real and 

imaginary. We aim to implement our technique in designing a DA-CBNS DIT FFT structure to perform an 

application in image processing where complex numbers are treated as a single entity.  

 

 

  
(a) (b) 

 

Figure 4. Radix-4 DIF and DIT 4-point butterfly structures 

 

 

Theoretically, each Radix-4 butterfly structure employs three complex multiplications at each 

butterfly stage, with each complex multiplication involving four real multiplications and two real additions. 

Additionally, each butterfly structure at each stage also requires eight real complex additions, as one complex 

addition entails two real additions. From (2) (DIT) and (3) (DIF), the following matrix coefficients M can be 

obtained from each of the equation terms where k and 𝑛 =  0, 1, . . . , 𝑁/4 −  1. 
 

𝑋(𝑘) = 𝑆1(𝑘) + 𝑊𝑁
𝑘𝑆2(𝑘) + 𝑊𝑁

2𝑘𝑆3(𝑘) + 𝑊𝑁
3𝑘 𝑆4(𝑘)  

𝑋 (𝑘 +
𝑁

4
) = 𝑆1(𝑘) − 𝑗𝑊𝑁

𝑘𝑆2(𝑘) − 𝑊𝑁
2𝑘𝑆3(𝑘) + 𝑗𝑊𝑁

3𝑘𝑆4(𝑘)  

𝑋 (𝑘 +
2𝑁

4
) = 𝑆1(𝑘) − 𝑊𝑁

𝑘𝑆2(𝑘) + 𝑊𝑁
2𝑘𝑆3(𝑘) − 𝑊𝑁

3𝑘 𝑆4(𝑘)  

𝑋 (𝑘 +
3𝑁

4
) = 𝑆1(𝑘) + 𝑗𝑊𝑁

𝑘𝑆2(𝑘) − 𝑊𝑁
2𝑘 𝑆3(𝑘) − 𝑗𝑊𝑁

3𝑘𝑆4(𝑘)  (2) 

 

𝑦(𝑛) = {𝑥(𝑛) + 𝑥 (𝑛 +
𝑁

4
) + 𝑥 (𝑛 +

2𝑁

4
) + 𝑥 (𝑛 +

3𝑁

4
)} 𝑊𝑁

0  

𝑦 (𝑛 +
𝑁

4
) = {𝑥(𝑛) − 𝑗𝑥 (𝑛 +

𝑁

4
) − 𝑥 (𝑛 +

2𝑁

4
) + 𝑗𝑥 (𝑛 +

3𝑁

4
)} 𝑊𝑁

𝑛  

𝑦(𝑛 + (2𝑁)/4) = {𝑥(𝑛) − 𝑥 (𝑛 +
𝑁

4
) + 𝑥 (𝑛 +

2𝑁

4
) − 𝑥 (𝑛 +

3𝑁

4
)} 𝑊𝑁

2𝑛  

𝑦(𝑛 + (3𝑁)/4) = {𝑥(𝑛) + 𝑗𝑥 (𝑛 +
𝑁

4
) − 𝑥 (𝑛 +

2𝑁

4
) − 𝑗𝑥 (𝑛 +

3𝑁

4
)} 𝑊𝑁

3𝑛  (3) 
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M = [

1 1 1 1
1 −𝑗 −1 𝑗
1 −1 1 −1
1 𝑗 −1 −𝑗

]  (4) 

 

Using M, we obtain the expressions for the outputs 𝐴′, 𝐵′, 𝐶′, and 𝐷′ as (5): 

 

𝐴′ =  𝐴 +  𝐵𝑊𝑏  +  𝐶𝑊𝑐  +  𝐷𝑊𝑑  
𝐵′ =  𝐴 −  𝑗𝐵𝑊𝑏  −  𝐶𝑊𝑐  +  𝑗𝐷𝑊𝑑  

𝐶′ =  𝐴 −  𝐵𝑊𝑏  +  𝐶𝑊𝑐  −  𝐷𝑊𝑑  
𝐷′ =  𝐴 +  𝑗𝐵𝑊𝑏  −  𝐶𝑊𝑐  −  𝑗𝐷𝑊𝑑  (5) 

