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 The paper focuses on the fusion of visible and infrared images to generate 

composite images that preserve both the thermal radiation information from 

the infrared spectrum and the detailed texture from the visible spectrum. The 

proposed approach combines traditional methods, such as two-scale 

decomposition, with deep learning techniques, specifically employing an 

autoencoder architecture. The source images are subjected to two-scale 

decomposition, which extracts high-frequency detail and low-frequency base 

information. Additionally, an algorithmic unravelling technique establishes a 

logical connection between deep neural networks and traditional signal 

processing algorithms. The model consists of two encoders for 

decomposition and a decoder after the unravelling operation. During testing, 

a fusion layer merges the decomposed feature maps, and the decoder 

generates the fused image. Evaluation metrics including entropy, average 

gradient, spatial frequency and standard deviation are employed to 

subjectively assess fusion quality. The proposed approach demonstrates 

promise for effectively combining visible and infrared imagery for various 

applications. 
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1. INTRODUCTION 

 In the field of image processing research, image fusion is an emerging topic. Adopting similar 

methodologies and strategies, enhances the effectiveness, interpretability, and reproducibility of image 

fusion. Additionally, evaluating models on benchmark datasets and making code and data openly available 

will contribute to the advancement of research in the field of remote sensing [1]. Incorporating insights from 

the base paper involves leveraging unsupervised learning techniques and advanced loss functions for image 

fusion. Enhancing model interpretability and evaluating its performance on benchmark datasets are crucial 

steps. Additionally, sharing code and data ensures transparency and reproducibility, facilitating further 

advancements in the field [2]. The refinement fusion approach achieves superior performance in terms of 

image quality, target region preservation and efficiency [3]. Evaluating the performance and validating it 

through experiments, enhances the effectiveness and robustness of image fusion. considering the similarities 

and refining approach and addressing specific challenges in infrared and visible image fusion [4]. There are 

potential areas for improvement and innovation in methodologies. Leveraging insights from each approach 

can contribute to the development of more effective and advanced image fusion techniques [5]–[8]. The 

concept of a unified fusion framework, adaptive information preservation, mitigation of deep learning 

limitations, and the use of benchmark datasets, enhances the effectiveness, versatility, and evaluation of 
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image fusion. Additionally, considering the similarities and differences between approaches can provide 

valuable perspectives for refining fusion models and addressing specific challenges in infrared and visible 

image fusion [9], [10]. Sparse regularization [11], [12], dictionary learning [13], [14], alternating 

optimization [15], and performance evaluation against state-of-the-art methods, enhance the effectiveness 

and efficiency of infrared and visible image fusion. Leveraging techniques from diverse domains, such as 

hyperspectral and multispectral image fusion, can lead to innovative solutions and improvements in fusion 

algorithms [16]. 

A multiscale fusion strategy, and encoder-fusion strategy-decoder framework, enhance the 

performance and robustness of infrared and visible image fusion [17]. Comparative analysis of fusion 

techniques, evaluation metrics, efficiency, and suitability for real applications, and the effectiveness and 

applicability of image fusion research, even if they operate in a different domain than medical imaging. can 

guide the evaluation process and ensure the reliability of the fusion approach [18]. A symmetric encoder-

decoder architecture with residual blocks, attention mechanisms, and separation of training and fusion stages, 

enhances the performance and efficiency of image fusion [19]. 

