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 Information-theoretic measures play a vital role in training learning systems. 

Many researchers proposed non-parametric entropy estimators that have 

applications in adaptive systems. In this work, a kernel density estimator 

using Kapur entropy of order α and type β has been proposed and discussed 

with the help of theorems and properties. From the results, it has been 

observed that the proposed density measure is consistent, minimum, and 

smooth for the probability density function (PDF) underlying given 

conditions and validated with the help of theorems and properties. The 

objective of the paper is to understand the theoretical viewpoint behind the 

underlying concept.  
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1. INTRODUCTION 

Entropy estimation plays a significant role across the disciplines of science and technology such  

as engineering [1]–[3], biology [4], and physics [5]. Mathematical generalization of non-parametric  

entropy in terms of continuous random variables has been proposed by many researchers. Univariate and 

multivariate probability density functions (PDFs)-based Shannon entropy expressions were discussed in [6], 

[7]. In a simple parametric family, the changing PDF of the data may not exist. Therefore, it is necessary to 

estimate non-parametric entropy. These estimates are obtained by introducing a density estimator of the data 

in the entropy expression instead of the actual PDF. PDFs are required to estimate entropy, which can 

effectively evaluate entropy using kernel density methods, a well-studied area of research. Wegman and 

Davies [8] introduced a recursive density estimator to estimate time series and spatial data parameters. Kernel 

density estimators are widely used for the estimation of entropy [9] because they are computationally faster, 

easy to incorporate, and simple to understand [10]. 

 

 

2. PLUG-IN ESTIMATORS 

Plug-in estimators are used to estimate a feature of probability distribution. Different plug-in 

estimators have been used for density estimation, such as integral estimates, resubstituting estimates, splitting 

data estimates, and cross-validation estimates. A brief introduction to the different types of plug-in estimators 

is discussed as follows. 

− Integral estimates: approximate infinite integrals presented in the entropy expression. Entropy measures 

have been used to estimate the exact evaluation of the integral. Dmitriev and Tarasenko [11] proposed a 
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similar estimation for Shannon entropy. In multivariate cases, Joe [12] approximated the integral estimate 

of Shannon entropy using kernel estimation of PDF and investigated that integral approximation becomes 

complicated in many cases of study.  

− Re-substitution estimates: the expectation operator has been approximated in the entropy expression with 

the sample mean. In 1976, Ahmad and Lin [10] proposed an estimate for Shannon entropy using a kernel 

and investigated the mean-square consistency of the proposed estimate. In multivariate situations, Joe 

[12] discussed the re-substitution estimate of Shannon entropy with kernel PDF and obtained that the 

number of samples are increasing with the dimensionality of the data. In electrical engineering problems, 

entropy estimates can be obtained using spectral estimation based on polynomial type PDF [13]. Still, 

from the literature, it is revealed that re-substitution estimates are used to estimate Shannon entropy. 

Kapur's entropy of order 𝛼 and type 𝛽 is also part of the re-substitution class. Depending on the kind of 

application, researchers customize entropy estimation according to the requirement of the algorithm.  

− Spilling data estimate is similar to re-substitution estimate but has a different methodology. In this 

estimation, a data sample is fragmented into two parts; the first part is utilized for density estimation, and 

the other part is used for sample mean [14]–[16]. 

− Cross-validation estimate is the generalization of re-substitution estimate based on the principle of leave-

one-out. The estimate is obtained by taking the mean of the leave-one-out re-substitution estimates of the 

given data set. Ivanov and Rozhkova [17] proposed a cross-validation entropy estimator for Shannon 

entropy using kernel PDF.  

 

 

3. USEFUL ESTIMATES 

A sample of observations drawn from the given distribution. Plug-in estimate is a feature that can be 

approximated by the same feature of the empirical distribution. Other than plug-in estimates, more estimates 

have been discussed in the literature, proposed by various researchers under different situations. 