 

By regrouping and rearranging the terms in the expressions of (5), we can identify specific terms that appear 

in more than one of the expressions. Specifically, the term (𝐴 + 𝐶𝑊𝑐) is common to both 𝐴′ and 𝐶′,  
(𝐴 − 𝐶𝑊𝑐) is used in 𝐵′ and 𝐷′, (𝐵𝑊𝑏  + 𝐷𝑊𝑑) is present in both 𝐴′ and 𝐶′, while the term (𝐵𝑊𝑏  − 𝐷𝑊𝑑) 

(factoring out the j term) shows up in B' and D'. Therefore, it is possible to reduce the load on computational 

resources by reusing the results of these terms rather than recomputing them as shown in Figure 5. 

 

 

 
 

Figure 5. Radix-4 DIT butterfly structure: partial sums are rearranged to improve the butterfly computation 

 

 

In our proposed DA-CBNS approach, four DA-CBNS multiplier blocks and twelve CBNS 

adders/subtractors are essential for computing each butterfly structure. Eight of the CBNS adders and 

subtractors are allocated to calculating the overall Radix-4 outputs, and the remaining four CBNS adders 

(DA-CBNS multiplier block) are dedicated to the DA-based structure as shown in Figure 6(a). This DA-

CBNS block diagram implementation incorporates the regrouping and rearranging of terms for computing 

the output results of 𝐴′, 𝐵′, 𝐶′, and 𝐷′ as illustrated in Figure 5. The algorithm as shown in Figure 6(b) 

illustrates the pseudocode for computing an 8-bit 4-point DA-CBNS butterfly design as a top model design 

by using port-based module instantiation of the required design blocks, which include the DA, the CBNS 

adder, and the CBNS subtractor blocks. 

 

 

  
(a) (b) 

 

Figure 6. DA-CBNS-based Radix-4 FFT implementation: (a) Block diagram of the butterfly computation 

using CBNS and DA technique and (b) pseudocode for generating the butterfly outputs 
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To improve this overall design and structure, each input of the butterfly structure (𝑋(𝑘), 
 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 2𝑁/4) and 𝑋(𝑘 + 3𝑁/4), where 𝑘 ranges from 0 𝑡𝑜 (𝑁/4 − 1)) must initially undergo 

conversion into the (−1 + 𝑗)-base. Figure 7 shows the overall implementation process to compute the  

Radix-4 butterfly structure using our proposed DA-CBNS technique. To implement this structure, the fixed-

point binary complex numbers and the twiddle factors (which transition into fixed constant coefficient 

values) undergo an initial conversion into the (−1 + 𝑗)-base representation. Following this conversion, the 

transformed input data serve as the inputs 𝑋(𝑘), 𝑋(𝑘 + 𝑁/4), 𝑋(𝑘 + 2𝑁/4) and 𝑋(𝑘 + 3𝑁/4). 

 

 

 
 

Figure 7. Proposed implementation procedure for computing a Radix-4 butterfly structure 

 

 

These datasets then become the driving data values for the 4-point butterfly structure. In computing 

the butterfly structure, the twiddle factor is loaded into the LUT. The DA structure subsequently computes 

partial products with equal shifts, adding them before summing to the next partial product shift. This iterative 

process continues for a number of cycles equal to n (the length of the input bits) until 𝑦[𝑛] encapsulates the 

final result. The final outputs are generated in the (−1 + 𝑗)-base representation and are later reconverted into 

their base-2 formats. 

The Radix-4 algorithm reduces the number of required arithmetic operations compared with the 

Radix-2 algorithm. Table 2 shows the total number of real adders and multipliers for the conventional  

Radix-4 DIT implementation using only one butterfly structure, where each complex multiplication and 

addition are computed as two separate entities. Note that the number of multipliers decreases as the number 

of different butterfly structures used increases. This is contrasted to our DA-CBNS-based design, which 

shows the total number of real complex multiplications and additions, both with and without the proposed 

DA technique that computes complex arithmetic as a single entity. 

As shown in Table 2, the utilization of the DA structure reduces the number of complex 

multiplications from 3(𝑁/4)𝑙𝑜𝑔4𝑁 to 0, eliminating the need to use dedicated complex multipliers. 