The use of generative adversarial network (GAN) with multiclassification constraints, content loss 

mechanisms, and comprehensive evaluation methodologies, enhances the performance and effectiveness of 

image fusion [20]. Adaptive enhancement techniques, hybrid decomposition models, coupled dictionary-

based fusion, and novel fusion schemes [21]. The use of residual network architectures, innovative loss 

functions, and two-stage training strategies, enhances the performance and efficiency of image fusion. The 

emphasis on task-specific fusion strategies and the adoption of residual network architectures, can guide the 

refinement of the fusion approach to better adapt to diverse fusion tasks [22]. Utilizing unsupervised end-to-

end network architectures, designing tailored loss functions, and implementing convolutional layer 

decomposition networks, can enhance performance and effectiveness [23]. The comprehensiveness and 

effectiveness of these methods should be enhanced. This includes leveraging historical context, exploring 

various fusion techniques, incorporating rigorous evaluation processes, and considering practical applications 

and future prospects [24]. Figure 1 shows the proposed fusion model which consists of four stages:  

a. Input sources: Infrared images and visible images are fed into the model  

b. Decomposition: The images are decomposed into constituent features 

c. Feature fusion: Extracted features are fused to enhance information  

d. Image fusion: The fused features are fused together to generate the final image 

The remaining sections of this work are structured as follows. Section 2 provides a comprehensive 

explanation of the methodology that has been devised to integrate near-infrared and visible images and the 

framework is discussed in section 3. A quantitative and qualitative evaluation of the algorithm is provided in 

section 4, and it is concluded in section 5. 

 

 

 
 

Figure 1. Proposed fusion model 
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2. PROPOSED METHOD 

2.1.  Two-scale decomposition method 

Throughout the years, numerous fusion algorithms have been proposed, each aiming to enhance the 

quality and level of information in images. The primary objective of two-scale decomposition is to partition 

the original image into a series or ensemble of images, each of which highlights a specific attribute or 

characteristic. Instead of directly merging the source images, this decomposition method is employed. 

Decomposition prioritizes the fusion of the deconstructed images rather than making direct modifications to 

the source images. A more intricate and comprehensive fused image is generated by merging the unique 

information conserved in each deconstructed image. 

This paper explores two distinct deep learning methodologies within the framework of multiscale 

decomposition for fusion. Although the first method is useful for extracting general features, it relies on a 

pretrained deep neural network that may not be optimized because of the intricate nature of multiscale 

decomposition tasks. This could result in suboptimal fusion outcomes due to the network's limited 

adaptability in various breakdown scenarios. On the other hand, the second method utilizes an autoencoder. 

Autoencoders are particularly well-suited for tasks that require accurate preservation of information, as they 

are specifically designed for extracting features and reconstructing images. An autoencoder's encoding 

process decomposes images into feature maps, enabling the efficient capture of information at different 

scales. An advantage of using an autoencoder-based approach, as opposed to a pretrained deep neural 

network, is its superior suitability for multiscale decomposition tasks due to its inherent adaptability and 

contextual relevance. 

 

2.2.  Optimization model 

The proposed model utilizes optimization techniques to decompose an input image into a base 

image and a detail image. The acquisition of the basis image can be achieved by addressing the issue of 

low-frequency background information. 

 

𝐵𝑖
∗ = arg min

𝜃𝐵𝑖

2
‖𝑋𝑖 − 𝐵𝑖‖𝐹

2 + ∑ ‖𝑔𝑚
𝐵𝑖 ∗ 𝐵𝑖‖

𝐹

2𝑛

𝑚=1
  (1) 

 

where 𝐵𝑖
∗ is the disintegrated base image, 𝑔𝑚

𝐵𝑖(m=1,2…., n) are high pass filters, 𝑋𝑖 is the input image, ∗ is 

the convolution operation, 𝜃𝐵𝑖
 is represents the tuning hyperparameter and 

 

∑ ‖𝑔𝑚
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𝐹

2
𝑛
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is used to reduce the high frequency of 𝐵𝑖 . Now, 𝐷𝑖  represents the detailed image and means high frequency 

quality/texture and colour progression and is given by (2). 

 

𝐷𝑖
∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝜃𝐷𝑖

2
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here, 𝑔𝑚
𝐷𝑖(m=1,2…., n) are low pass filters, and 𝜃𝐷𝑖

 is again a tuning hyperparameter. To account for their 

flexibility, the weights for a central pixel must be normalized to sum to 1. Therefore, the base feature map is  

 

𝐵𝑖
𝑜𝑢𝑡 = 𝐵𝑖

𝑖𝑛 − 𝜂𝐵𝑖 ∑ (𝑔𝑚
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where (𝑔𝑚
𝐵𝑖)

𝑇
 represents the kernel of 𝑔𝑚

𝐵𝑖  rotated by 180° and 𝜂𝐵𝑖 is the step size. 