 

3.1.  Estimates based on sample spacing 

Based on sample differences, a density estimate is constructed. In univariate cases, PDF can be 

estimated by ordering the samples from the smallest to the largest and separating the samples by defining  

m-spacing between the samples and then substituting the PDF estimate in the entropy expression (like  

re-substitution estimates). However, these density estimates need to be more consistent, and their 

generalization in multivariate cases is not trivial [18]–[20]. 

 

3.2.  Estimates based on nearest neighbor distances  

In non-parametric statistics, nearest neighbor methods are considered a classical approach. In the 

multivariate cases, the density estimate is constructed as the sample mean of the logarithm of the normalized 

nearest neighbor distances with a constant. In [21]–[23], the proposed nearest neighbor estimates have 

various forms of consistency under certain conditions. 

 

3.3.  Entropy estimation for learning 

The literature shows that the Shannon measure of entropy drew a lot of attention from researchers to 

propose algorithms for various learning systems. Estimating Shannon’s entropy has applied to Renyi’s 

entropy, a generalization of Shannon's entropy. This work proposes simple entropy estimators for training 

learning systems using Kapur entropy of order 𝛼 and type 𝛽 that are continuous and differentiable in terms of 

samples. The main objective of the work is to understand the mathematics behind the concept. 

 

 

4. PRELIMINARIES 

The terms like entropy and the measures of entropy are not covered as these were discussed by 

many researchers. Some of the required preliminaries are defined as follows. 

 

4.1.  Window function 

For a hypercube of unit length 1 centered at origin, the window function is defined as: 

 

𝛷(𝑦) = {1,  |𝑢𝑗| ≤
1

2
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} ; (𝑗 = 1,2, . . . . , 𝑑) 

 

The generalization of the window function is given by Hassan et al. [24], known as the Parzen Window, a 

technique to estimate density function. This is a non-parametric density estimation technique, defined as 
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𝑃𝑚(𝑦) =
1

𝑚
∑

1

ℎ
𝑑  𝜑 (

𝑦𝑖 − 𝑦

ℎ
𝑚 )

𝑚

𝑖=1

 𝑤𝑖𝑡ℎ 𝜑 (
𝑦 − 𝑦𝑖

ℎ
𝑚 ) = 𝜅 

 

where 𝑚,  ℎ,  𝜑 and 𝑝(𝑦) are the numbers of elements, dimension, window function, and probability density 

of 𝑦. Window width and kernel are the two critical parameters of Parzen Window. Let {𝑦1, . . . . , 𝑦𝑁} be the 

samples 𝑁 drawn from the random variable. These samples are independent and identically distributed (i.i.d). 

The kernel function (arbitrary) 𝜅𝜎(. ) estimate of the PDF is given by Parzen [25] and is defined as: 

 

𝑓𝑌(𝑦)  =
1

𝑁
∑𝜅𝜎(𝑦 − 𝑦𝑖)

𝑁

𝑖=1

 

  

4.2.  Kernel density estimator 

In the estimation of probability distribution, kernel density estimator is used when there are more 

data points in a sample around a location, the likelihood of occurrence for an observation is higher at that 

location. For smoothing parameter ℎ and non-zero kernel function 𝜅, the general expression of kernel density 

estimator is defined as:   

 

𝑃ℎ̂(𝑦) =
1

𝑚
∑𝜅ℎ(𝑦𝑖 − 𝑦)  = 

𝑚

𝑖=1

1

𝑚
∑ 𝜅 (

𝑦 − 𝑦𝑖

ℎ
)

𝑚

𝑖=1

 

 

4.3.  Kapur’s Measure of entropy 

The continuous and differentiable form of Kapur entropy of order 𝛼 and type 𝛽 is given as Kapur [26]: 
 

𝐻𝛼,𝛽
𝐾 (𝑝) =

1

𝛽 − 𝛼
 𝑙𝑜𝑔   (

∑ 𝑝𝑖
𝛼𝑛

𝑖=1

(∑ 𝑝𝑖
𝛽𝑛

𝑖=1 )
) ;  𝑤ℎ𝑒𝑟𝑒 ∑𝑝𝑖

𝑛

𝑖=1

≤ 1;  𝛼 ≠ 𝛽;  𝛼, 𝛽 > 0 (1) 