However, the total number of complex additions for the DA-CBNS-based design increases significantly due 

to the extra adders required to compute each of the four DA structures. This includes the three DA multipliers 

for multiplying the twiddle factor plus the DA multiplication of 𝑗 for the Radix-4 butterfly structure as shown 

in Figure 6(a). This results in an increase in complex additions from 8(𝑁/4)𝑙𝑜𝑔4𝑁 to 12(𝑁/4)𝑙𝑜𝑔4𝑁. 

Nonetheless, the number of complex adders are the same as the dedicated real multipliers needed to compute 

the conventional Radix-4 butterfly algorithm using the divide-and-conquer approach. Additionally, the DA-

CBNS adder/subtractor uses fewer LUT resources than a dedicated multiplier. 

 

 

Table 2. Comparison of the conventional Radix-4 DIT FFT vs. our proposed DA-CBNS DIT structure with 

and without the optimized DA-based design 
Number of Points 

𝑁 = 4𝑃 

Radix-4 DIT FFT Radix-4 DIT CBNS FFT and DA-CBNS FFT 

Real Multiplications Real Additions Complex Multiplications Complex Additions 

  Without DA With DA Without DA With DA 

12 (
𝑁

4
) log4 𝑁 22 (

𝑁

4
) log4 𝑁 3 (

𝑁

4
) log4 𝑁 

 
8 (

𝑁

4
) log4 𝑁 12 (

𝑁

4
) log4 𝑁 

4 12 22 3 0 8 12 

16 96 176 24 0 64 96 

64 576 1056 144 0 384 576 

256 3072 5362 768 0 2048 3072 

1024 15360 28160 3840 0 10240 15360 

4096 73728 135168 18432 0 49152 73728 

16384 344064 630784 86016 0 229376 344064 

 

 

3. RESULTS AND DISCUSSION 

3.1.   Experimental setup 

To evaluate the proposed DA-CBNS Radix-4 DIT butterfly structure, we compared its performance 

and design requirements against those of the conventional Radix-4 structure. We implemented two 
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configurations for each type of structure: one with 𝑁=8 bits and the other with 𝑁=16 bits. Since the CBNS 

technique treats complex numbers as a single entity, each DA-CBNS configuration with input size 𝑁 was 

compared to an equivalent conventional configuration using 𝑁 real components and 𝑁 imaginary 

components. Our Radix-4 butterfly structure design was implemented and coded in SystemVerilog and 

VHDL within the Xilinx Vivado Design Suite. It was then synthesized and implemented on three target-size 

FPGA platforms: Artix-7, Kintex-7, and Virtex-7. 

 

3.2.  Evaluation metrics 

The assessment included power consumption, LUT utilization, area size, and clock frequency data 

from the post-place and route results. The clock signal’s worst negative slack (WNS) was used to determine 

the maximum frequency of a design, given by (6): 

 

𝐹𝑚𝑎𝑥 =
1

𝑇−𝑊𝑁𝑆
 (6) 

 

where T is the target clock period and WNS is the positive worst negative slack of the clock signal in the 

intra-clock paths section of the timing analysis report. Finally, the area for each design was computed as (7): 

 

𝑎𝑟𝑒𝑎 =
𝐿𝑢𝑠𝑒𝑑+𝐹𝑢𝑠𝑒𝑑

𝐿𝑡𝑜𝑡𝑎𝑙+𝐹𝑡𝑜𝑡𝑎𝑙
 (7) 

 

where 𝐿𝑢𝑠𝑒𝑑 and 𝐹𝑢𝑠𝑒𝑑 represent the number of LUTs and flip flops used in the design, respectively, while 

𝐿𝑡𝑜𝑡𝑎𝑙 and 𝐹𝑡𝑜𝑡𝑎𝑙 are the total number of LUTs and flip flops available on the platform, respectively. 