 

2.3.  Unravelling algorithm 

The “unravelling” algorithm is a recently developed method that provides an appealing process for 

designing deep neural networks based on models. Algorithm unrolling is the process of transforming a 

repetitive algorithm into a deep neural network (DNN) by expanding its computational graph. This enables 

the training of predefined hyperparameters and unknown coefficients in a comprehensive way. The base 

convolution layer and detail convolution layer are replaced with filters 𝑔𝑚
𝐵𝑖  and 𝑔𝑚

𝐷𝑖 as (4).  
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where 𝐶𝑜𝑛𝑣𝑚
𝐵𝑖  (m=1,2) which denotes the kernel size. Furthermore, we set the 𝐶𝑜𝑛𝑣1

𝐵𝑖  kernel equal to 

𝐶𝑜𝑛𝑣2
𝐵𝑖  where this made a 180° turn. Similarly, the detailed feature map updating procedure is carried out 

as (5): 
 

𝐷𝑖
𝑜𝑢𝑡 = 𝐷𝑖

𝑖𝑛 − 𝜂𝐷𝑖[𝐶𝑜𝑛𝑣2
𝐷𝑖(𝐶𝑜𝑛𝑣1

𝐷𝑖(𝐷𝑖
𝑖𝑛))  − 𝜃𝐷𝑖(𝑋 − 𝐷𝑖

𝑖𝑛)]  (5) 

 

where, 𝜃𝐵𝑖  and 𝜃𝐷𝑖  are predefined hyperparameters and 𝜂𝐵𝑖  and 𝜂𝐷𝑖  are step sizes. 

 

 

3. FRAMEWORK 

The detail and base images are regarded as feature maps obtained from the source image. This 

approach involves organizing N detail convolution layer (DCL) and base convolution layer (BCL) as two 

encoders. The objective is to reproduce the repetitive procedure of conventional optimization models and 

extract fundamental and intricate feature maps. Subsequently, a supplementary decoder is generated using 

inputs that include the summation of two deconstructed feature maps. The result of this decoder is the 

reconstructed source image. 

Figure 2 illustrates the network architecture during the training phase and Figure 3 depicts a single 

BCL, while a DCL has a similar structure but distinct parameters. The number of input and output channels 

for the first convolution units 𝐶𝑜𝑛𝑣1
𝐵𝑖  and 𝐶𝑜𝑛𝑣1

𝐷𝑖  is (1, H). The second convolutional units, 𝐶𝑜𝑛𝑣2
𝐵𝑖  and 

𝐶𝑜𝑛𝑣2
𝐷𝑖  are set as (H, 1). The value of H is set to 64. DCL and BCL do not have any parameters that are 

shared between them. The Laplacian and blur filters are applied to the source image and the detail encoder 

𝐷𝑖
0 and base encoder 𝐵𝑖

0 are initialized. The sigmoid function, a batch regularization layer, and a 3×3 

convolution unit make up the decoder. The convolution unit has one input channel and one output channel. 

The restored image’s pixel values are normalized to a range of 0-1 by means of the sigmoid function. 

Figure 4 illustrates the workflow of the testing framework. During the test phase, input pairs of 

infrared and visible images are given and the ultimate fusion results are subsequently obtained. Upon 

completion of the training process, two proficient encoders and a decoder are obtained. In this context, 𝐷𝑖 𝐼
𝑁, 

𝐵𝑖 𝐼
𝑁, 𝐷𝑖𝑉

𝑁, and 𝐵𝑖 𝑉
𝑁 represent the infrared detail, base feature maps and visible detail, base feature maps, 

respectively.  