 

Kapur entropy with expectation operator is written as,  

 

𝐻𝛼,𝛽
𝐾 (𝑌) =

1

𝛽 − 𝛼
 𝑙𝑜𝑔   (

∫ 𝑓𝑌
𝛼(𝑦) 𝑑𝑦

∞

−∞

∫ 𝑓𝑌
𝛽
(𝑦) 𝑑𝑦

∞

−∞

) =
1

𝛽 − 𝛼
 𝑙𝑜𝑔   (

𝐸𝑌[𝑓𝑌
𝛼−1(𝑦)]

𝐸𝑌[𝑓𝑌
𝛽−1

(𝑦)]
) 

 

Entropy approximation with sample mean is written as, 

 

𝐻𝛼,𝛽
𝐾 (𝑌) =

1

𝛽 − 𝛼
 𝑙𝑜𝑔

1

𝑁
 (

∑ 𝑓𝑌
𝛼−1(𝑦𝑗)

𝑁
𝑗=1

∑ 𝑓𝑌
𝛽−1

(𝑦𝑗)
𝑁
𝑗=1

) 

 

Using Parzen Window estimator, the non-parametric estimator of Kapur entropy (1) is given as, 
 

𝐻𝛼,𝛽
𝐾 (𝑌) =

1

𝛽 − 𝛼
 𝑙𝑜𝑔

1

𝑁
 (

(∑
1
𝑁

∑ 𝜅𝜎(𝑦𝑗 − 𝑦𝑖)
𝑁
𝑖=1

𝑁
𝑗=1 )

𝛼−1

(∑
1
𝑁

∑ 𝜅𝜎(𝑦𝑗 − 𝑦𝑖)
𝑁
𝑖=1

𝑁
𝑗=1 )

𝛽−1
) 

 

 

5. MAIN RESULTS 

The proposed non-parametric entropy (1) is general. Therefore, it can estimate entropy on a learning 

system that employs a performance index to approximately defined weights. The results are presented in the 

form of theorems and properties for the proposed entropy estimation (1) and are discussed as follows. 

 

5.1.  Theorem 5.1 

Given that for consistent Parzen Windowing and sample mean, Kapur entropy of order 𝛼 and type 𝛽 

entropy estimator (1) is consistent for the probability density function of linearly independent samples. 

Proof: According to Parzen [25], in the estimation of the PDF, the sample mean converges to the population 

mean, which is the direct implication of the consistent Parzen Window estimator (1).  



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Estimation of kernel density function using Kapur entropy (Leena Chawla) 

6019 

5.2.  Property 5.2 

Entropy estimator (1) using Parzen Windowing and mean approximation is the limiting case of 

Shannon entropy for (𝛼, 𝛽 → 1) both in continuous and discrete case.  

Proof: It should be noted that Kapur entropy of order 𝛼 and type 𝛽 (1) is discontinuous at 𝛼 = 𝛽. For  

(𝛼, 𝛽 → 1), shannon measure of entropy is obtained.  

In continuous case: 

 

𝐻𝛼,𝛽(𝑌) =
1

𝛽 − 𝛼
𝑙𝑜𝑔 [

∫ 𝑓𝑌
𝛼(𝑦) 𝑑𝑦

∫𝑓𝑌
𝛽(𝑦) 𝑑𝑦

] 

= 𝑙𝑖𝑚
𝛼→1
𝛽→1

{
1

𝛽 − 𝛼
[𝑙𝑜𝑔 (

∫ 𝑓𝑌
𝛼(𝑦) 𝑑𝑦

∫ 𝑓𝑌
𝛽(𝑦) 𝑑𝑦

)]} 

= −∫𝑓𝑌(𝑦) 𝑙𝑜𝑔   𝑓𝑌(𝑦) 𝑑𝑦  − ∫𝑓𝑌(𝑦) 𝑙𝑜𝑔 𝑓𝑌 (𝑦) 𝑑𝑦 

= 2𝐻𝑆(𝑌) 