 

3.3.  Results 

Table 3 shows the results of our design compared across three FPGA target chips: Artix-7, Kintex-7, 

and Virtex-7. For all chips, the 8-bit Radix-4 DA-CBNS DIT butterfly structure was compared with its 8-bit 

(real and imaginary) conventional counterpart. The DA-CBNS design exhibited a 77% reduction in area size 

and an 89% decrease in LUT count. Power consumption rates were also significantly reduced, with a 60% 

reduction for the Artix-7 chip, 63% for the Virtex-7 chip, and 61% for the Kintex-7 chip. Additionally, the 

DA-CBNS structure showed an 18% increase in speed for both the Artix-7 and Virtex-7 chips and an overall 

speed performance increase of 12% for the Kintex-7 chip. 

 

 

Table 3. 8-bit and 16-bit DA-CBNS and conventional DIT structure statistics using Virtex-7, Artix-7, and 

Kintex-7 chips 
Artix-7 xc7k480tffv1156-3 8-bit butterfly structure 16-bit butterfly structure 

 DA-CBNS (8-bit) Conventional (8-bit) 

(8 real + 8 imaginary) 

DA-CBNS (16 bit) Conventional (16-bit) 

(16 real + 16 imaginary) 

IOB/Total 91/500 178/500 179/500 353/500 

LUT/Total 167/134600 1501/134600 700/134600 6139/134600 

Worst negative slack (ns) 15.010 12.266 15.242 2.632 

Frequency (MHz) 100.10 78.53 102.48 44.71 

Dynamic power consumption (𝞵W) 18 45 40 139 

Area (%) 0.101040 0.442051 0.292472 1.66295 

Virtex-7 xc7v585tffg1157-3 8-bit Butterfly Structure 16-bit butterfly structure 

 DA-CBNS (8-bit) Conventional (8-bit) 

(8 real + 8 imaginary) 

DA-CBNS (16 bit) Conventional (16-bit) 

(16 real + 16 imaginary) 

IOB/Total 91/600 178/600 179/600 353/600 

LUT/Total 167/364200 1501/364200 701/364200 6139/364200 

Worst negative slack (ns) 17.363 15.985 16.294 8.638 

Frequency (MHz) 130.94 110.93 114.86 61.12 

Dynamic power consumption (𝞵W) 17 46 41 146 

Area (%) 0.037342 0.163372 0.108182 0.6145589 

Kintex-7 xc7k480tffv1156-3 8-bit butterfly structure 16-bit butterfly structure 

 DA-CBNS (8-bit) Conventional (8-bit) 

(8 real + 8 imaginary) 

DA-CBNS (16 bit) Conventional (16-bit) 

(16 real + 16 imaginary) 

IOB/Total 91/400 178/400 179/400 353/400 

LUT/Total 167/298600 1501/298600 702/298600 6139/298600 

Worst negative slack (ns) 15.811 14.710 14.843 6.697 

Frequency (MHz) 108.83 97.18 98.45 54.64 

Dynamic power consumption (𝞵W) 18 46 42 146 

Area (%) 0.045546 0.199263 0.132172 0.749609 
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Comparable enhancements were observed in the 16-bit scenario. The DA-CBNS design showcased 

reductions of 82% in area size and 89% in logic gate cost across all three chips. For the Artix-7 and Virtex-7 

chips, the DA-CBNS approach featured a 71% reduction in power consumption, while the Kintex-7 chip 

showed a 68% reduction. The DA-CBNS method also resulted in different clock speeds across all three 

chips: on the Artix-7 chip, our method demonstrated an improved rate of 129%. On the Kintex-7 chip, it 

delivered an 88% improvement in speed, and on the Virtex-7 chip, the DA-CBNS design showcased an 

increase in speed of around 80% compared with the conventional approach. Overall, our findings reveal that 

the DA-CBNS design significantly economized on memory resources (LUTs), area size, and power 

consumption while also increasing speed on all three FPGA target chips when compared to the conventional 

8-bit and 16-bit DIT butterfly structures.  

 

3.4.  Discussion 

Our design was compared with the conventional FFT approach regarding area size, speed, LUTs, 

and dynamic power consumption. For the 8-bit DA-CBNS structure, it used significantly less area size, 

dynamic power, and LUTs than its conventional counterpart on all three target chips. In terms of speed, the 

DA-CBNS design also demonstrated faster performance on the Artix-7, Kintex-7, and Virtex-7 chips. For the 

16-bit structures, the DA-CBNS design consistently showed the best results across all four parameters, with 

reductions in area size, dynamic power, and LUTs, as well as an increase in speed compared to the 

conventional approach using dedicated multipliers. Therefore, adopting the DA-CBNS structure greatly 

improves the performance of the Radix-4 butterfly structure for both 8-bit and 16-bit structures. 