 

 

 
 

Figure 2. Training framework 

 

 

  
 

Figure 3. Single BCL layer 

 

Figure 4. Training framework 
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4. EXPERIMENTS 

The effectiveness of this strategy was evaluated through a comprehensive comparative analysis of 

the standard fusion algorithm and recently proposed fusion algorithm. Subjective assessments focused on 

visual quality and perceptual clarity, while objective assessments utilized established metrics, such as entropy 

and spatial fidelity. The results consistently demonstrate the superior performance of the proposed method, 

highlighting its potential for practical applications requiring high image quality. 

 

4.1.  Datasets 

The FLIR and TNO datasets [25] were selected as the test subjects to thoroughly assess the efficacy 

of the proposed method. The TNO dataset consists of numerous prealigned pairs of near-infrared (NIR) and 

visible images. Similarly, the FLIR dataset consists of thermal infrared and visible images. The experimental 

setup involved selecting thirty pairs of images from the FLIR dataset. These images were then uniformly 

resized to 256×256 pixels to facilitate the analysis of multiscale transformations. A laptop featuring a Core i7 

processor and 16 GB of RAM was utilized for conducting the evaluation process. 

 

4.2.  Quality metrics 

Four objective assessment metrics were used to analyze the impact of the proposed method. They 

are entropy (EN) is the evaluation of image quality to quantify the level of information contained within the 

fused image. The average gradient (AG) metric assesses an image's visual clarity by examining its textural 

and contrast features. This evaluation determines how well the combined image preserves the intricate details 

and boundaries found in the original images. Images with higher AG scores are generally considered to have 

better perceptual quality. Spectral fidelity (SF) is a metric that quantifies the extent to which the spectral 

information of the input images is accurately maintained in the fused image, thus ensuring the fidelity of the 

fused image to the original spectral characteristics. Spatial distortion (SD) is a measure of the extent to which 

spatial distortion or misalignment occurs during the fusion process. It evaluates the degree to which those 

spatial details are maintained in the fused image. 

 

4.3.  Evaluation against rival algorithms using the FLIR and TNO datasets 

The effectiveness of the proposed approach is substantiated through the application of the FLIR 

dataset. The fusion outcomes of the source image are presented in Figure 5, which depicts a scene featuring 

two people standing alongside their bicycle near the edge of an apartment complex road. The visible image 

clearly displays the specific features of the house and cycle. However, the individuals were not discernible in 

the visible image, whereas they were detectable in the NIR image because of their high sensitivity to thermal 

radiation, which captures data related to a person. Quantitative and qualitative metrics were used to assess the 

fusion performance of the proposed method. 

 

 

 
 

Figure 5. Fusion output 
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From a subjective standpoint, the image produced by FusionGAN appears to be of lower visual 

quality and lacks several elements found in the visible image. Images generated using DeepFuse generally 

appear blurry, with indistinct edges and considerable noise. This loss of edge information makes it difficult to 

discern the interior of the apartment. The DenseFuse algorithm fails to maintain consistent brightness levels, 

particularly noticeable on road surfaces. The output from total variation alternating direction method of 

multipliers (TVADMM) displays a degree of fogginess, while two-scale infrared and visible image fusion 

scheme (TSIFVS) results seem underexposed. In comparison to all other methods, the proposed approach 

demonstrates superior contrast in identifying prominent targets. The proposed methodology clearly produces 

a fused image that successfully displays the rich textures of two people near their cycles in the designated 

orange box. 

As indicated in Table 1, the proposed method outperforms existing techniques in EN, AG, and SD, 

highlighting its superior performance in maintaining detail and clarity in the fused images. Specifically, the 

EN value of 7.45, AG value of 5.91, and SD value of 38.18 are the highest among all the compared methods, 

demonstrating the method’s ability to preserve fine textures, edges, and spatial consistency, which are crucial 

for tasks like surveillance. The visual clarity of the proposed method, as shown in Figure 6, is markedly 

higher than that of alternative techniques, such as DeepFuse and FusionGAN, which show compromises in 

spatial consistency and edge detail. 