 

In discrete case: 

 

𝑙𝑖𝑚
𝛼→1
𝛽→1

�̂�𝛼,𝛽(𝑌) = 𝑙𝑖𝑚
𝛼→1
𝛽→1

1

𝛽 − 𝛼
𝑙𝑜𝑔 [

1
𝑁

∑ (
1
𝑁

∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )
𝛼−1

𝑗

1
𝑁

∑ (
1
𝑁

∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )
𝛽−1

𝑗

] 

= 𝑙𝑖𝑚
𝛼→1

−
1

𝑁
∑𝑙𝑜𝑔 (

1

𝑁
∑𝜅𝜆(𝑦𝑗 − 𝑦𝑖)

𝑖

)

𝑗

− 𝑙𝑖𝑚
𝛽→1

1

𝑁
∑ 𝑙𝑜𝑔 (

1

𝑁
∑𝜅𝜆(𝑦𝑗 − 𝑦𝑖)

𝑖

)

𝑗

  

=  −2 �̂�𝑆(𝑌) 

 

Therefore, it is proved that the proposed entropy measure (1) approaches Shannon entropy. 

 

5.3. Property 5.3 

Scaling property of entropy estimator (1). Let {𝑦1, . . . . , 𝑦𝑁} be the samples of random variable 𝑌, 

estimated with kernel size 𝜆. To estimate samples {𝑐𝑦1, . . . . , 𝑐𝑦𝑁} of a random variable 𝑐 𝑌, the size of the 

kernel will be scaled to |𝑐|, i.e., new kernel size is |𝑐|𝜆.  

Proof: Consider that for a random variable 𝑐 𝑌, the PDF is 𝑓𝑌(𝑦/𝑐)/|𝑐| 
In continuous case: 

 

𝐻𝛼,𝛽(𝑌) =
1

𝛽 − 𝛼
𝑙𝑜𝑔 [

∫ 𝑓𝑌
𝛼(𝑦) 𝑑𝑦

∫𝑓𝑌
𝛽(𝑦) 𝑑𝑦

] 

= 
1

𝛽 − 𝛼
[𝑙𝑜𝑔 ∫

1

|𝑐|
𝑓𝑌

𝛼 (
𝑦

𝑐
)  𝑑𝑦

∞

−∞

− 𝑙𝑜𝑔 ∫
1

|𝑐|
𝑓𝑌

𝛽 (
𝑦

𝑐
)  𝑑𝑦

∞

−∞

] 

=
1

𝛽 − 𝛼
[(1 − 𝛼)𝐻𝛼(𝑌) − (1 − 𝛽)𝐻𝛽(𝑌)] + 𝑙𝑜𝑔|𝑐| 

⇒ 𝐻𝛼,𝛽(𝑐𝑌) = {
𝐻𝛼(𝑌) + 𝑙𝑜𝑔|𝑐| ,     𝛽 = 1

𝐻𝛽(𝑌) + 𝑙𝑜𝑔|𝑐| ,    𝛼 = 1
} 

 

In discrete case: 

 

�̂�𝛼,𝛽(𝑐𝑌) =
1

𝛽 − 𝛼

[
 
 
 
 
 
𝑙𝑜𝑔

1

𝑁𝛼
∑(∑𝜅|𝑐|𝜆(𝑦𝑗 − 𝑦𝑖)

𝑖

)

𝛼−1

𝑗

− 

𝑙𝑜𝑔
1

𝑁𝛽
∑ (∑𝜅|𝑐|𝜆(𝑦𝑗 − 𝑦𝑖)

𝑖

)

𝛽−1

𝑗 ]
 
 
 
 
 

 

=
1

𝛽 − 𝛼
[(1 − 𝛼)�̂�𝛼(𝑌) − (1 − 𝛽)�̂�𝛽(𝑌) + (𝛽 − 𝛼) 𝑙𝑜𝑔|𝑐|] 

⇒ �̂�𝛼,𝛽(𝑐𝑌) = {
�̂�𝛼(𝑌) + 𝑙𝑜𝑔|𝑐| ,     𝛽 = 1

�̂�𝛽(𝑌) +  𝑙𝑜𝑔|𝑐| ,     𝛼 = 1
} 
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It is concluded that the kernel size affects the width of the kernel function linearly. 