The proposed design was also compared to other existing methodologies. Neuenfeld et al. [29] 

proposed 16-bit Radix-2 and Radix-4 DIT butterfly structures aimed at minimizing the number of arithmetic 

operators to produce power-efficient designs and reduce the number of real dedicated multipliers in the 

Radix-4 butterfly. Their results showed LUT usage and dynamic power consumption to be 4,152 and  

554.2 µW, respectively. With our proposed design for a 16-bit (single entity) DIT butterfly structure, our 

LUT usage and dynamic power were found to be 702 and 42 µW on a Kintex-7 target design chip. This 

resulted in our proposed design having fewer reductions in LUT usage and dynamic power consumption, 

respectively  

Ferreira et al. [30] proposed a 16-bit low-power hardware architecture combining an optimized 

split-Radix-4 DIT butterfly and 5-2 adder compressors (ACs). Their design, composed of eight multipliers 

and sixteen adders and subtractors, showed a maximum frequency of 55.79 MHz with a gate count of 4960. 

In contrast, our proposed 16-bit DA-CBNS structure, in which complex numbers are computed as a single 

entity with no need for dedicated multipliers, showed a gate count of approximately 700 on Kintex-7,  

Artix-7, and Virtex-7 FPGA chips. The speed of our 16-bit DA-CBNS design was 98.45, 102.48, and  

114.86 MHz on Kintex-7, Artix-7, and Virtex-7 chips, respectively. This resulted in an increased clock-to-

clock speed of about 76% on the Kintex-7 chip, 83% on the Artix-7 chip, and approximately 106% on the 

Virtex-7 chip compared to the author’s maximum frequency result in [30]. 

Overall, our proposed DA-CBNS butterfly structure exhibited reductions in area size, LUT usage, 

and power consumption, and an increase in clock-to-clock performance. The significant reduction in 

arithmetic operators allowed the Radix-4 DA-CBNS butterfly structure to outperform the existing 

conventional Radix-4 butterfly structures in terms of area, power consumption, and LUT usage. However, 

since the DA-CBNS design represents each complex number as a single entity, the absolute precision of our 

data results is somewhat limited compared to the conventional approach that computes complex numbers as 

two entities. 

 

 

4. CONCLUSION  

This paper presented a unique design by incorporating the CBNS approach with the DA technique. 

By incorporating the CBNS technique within our design, the number of arithmetic computations was reduced 

to three real complex multiplications and eight real complex additions. However, with the DA technique, no 

dedicated multipliers were utilized, as the DA structure accomplishes multiplications by employing a shift-

adder circuit rather than a CBNS multiplier circuit. Therefore, our proposed design utilizes zero multipliers 

and twelve complex adders. The four additional complex adders are due to the four DA structures used 

within our design. Two architecture models, 8-bit and 16-bit Radix-4 butterfly structures, were implemented 

in Xilinx Vivado, coded in SystemVerilog and VHDL, and then implemented on three target FPGA chips: 

Artix-7, Kintex-7, and Virtex-7. 

The results showed that for the 8-bit and 16-bit Radix-4 butterfly structures, the DA-CBNS 

approach resulted in less power consumption, smaller area size, and fewer LUTs, as well as increased overall 

clock-to-clock performance speed on all three target FPGA chips compared to the conventional FFT 

counterpart. Therefore, given the great demand for new and improved technology for DSP applications, our 
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DA-CBNS structure demonstrates to have better performance regarding area size, LUTs, power 

consumption, and speed over a conventional FFT structure. By employing and adopting the DA-CBNS 

technique, we believe our approach can significantly improve the efficiency of floating-point DSP 

applications that rely on complex arithmetic. Our future goal is to implement our DA-CBNS design on real-

time applications employing 16, 64, and 256-point FFTs. 
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