 

 

Table 1. Average results obtained by applying multiple techniques to the FLIR dataset 
Methods EN AG SF SD 

DeepFuse 7.21 4.80 15.47 37.35 

FusionGan 7.02 3.20 11.51 34.38 

DenseFuse 7.21 4.82 15.50 37.32 
TSIFVS 7.15 5.57 18.79 35.89 

ImageFuse 6.99 4.15 14.52 32.58 

TV-admm 6.80 3.52 14.04 28.07 
Proposed 7.45 5.91 14.46 38.18 

 

 

 
 

Figure 6. Average results by techniques - FLIR dataset 

 

 

Using a TNO dataset, Table 2 displays the average values of six objective assessment criteria, with 

the red values emphasizing the highest values. Compared to DeepFuse and FusionGAN, our method 

consistently delivers better performance in terms of AG and EN. These findings align with previous studies, 

where multiscale decomposition techniques demonstrated an advantage in spatial clarity. However, as seen 

with SF, future improvements may focus on spectral fidelity, potentially through hybrid techniques that 

merge decomposition-based and spectral retention-focused methods. The proposed algorithm outperformed 

all alternatives in terms of fusion performance, with the exception of AG and SF, and achieved the maximum 

achievable score. 
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Table 2. Average results obtained by applying multiple techniques to the TNO dataset 
Methods EN AG SF SD 

DeepFuse 6.86 3.60 11.13 32.25 
FusionGan 6.58 2.42 8.76 29.04 

DenseFuse 6.84 3.60 11.09 31.82 

TSIFVS 6.67 3.98 12.60 28.04 
ImageFuse 6.38 2.72 9.80 22.94 

TV-admm 6.40 2.52 9.03 23.01 

Proposed 6.90 3.33 9.86 33.50 

 

 

Figure 7 illustrates the comparison of average results for various techniques based on the TNO 

dataset, further highlighting the superior performance of the proposed method in most metrics. The results 

from both the FLIR and TNO datasets underscore the potential of the proposed method for applications 

requiring high spatial clarity, such as in surveillance and medical imaging. Future work could address the 

slight trade-off in spectral fidelity by exploring hybrid approaches that incorporate additional spectral loss 

functions, enabling a more balanced fusion across different modalities. Expanding the scope of this method 

to other data types, such as hyperspectral images, could reveal new applications and further enhance the 

robustness of the proposed fusion strategy. 

 

 

 
 

Figure 7. Average results by techniques - TNO dataset 

 

 

5. CONCLUSION 

The proposed method for visible and infrared image fusion, which combines two-scale 

decomposition with deep learning techniques, has demonstrated significant improvements in performance 

over existing approaches. Our approach effectively preserves both the spatial and thermal information from 

the input images, as reflected by the highest AG, EN, and SD values among all compared methods. These 

results indicate that our fusion model is particularly well-suited for applications where spatial detail and 

clarity are critical, such as surveillance, military, and medical imaging. 

Beyond demonstrating its efficacy in image fusion, this research also opens the door for future 

investigations. While the method excels in maintaining texture and clarity, further work is required to 

enhance spectral fidelity. Exploring hybrid fusion techniques that incorporate spectral retention mechanisms 

alongside multiscale decomposition could address this limitation. Additionally, expanding the method to 

handle other multimodal image fusion tasks, such as hyperspectral or radar imagery, presents an exciting 

direction for future research. 

In conclusion, our findings contribute to the ongoing advancements in image fusion techniques, 

offering a robust solution for combining visible and infrared data. The real-world implications of this method 

are vast, and its application across different domains can potentially lead to enhanced detection, monitoring, 

and imaging systems. Moving forward, improvements in spectral fidelity and extension to broader datasets 

will further solidify the utility of this approach within the image fusion research community. 
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