Remarks: The property (5.3) has applications when the entropy cost function is near the global extremum and 

is obtained by scaling the entropy cost function. 

 

5.4. Theorem 5.4 

According to Chawla [27], for equal samples, 𝑦1 = 𝑦2 =. . . . = 𝑦𝑁 = 𝑐 (say) with maximum value 

of kernel 𝜅𝜆(0), the proposed entropy estimator (1) is minimum. 

Proof: Since, 𝑦1 = 𝑦2 =. . . . = 𝑦𝑁 = 𝑐 (say), the entropy estimator (1) obtained the value − 𝑙𝑜𝑔 𝐾𝜆 (0). We 

have to show that 

 

1

𝛽 − 𝛼
[𝑙𝑜𝑔

1

𝑁𝛼
∑(∑𝜅𝜆(𝑦𝑗 − 𝑦𝑖)

𝑖

)

𝛼−1

𝑗

−  𝑙𝑜𝑔
1

𝑁𝛽
∑ (∑𝜅𝜆(𝑦𝑗 − 𝑦𝑖)

𝑖

)

𝛽−1

𝑗

]  ≥  − 𝑙𝑜𝑔 𝜅𝜆 (0) 

⇒ {

1
𝑁𝛼 ∑ (∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )

𝛼−1
𝑗

1
𝑁𝛽

∑ (∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )
𝛽−1

𝑗

} ≤  𝜅𝜆
𝛼−𝛽(0) 

⇒
∑ (∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )

𝛼−1
𝑗

∑ (∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )
𝛽−1

𝑗

  ≤   𝑁𝛼−𝛽𝜅𝜆
𝛼−𝛽(0) 

 

replacing with the upper bounds 

 

=
∑ (∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )

𝛼−1
𝑗

∑ (∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )
𝛽−1

𝑗

    ≤    
𝑁𝑚𝑎𝑥

𝑗
(∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )

𝛼−1

𝑁𝑚𝑎𝑥
𝑗

(∑ 𝜅𝜆(𝑦𝑗 − 𝑦𝑖)𝑖 )
𝛽−1

 

≤
𝑚𝑎𝑥

𝑗
(𝑁𝛼−1𝑚𝑎𝑥

𝑖
[𝜅𝜆

𝛼−1(𝑦𝑗 − 𝑦𝑖)])

𝑚𝑎𝑥
𝑗

(𝑁𝛽−1𝑚𝑎𝑥
𝑖

[𝜅𝜆
𝛽−1(𝑦𝑗 − 𝑦𝑖)])

 

= 𝑁𝛼−𝛽𝑚𝑎𝑥
𝑖,𝑗

𝜅𝜆
𝛼−𝛽(𝑦𝑗 − 𝑦𝑖)   = 𝑁𝛼−𝛽𝜅𝜆

𝛼−𝛽(0) 

 

It is evident that entropy cost function reaches its global minimum, when all the error samples are zero and 

used to train kernels in supervised learning. 

 

5.5. Property 5.5 

For joint entropy estimation of a random variable, all orthonormal matrices 𝑅, satisfies the condition 

𝜅∑(𝜗) = 𝜅∑(𝑅−1𝜗), the proposed entropy estimator (1) is invariant under rotation with 𝜅∑(𝜗) as the multi-

dimensional kernel function. 

Proof: For n-dimensional random vectors 𝑌 and 𝑌, ∃ 𝑌 = 𝑅𝑌 in which [𝑅]𝑛 × 𝑛 real orthonormal matrix.  

In continuous case: 

 

𝐻𝛼,𝛽(𝑌) =
1

𝛽 − 𝛼
𝑙𝑜𝑔 [

∫ 𝑓𝑌
𝛼(𝑦) 𝑑𝑦

∫𝑓𝑌
𝛽(𝑦) 𝑑𝑦

] 

=
1

𝛽 − 𝛼
[𝑙𝑜𝑔 ∫

1

|𝑅|𝛼
𝑓𝑌

𝛼(𝑅−1𝑦) 𝑑𝑦 
∞

−∞

− 𝑙𝑜𝑔 ∫
1

|𝑅|𝛽
𝑓𝑌

𝛽(𝑅−1𝑦) 𝑑𝑦
∞

−∞

] 

=
1

𝛽 − 𝛼
[𝑙𝑜𝑔|𝑅|1−𝛼 ∫ 𝑓𝑌

𝛼(𝑦) 𝑑𝑦 
∞

−∞

− 𝑙𝑜𝑔|𝑅|1−𝛽 ∫ 𝑓𝑌
𝛽(𝑦) 𝑑𝑦

∞

−∞

] 

=
1

𝛽 − 𝛼
[(1 − 𝛼)𝐻𝛼(𝑌) − (1 − 𝛽)𝐻𝛽(𝑌) + (𝛽 − 𝛼) 𝑙𝑜𝑔|𝑅|] 

 

𝐻𝛼,𝛽(𝑌) = {
𝐻𝛼(𝑌) + 𝑙𝑜𝑔|𝑅| ,     𝛽 = 1

𝐻𝛽(𝑌) + 𝑙𝑜𝑔|𝑅| ,     𝛼 = 1
} 

 

In discrete case:  
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�̂�𝛼,𝛽(𝑌) =
1

𝛽 − 𝛼
𝑙𝑜𝑔 [

1
𝑁𝛼 ∑ (∑ 𝜅∑(𝑅𝑦𝑗 − 𝑅𝑦𝑖)𝑖 )

𝛼−1
𝑗

1
𝑁𝛽

∑ (∑ 𝜅∑(𝑅𝑦𝑗 − 𝑅𝑦𝑖)𝑖 )
𝛽−1

𝑗

] 

=
1

𝛽 − 𝛼
[𝑙𝑜𝑔

1

𝑁𝛼
∑(∑

1

|𝑅|
𝜅∑ (𝑅−1(𝑅𝑦𝑗 − 𝑅𝑦𝑖))

𝑖

)

𝛼−1

𝑗

− 𝑙𝑜𝑔
1

𝑁𝛽
∑(∑

1

|𝑅|
𝜅∑ (𝑅−1(𝑅𝑦𝑗 − 𝑅𝑦𝑖))

𝑖

)

𝛽−1

𝑗

] 

=
1

𝛽 − 𝛼
[𝑙𝑜𝑔|𝑅|𝛼−1

1

𝑁𝛼 ∑(∑𝜅∑(𝑦𝑗 − 𝑦𝑖)

𝑖

)

𝛼−1

𝑗

− 𝑙𝑜𝑔|𝑅|𝛽−1
1

𝑁𝛽
∑(∑𝜅∑(𝑦𝑗 − 𝑦𝑖)

𝑖

)

𝛽−1

𝑗

] 

=
1

𝛽 − 𝛼
[(1 − 𝛼)�̂�𝛼(𝑌) − (1 − 𝛽)�̂�𝛽(𝑌)] 

�̂�𝛼,𝛽(𝑌) = {
�̂�𝛼(𝑌),     𝛽 = 1

�̂�𝛽(𝑌),     𝛼 = 1
} 

 

 

6.  CONCLUSION 

In this work, general properties of the entropy estimator (1) that have applications in learning 

systems have been addressed. The results were obtained in mathematical validations, which can be seen in 

theorems 5.1 and 5.4, and properties 5.2, 5.3, 5.5 under certain conditions for choosing the kernel function. 

The proposed entropy estimator could be the necessary building block to train supervised learning systems. 
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